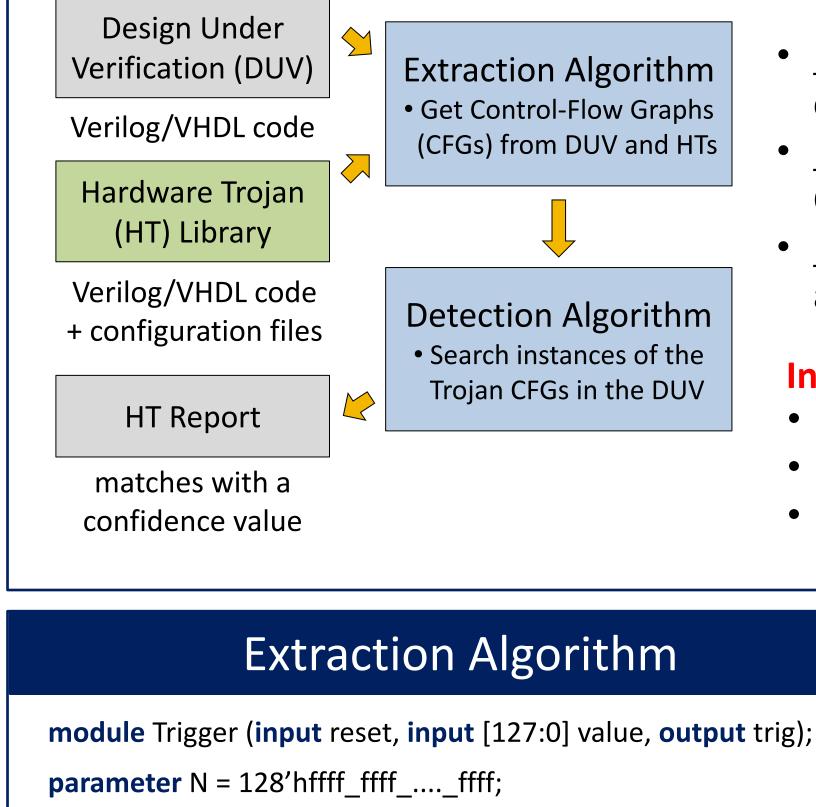
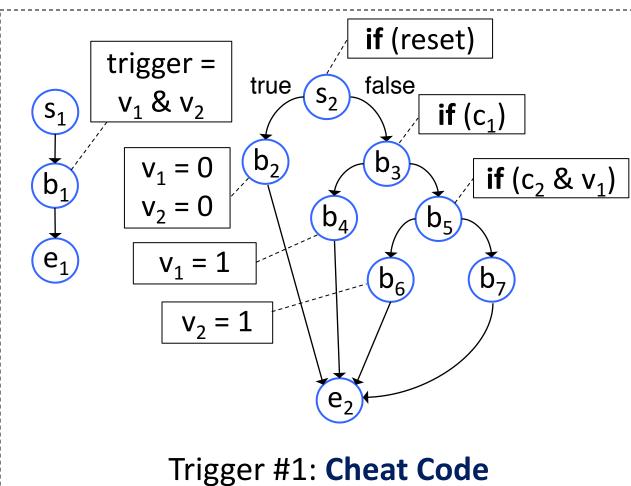

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models

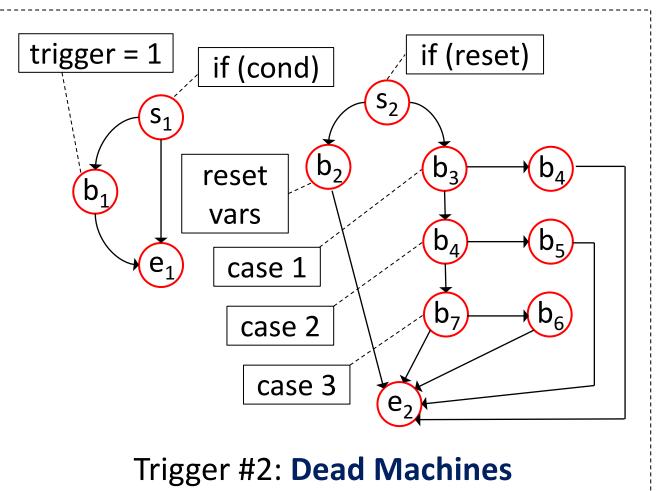
Luca Piccolboni^{1,2}, Alessandro Menon², Graziano Pravadelli² ¹ Columbia University, New York, NY, USA ² University of Verona, Verona, Italy

