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The Need of Accelerator-Rich Computing

e Hardware accelerators are devices
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Limitations in Exploring the Design Space of Accelerators

1. Several HLS tools do not take into

account Private Local Memories

spans no mem: area 1.2x, latency 1.4x
spans w/ mem: area 3.7x, latency 7.9x

Heuristics used by the HLS tools
make it difficult to set the knobs

increasing the number of unrolls can
lead to Pareto-dominated designs (7u)

* Design-Space Exploration: from a single SystemC specification obtain many
RTL designs with different characteristics in terms of cost and performance
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n: latency of operations that do not access the memory
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* a region includes designs
with the same number of
ports in the local memory

* A_constraint,, .

[u * Vread} [Vwrlte}
ports ports

Yread, Ywrite: Max number of r/w accesses to the same array

(u) is sat
if the number of states of
the loop is < hyopes (W) .

Input:
Output: regions (4

for ports = 1 up to max_ports do
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(1) Component Characterization

clock, max_ports, max_unrolls
a. .., A

max’ “*min’ “*min’

// 1. Find the lower-right point of the region
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e Function h estimates the number of states for 1 iteration: "~ (A
"if A_constraint

max? mln

// 2. Identify the upper-left point of the region
»._for unrolls = max_unrolls down to ports + 1 do | '

) = hls_tool(ports, ports, clock);

) = his_tool(unrolls, ports, clock);
unrolls) is sat then break;

min 7 max

ports(

// 3. Generate the private local memory

a

plm

= mem(ports); & i, += Apim; Xmax 7= Xpims

(2) Design-Space Exploration

* We use timed marked graphs, a subclass of Petri nets, to model the accelerators
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e Synthesis Planning: we use a J-constrained cost-minimization LP formulation:

fl-_% calculatesl\;che.estlmated arf—:a of the i-th component min Z - fl (/11)

A~ =2 vector R" with the latencies of the N components

Amins Amax =2 Min/max latencies from characterization (1) s.t. Ao + Mo/ﬁ > A
M, = vector NMwith the number of tokens in the M places

o = vector RM with the transition-firing initiation-time values
Ali, jl = +/- 1if trans. j is an output/input of place i, 0 otherwise  [Liu et al., ACM/IEEE DATE '12]

* Synthesis Mapping: we need to map the LP solutions to knob settings:
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* minimum cycle time = max (D, / N,) with k € K, K is the

N transitions, M places

set of cycles of the graph, D, is the sum of the latencies
in cycle k, and N, is the number of tokens (e) in cycle k
» effective throughput 9 = reciprocal of min. cycle time

Amm — A’ < Amax

(2) Design-Space Exploration

e Pareto for the WAMI accelerator:
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e Number of calls to the HLS tool:

the lower the better
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(1) Component Characterization » Characterization of HESSIAN:
* Characterization of the WAMI components: 98 2 ports -
8.0 [ | " 4 ports
COSMOS No Memory N 8 ports 4
< 6.4 16 ports ¢ |
Component reg. | Agpan | Qspan | Aspan | %span E 45l
DEBAYER 3 | 289 | 1.99x | 1.04x | 136x | § | s
GRAYSCALE 4 6.91x | 3.41x | 2.75x | 1.14x 6l el TR |
GRADIENT 4 7.89x | 3.65x | 1.39x | 1.22x 0.0 | | | | | | ‘ !
00/ 09 18 27 36 45 54 63 72
HESSIAN 4 7.70x | 7.30x | 1.44x | 1.30x Effective Latency (ms) L
SD-UPDATE 4 9.87x | 2.01x | 2.78x | 1.79x 200m 815 ‘ ‘ ‘
> 16 ports
MATRIX-SUB 4 2.75x | 3.98x | 1.88x | 1.05x 8.10 | 2
L 4
MATRIX-ADD 3 | 1.53x | 1.01x | 1.26x | 1.01x 805 * o, ¢
4
MATRIX-MUL 3 2.88x | 3.05x | 1.92x | 1.14x 8.00 | *e N
L 4
MATRIX-RESH 1 | 1.02x | 1.04x | 1.02x | 1.04x . | | | .
0.8 0.9 1.0 1.1 12 1
STEEP-DESCENT | 1 | 1.95x | 1.46x | 1.95x | 1.46x , _ .
* Some Pareto-dominated designs
CHANGE-DET. 1 | 2.21x | 1.04x | 2.21x | 1.04x . ,
cannot be avoided by using only
WARP 1 1.09x | 1.03x | 1.09x | 1.03x ]
the proposed A-constraint
Average - 4.06x | 2.58x | 1.73x | 1.22x . _
 Some Pareto-optimal designs can
o o . .
* “reg.” is the number of reglons Aspan 1S be outside the regions, but they
the latency span, “a,,,,” is the area span can still be used in step (2)

e WAMI (Wide-Area Motion Imagery)
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Take-Home Message

COSMOS is an automatic, scalable and
fast methodology for the design-space
exploration of hardware accelerators




