

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators

Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, Luca Carloni Columbia University, New York, NY, USA

The Need of Accelerator-Rich Computing

Limitations in Exploring the Design Space of Accelerators

- Hardware accelerators are devices that are designed and optimized to execute very specific functionalities
- Hardware accelerators ensure **high**

General-Purpose **Processor Cores** Hardware Accelerators

- **Design-Space Exploration**: from a *single* SystemC specification obtain *many* RTL designs with different characteristics in terms of cost and performance
- 1. Several HLS tools do not take into account Private Local Memories
- n^2)
- 2. **Heuristics** used by the HLS tools make it difficult to set the knobs
- increasing the number of unrolls can lead to Pareto-dominated designs (7u)

COSMOS: A Design-Space Exploration Methodology for Hardware Accelerators

(1) Component Characterization

Algorithm: component characterization

Experimental Results

(2) Design-Space Exploration

• We use **timed marked graphs**, a subclass of Petri nets, to model the accelerators

• minimum cycle time $\rightarrow max$ (D_k / N_k) with k \in K, K is the set of cycles of the graph, D_k is the sum of the latencies in cycle k, and N_k is the number of tokens (•) in cycle k • <u>effective throughput</u> $\vartheta \rightarrow$ reciprocal of min. cycle time

N transitions, M places

Synthesis Planning: we use a ϑ -constrained cost-minimization LP formulation:

 $f_i \rightarrow$ calculates the estimated area of the *i*-th component $\lambda^{-} \rightarrow$ vector \mathbb{R}^{N} with the latencies of the N components

min $\sum_{i=1}^{n} f_i(\lambda_i)$

 $\lambda_{min}^-, \lambda_{max}^- \rightarrow \min/\max$ latencies from characterization (1) $M_0 \rightarrow$ vector \mathbb{N}^M with the number of tokens in the M places $\sigma \rightarrow$ vector \mathbb{R}^{M} with the transition-firing initiation-time values A[i, j] \rightarrow +/- 1 if trans. j is an output/input of place i, 0 otherwise

Synthesis Mapping: we need to map the LP solutions to knob settings:

	COSMOS			No Memory	
Component	reg.	λ _{span}	α _{span}	λ _{span}	α _{span}
DEBAYER	3	2.89x	1.99x	1.04x	1.36x
GRAYSCALE	4	6.91x	3.41x	2.75x	1.14x
GRADIENT	4	7.89x	3.65x	1.39x	1.22x
HESSIAN	4	7.70x	7.30x	1.44x	1.30x
SD-UPDATE	4	9.87x	2.01x	2.78x	1.79x
MATRIX-SUB	4	2.75x	3.98x	1.88x	1.05x
MATRIX-ADD	3	1.53x	1.01x	1.26x	1.01x
MATRIX-MUL	3	2.88x	3.05x	1.92x	1.14x

Case Study