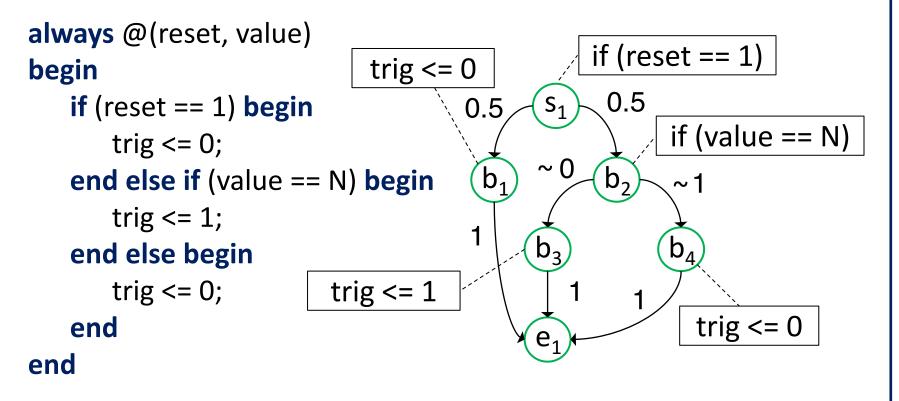

Hardware Trojans: An Incoming Threat

 Hardware Trojans are defined as malicious and intentional alterations of an integrated circuit that result in undesired behaviors

- trigger logic: activates the malicious behavior under specific conditions
- payload logic: implements the malicious behavior (affects functionality)

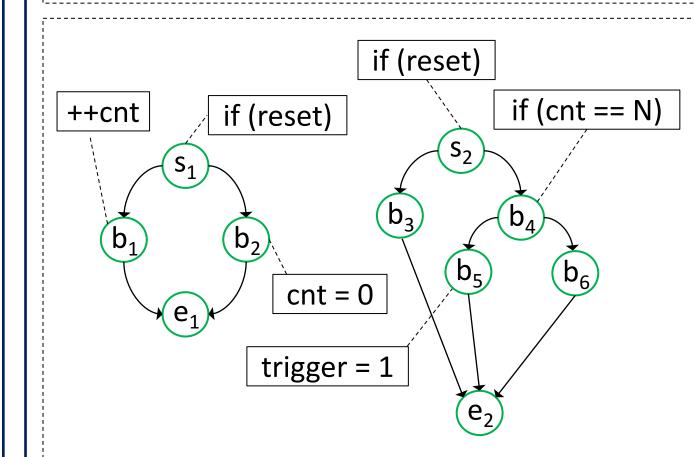

Our Approach: Control-Flow Subgraph Matching




Three main contributions: Hardware Trojan (HT) Library

Hardware Trojan Library

• The library includes the RTL code of known HT triggers and payloads


- The extraction of the CFG is language independent
- The algorithm extracts also the probabilities of branches by using an approach based on SMT

containing parametrizable HTs

- Extraction Algorithm to obtain a CFG from the DUV and the HTs
- <u>Detection Algorithm</u> to identify and locate the HTs in the DUV

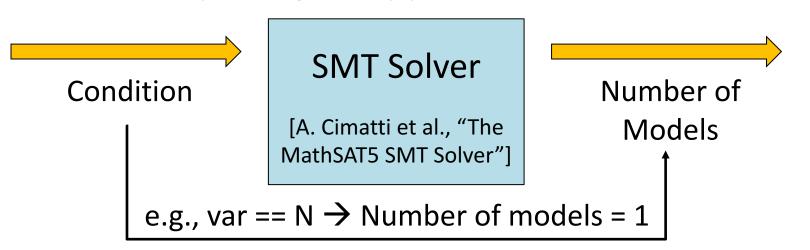
In which situations is this useful?

- verify in-house designs at RTL
- verify third-party RTL modules
- verify the results of CAD tools

Trigger #3: Ticking Timebomb

- Each trigger can be parametrized with a configuration file that specifies how to extend the CFG to represent other camouflaged instances of the trigger (by using the extension directives)
- The structural characteristics of each trigger are used during the matching (by using the **confidence directives**)
- The payloads can be used as another metric to calculate the confidence

Detection Algorithm


procedure match-trigger(duv, HTLibrary)
targets = extract-cfg(duv);
foreach trigger in HTLibrary do
 pattern = extract-cfg(trigger); count = 0;
while count < counter.getMaxBound() do
 match U= search(pattern, targets);
 pattern.augmentSize(); count++;
calculate-conf(duv, matches, HTLibrary);</pre>

- The match is purely based on the **structure** of the CFGs: instructions are **not** considered in any way
- The trigger in the HTLibrary is extended with the extension directives to find camouflaged variants

Determining the Confidence

procedure calculate-conf(duv, matches, HTLibrary) foreach payload in HTLibrary do payloads U= extract-cfg(payload); foreach match in matches do match.conf = α_1 * check-variables(match); match.conf += α_2 * check-resetlogic(match); match.conf += α_3 * check-probabilities(match); match.conf += α_4 * check-payloads(match, duv);

- presence of variables: verify if the match uses a variable in the same way of the corresp. pattern
- presence of reset logic: verify if the match has a reset logic similar to that of the corresp. pattern

- This approach is scalable because conditions are usually composed of few variables, and sometimes they can be resolved without using the SMT solver
- Each match is evaluated with the *calculate-conf* procedure to determine if it is a false positive

Evaluation of the Algorithm Complexity:

- average <u>distance of the probabilities</u>: distance of the probabilities of the edges in the match and the probabilities of the edges in the trigger
- degree of <u>dependence</u> between the match and an affine payload: verify if there are variables both in the match and in one of the payloads

$$\beta = c_1 \alpha_1 + c_2 \alpha_2 + c_3 \alpha_3 + c_4 \alpha_4$$

conf: linear combinations of those conditions

Experimental Results

• All the benchmarks are injected with one HT, except Crypto-T000 that has zero HTs and Crypto-T100 that has two HTs.

