
Efficient	Control-Flow	Subgraph Matching	for	
Detecting	Hardware	Trojans	in	RTL	Models

Luca	Piccolboni1,2,	Alessandro	Menon2,	Graziano	Pravadelli2
1 Columbia	University,	New	York,	NY,	USA

2 University	of	Verona,	Verona,	Italy

Take-Home	Message

Others Proposed	Approach
Name [A] [B] [C] Found Mat. CHT CMAX FP T(s)

AES-T400 no no # yes 3 0.95 0.64 0 5.04

AES-T500 no no # yes 7 0.93 0.68 0 4.80

AES-T600 no yes # yes 5 0.93 0.41 0 5.12

AES-T700 yes yes # yes 5 0.85 0.50 0 5.11

AES-T800 yes yes # yes 9 0.93 0.65 0 5.04

AES-T900 no yes # yes 7 0.95 0.62 0 4.78

AES-T1000 no yes # yes 4 1.00 0.64 0 4.76

AES-T1100 yes yes # yes 5 0.94 0.47 0 5.67

AES-T1200 no yes # yes 4 0.96 0.54 0 4.69

AES-T1300 no no # yes 82 1.00 0.65 0 5.62

AES-T1400 no no # yes 81 0.99 0.69 0 4.85

AES-T1500 no no # yes 83 0.98 0.65 0 5.80

AES-T1600 no no # yes 7 0.96 0.54 0 4.86

AES-T1700 no no # yes 3 0.98 0.63 0 5.38

AES-T1800 no no # yes 9 1.00 0.69 0 4.86

AES-T1900 no no # yes 11 0.97 0.72 0 4.82

[A] J.	Rajendran	et	al.,	“Detecting	Malicious	Modifications	of	Data	in	Third-Party	Intellectual	Property	Cores”,	DAC’15,	[B] J.	Rajendran	et	al.,	“Formal	Security	Verification	of	
Third-Party	Intellectual	Property	Cores	for	Information	Leakage”,	VLSID’16,	[C]	S.	K.	Haider	et	al.,	“HaTCh:	Hardware	Trojan	Catcher”,	2014,	#: means	depends	if	activated	in	
the	learning	phase,	Mat.:	number	of	matches,	CHT:	confidence	of	the	HT,	CMAX:	the	highest	confidence	among	false	positives,	FP:	number	of	false	positives,	T(s):	time	in	sec.

Others Proposed	Approach
Name [A] [B] [C] Found Mat. CHT CMAX FP T(s)

AES-T2000 no yes # yes 6 0.93 0.41 0 4.56

AES-T2100 no yes # yes 5 0.95 0.75 0 4.75

RS232-T100 no no yes yes 7 0.36 0.50 2 4.12

RS232-T200 no no # yes 8 0.92 0.56 0 3.13

RS232-T300 no no yes yes 6 0.92 0.31 0 2.74

RS232-T400 no no yes yes 8 0.56 0.51 0 2.32

RS232-T500 no no yes yes 6 0.93 0.31 0 2.80

RS232-T600 no no yes yes 11 0.67 0.35 0 2.39

RS232-T700 no no yes yes 11 0.67 0.53 0 2.58

RS232-T800 no no yes yes 7 0.36 0.50 2 3.23

RS232-T900 no no yes yes 11 0.67 0.52 0 2.43

RS232-T901 no no yes yes 11 0.67 0.52 0 2.48

BasicRSA-T100 no yes yes yes 4 0.25 0.25 3 1.13

BasicRSA-T200 no no yes yes 3 0.25 0.25 1 1.45

BasicRSA-T300 no yes yes yes 4 1.00 0.42 0 1.41

BasicRSA-T400 no no yes yes 5 0.96 0.52 0 1.46

Proposed	Approach
Name Found Mat. CHT CMAX FP T(s)

Crypto-T000 No 23 N/A 0.35 N/A 11.80

Crypto-T100 yes 34 0.81 0.39 0 12.88

- yes 34 0.72 0.39 0 12.88

Crypto-T200 yes 31 0.96 0.71 0 13.43

Crypto-T300 yes 42 0.88 0.29 0 15.03

Crypto-T400 yes 34 0.90 0.50 0 15.67

Benchmarks
Name BMIN BMAX EMIN EMAX

AES 2101 2150 3160 3236

RS232 130 159 184 233

BasicRSA 81 93 119 139

Crypto 4402 4424 6503 6537

BMIN/BMAX:	min/max	
number	of	blocks
EMIN/EMAX:	min/max	
number	of	edges

AES,	RS232,	BasicRSA	
are	from	TrustHUB,

Crypto	is	from	
OpenCores

Experimental	Results
• All	the	benchmarks	are	injected	with	one	HT,	except	Crypto-T000 that	has	zero	HTs	and	Crypto-T100	that	has	two	HTs.