					· · · · · ·						Tool that has zero fits and crypto-rigot that has two fits							71113.		Proposed Approach								
	C	Other	'S		Pro	oposed	Approa	ch				Other	'S		Pro	oposed	Approa	ch		Name	e Fo	und	Mat.	C _{HT}	C _{MAX}	FP	T(s)	
Name	[A]	[B]	[C]	Found	Mat.	C _{HT}	C _{MAX}	FP	T(s)	Name	[A]	[B]	[C]	Found	Mat.	C _{HT}	C _{MAX}	FP	T(s)	Crypto-T(N 00C	lo	23	N/A	0.35	N/A	11.80	
AES-T400	no	no	#	yes	3	0.95	0.64	0	5.04	AES-T2000	no	yes	#	yes	6	0.93	0.41	0	4.56	Crypto-T2	100 v	es	34	0.81	0.39	0	12.88	
AES-T500	no	no	#	yes	7	0.93	0.68	0	4.80	AES-T2100	no	yes	#	yes	5	0.95	0.75	0	4.75	-		es	34	0.72	0.39	0	12.88	
AES-T600	no	yes	#	yes	5	0.93	0.41	0	5.12	RS232-T100	no	no	yes	yes	7	0.36	0.50	2	4.12	Crypto-T2		es	31	0.96	0.71	0	13.43	
AES-T700	yes	yes	#	yes	5	0.85	0.50	0	5.11	RS232-T200	no	no	#	yes	8	0.92	0.56	0	3.13	Crypto-T3		es	42	0.88	0.29	0	15.03	
AES-T800	yes	yes	#	yes	9	0.93	0.65	0	5.04	RS232-T300	no	no	yes	yes	6	0.92	0.31	0	2.74	, . 								
AES-T900	no	yes	#	yes	7	0.95	0.62	0	4.78	RS232-T400	no	no	yes	yes	8	0.56	0.51	0	2.32	Crypto-T4	400 y	es	34	0.90	0.50	0	15.67	
AES-T1000	no	yes	#	yes	4	1.00	0.64	0	4.76	RS232-T500	no	no	yes	yes	6	0.93	0.31	0	2.80			Benc	hmarks			• ••••	min/max	
AES-T1100	yes	yes	#	yes	5	0.94	0.47	0	5.67	RS232-T600	no	no	yes	yes	11	0.67	0.35	0	2.39	Name	B _{MIN}	B _{MAX}	E _{MIN}	EMAX		imber o		
AES-T1200	no	yes	#	yes	4	0.96	0.54	0	4.69	RS232-T700	no	no	yes	yes	11	0.67	0.53	0	2.58	AES		2150	3160	3236		umber o	nin/max f edges	
AES-T1300	no	no	#	yes	82	1.00	0.65	0	5.62	RS232-T800	no	no	yes	yes	7	0.36	0.50	2	3.23	RS232	130	159	184	233		AES, RS232, BasicRSA		
AES-T1400	no	no	#	yes	81	0.99	0.69	0	4.85	RS232-T900	no	no	yes	yes	11	0.67	0.52	0	2.43	BasicRSA	81	93	119	139			ustHUB,	
AES-T1500	no	no	#	yes	83	0.98	0.65	0	5.80	RS232-T901	no	no	yes	yes	11	0.67	0.52	0	2.48	Crypto		4424				Crypto is OpenC		
AES-T1600	no	no	#	yes	7	0.96	0.54	0	4.86	BasicRSA-T100	no	yes	yes	yes	4	0.25	0.25	3	1.13									
AES-T1700	no	no	#	yes	3	0.98	0.63	0	5.38	BasicRSA-T200	no	no	yes	yes	3	0.25	0.25	1	1.45									
AES-T1800	no	no	#	yes	9	1.00	0.69	0	4.86	BasicRSA-T300	no	yes	yes	yes	4	1.00	0.42	0	1.41	Take-Home Message								
AES-T1900	no	no	#	yes	11	0.97	0.72	0	4.82	BasicRSA-T400	no	no	yes	yes	5	0.96	0.52	0	1.46		ting an		•				-	

[A] J. Rajendran et al., "Detecting Malicious Modifications of Data in Third-Party Intellectual Property Cores", DAC'15, [B] J. Rajendran et al., "Formal Security Verification of Third-Party Intellectual Property Intellectual Property Cores for Information Leakage", VLSID'16, [C] S. K. Haider et al., "HaTCh: Hardware Trojan Catcher", 2014, #: means depends if activated in the learning phase, Mat.: number of matches, C_{HT}: confidence of the HT, C_{MAX}: the highest confidence among false positives, FP: number of false positives, T(s): time in sec.

Adopting an approach based on Control-Flow Subgraph Matching is effective and efficient for detecting Hardware Trojans at RTL