Adopting	an	approach	based	on	Control-Flow
Subgraph	Matching	is	effective	and	efficient	
for	detecting	Hardware	Trojans	at	RTL

Our	Approach:	Control-Flow	Subgraph	Matching

• Hardware	Trojans	are	defined	as	malicious	
and	intentional	alterations	of	an	integrated	
circuit	that	result	in	undesired	behaviors

• The	library	includes	the	RTL	code	of	known	HT	triggers and	payloads

• trigger	logic:	activates	the	malicious	behavior	under	specific	conditions
• payload	logic: implements	the	malicious	behavior	(affects	functionality)

if (reset)

if (c1)

if (c2 &	v1)

s1

e1

trigger	=	
v1 & v2

v1 =	1

v2 =	1

v1 =	0
v2 =	0

b1

e2

s2

b2 b3
b4

b6

b5

b7

Trigger	#1:	Cheat	Code

if	(reset)

s1

e1 case	1

case	2

reset	
vars

b1

e2

s2

b2 b3

if	(cond)trigger	=	1

b4

b7 b6

b5

b4

case	3

Trigger	#2:	Dead	Machines

Trigger	#3:	Ticking	Timebomb

if	(reset)
if	(cnt	==	N)

s1

e1
trigger	=	1

b2

e2

s2

b3 b4
b5 b6

b1

if	(reset)

cnt	=	0

++cnt

• Each	trigger	can	be	parametrized with
a	configuration	file	that	specifies	how	
to	extend	the	CFG	to	represent	other	
camouflaged	instances	of	the	trigger
(by	using	the	extension	directives)

• The	structural	characteristics	of	each	
trigger	are	used	during	the	matching	
(by	using	the	confidence directives)	

• The	payloads	can	be	used	as	another	
metric	to	calculate	the	confidence

Hardware	Trojan
Trigger	
Logic

Payload	
Logic

Design	Under	
Verification	(DUV) Extraction	Algorithm

• Get	Control-Flow	Graphs	
(CFGs)	from	DUV	and	HTs

Detection	Algorithm
• Search	instances	of	the	
Trojan	CFGs	in	the	DUV

Verilog/VHDL	code

Hardware	Trojan	
(HT) Library

Verilog/VHDL	code	
+	configuration	files

matches	with	a	
confidence	value

HT	Report
In	which	situations	is	this	useful?
• verify	in-house	designs	at	RTL
• verify	third-party	RTL	modules
• verify	the	results	of	CAD	tools

Three	main	contributions:
• Hardware	Trojan	(HT)	Library	
containing	parametrizable	HTs

• Extraction	Algorithm to	obtain	a	
CFG	from	the	DUV	and	the	HTs

• Detection	Algorithm to	identify	
and	locate	the	HTs	in	the	DUV

Hardware	Trojans:	An	Incoming	Threat	 Hardware	Trojan	Library

true false

Determining	the	Confidence
procedure calculate-conf(duv,	matches,	HTLibrary)

foreach payload	in HTLibrary	do
payloads	U=	extract-cfg(payload);

foreachmatch	inmatches	do
match.conf			=	𝛼1 *	check-variables(match);
match.conf	+=	𝛼2 *	check-resetlogic(match);
match.conf	+=	𝛼3 *	check-probabilities(match);
match.conf	+=	𝛼4 *	check-payloads(match,	duv);

• presence	of	variables:	verify	if	the	match	uses	a	
variable	in	the	same	way	of	the	corresp.	pattern

• presence	of	reset	logic:	verify	if	the	match	has	a	
reset	logic	similar	to	that	of	the	corresp.	pattern

• average	distance	of	the	probabilities:	distance	of	
the	probabilities	of	the	edges	in	the	match	and	
the	probabilities	of	the	edges	in	the	trigger

• degree	of	dependence between	the	match	and	
an	affine	payload:	verify	if	there	are	variables	
both	in	the	match	and	in	one	of	the	payloads

Detection	AlgorithmExtraction	Algorithm

procedurematch-trigger(duv,	HTLibrary)
targets	=	extract-cfg(duv);
foreach trigger	in HTLibrary	do

pattern	=	extract-cfg(trigger);	count	=	0;
while count	<	counter.getMaxBound()	do

match	U=	search(pattern,	targets);
pattern.augmentSize();	count++;

calculate-conf(duv,	matches,	HTLibrary);

• The	match	is	purely	based	on	the	structure of	the	
CFGs:	instructions	are	not considered	in	any	way

• The	trigger	in	the	HTLibrary	is	extended	with	the	
extension	directives	to	find	camouflaged	variants

• Each	match	is	evaluated	with	the	calculate-conf
procedure	to	determine	if	it	is	a	false	positive

• Evaluation	of	the	Algorithm	Complexity:

O(lHT *	bHT *	C(nDUV,	nHT))

number	of	triggers
in	the	HTLibrary max	number

of	extensions

subgraph	isomorphism
complexity	(nodes	in	
DUV	and	in	the	HT)	

module Trigger	(input reset,	input [127:0]	value,	output trig);

always@(reset,	value)
begin

if (reset	==	1)	begin
trig	<=	0;

end	else	if (value	==	N) begin
trig	<=	1;

end	else	begin
trig	<=	0;

end
end	

parameter N	=	128’hffff_ffff_...._ffff;

s1

e1

b2b1

if	(reset	==	1)trig	<=	0

b4b3
trig	<=	1

trig	<=	0

if	(value	==	N)

• The	extraction	of	the	CFG	is	language	independent
• The	algorithm	extracts	also	the	probabilities of		
branches	by	using	an	approach	based	on	SMT

SMT	Solver
[A.	Cimatti	et	al.,	“The	
MathSAT5	SMT	Solver”]

Condition Number	of
Models

e.g.,	var	==	N	à Number	of	models	=	1

• This	approach	is	scalable because	conditions	are	
usually	composed	of	few	variables,	and	sometimes	
they	can	be	resolved	without	using	the	SMT	solver

𝛽 = 𝑐1𝛼1+ 𝑐2𝛼2 + 𝑐3𝛼3 + 𝑐4𝛼4

• conf:	linear	combinations	of	those	conditions

0.5 0.5

1

1 1

10
~~

