
Stimuli Generation through Invariant
Mining for Black-Box Verification

Luca Piccolboni
Department of Computer Science

University of Verona, Italy
Email: luca.piccolboni@univr.it

Graziano Pravadelli
Department of Computer Science

University of Verona, Italy
Email: graziano.pravadelli@univr.it

Abstract—A pre-condition for any verification technique based
on simulation is the generation of a high-quality set of stimuli that
effectively and efficiently cover the whole state space of the Design
Under Verification (DUV), including hard-to-reach corner cases.
To cope with this necessity, several approaches for the automatic
generation of stimuli have been proposed for both embedded
software and high-level descriptions of hardware components.
Most of these approaches use constraint solvers to generate the
sequences of stimuli that trigger specific conditions, enabling the
analysis of corner cases. However, the automatic identification of
those conditions is still an open problem, especially for black-box
designs. To fill in the gap, this paper proposes a stimuli generator,
based on a dynamic invariant miner, that identifies and stresses
DUV areas that are not deeply analysed by traditional pseudo-
random high-level Automatic Test Pattern Generators (ATPGs),
thus guaranteeing an higher coverage of corner cases during
black-box verification.

I. INTRODUCTION

The rising complexity of embedded hardware and software
highlights the need of improving the effectiveness and the
efficiency of verification in all the phases of the design cycle.
In particular, due to the increasing number of functionalities
required in modern embedded systems, the generation of a
high-quality set of stimuli has become even more a critical step
of the verification process. The generation of effective stimuli
is essential for ensuring the correctness of the designs in all
working conditions, and it is the first step of all simulation-
based techniques. A low-quality set of stimuli fails to discover
design problems or bugs in the corner cases of the designs. This
causes a false sense of safety on the correctness, and reduces
the accuracy of the simulation-based techniques. For these
reasons, several approaches for the generation of stimuli, at
different abstraction levels, have been proposed [1]. They have
been classified in concrete, symbolic and concolic executions.

Concrete execution uses the stimuli generated by random,
probabilistic or genetic algorithms [2]. It allows to efficiently
explore several execution paths of the Design Under Verification
(DUV) but it is not exhaustive. Conversely, symbolic execution
explores the DUV through an interpreter [3]. The interpreter
follows each program path assuming symbolic values as inputs.
Then, it creates formulas that express the conditions found in
the code, and then it uses a constraint solver to obtain the
actual values. It has been shown that symbolic execution is
effective but more research is needed to make it scalable. Such
problems have been addressed by concolic execution [4]–[6]
where concrete and symbolic executions have been combined.
The key idea is to simplify the symbolic expressions by using
concrete values, to reduce the complexity of solving constraints.

To complement the previous techniques, some approaches
used the invariants (or more generally, operational abstrac-

tions [7]) to enhance the verification effectiveness. Invariants
are logic formulas that hold in a specific instant during the
execution, that is for a certain time window, or between a couple
of program points of an implementation, such as the entry and
the exit point of a function. Such types of logic formulas
are also used by concolic engines, e.g. [4], [6] to represent
program execution paths. Most of the approaches, that are
based on invariants, infer these logic formulas with Daikon [8]
and they are used to find bugs in software programs. For
example, Harder et al. [7] presented the operational difference
technique for generating, augmenting and minimising set of
stimuli for software programs. The key idea is that the stimuli
that change the operational abstractions are useful to improve
the verification effectiveness. In fact, these stimuli can exercise
the program in different scenarios with respect to the stimuli
that are not able to change the operational abstractions. As a
consequence, with these stimuli, it is more likely to discover
bugs. Xie and Notkin [9] proposed the use of operational
violations. The stimuli that falsify the invariants are selected
among the others because the violations can represent features
of the program that have not been checked. Eclat [10] is an
automatic framework that generates unit tests for Java classes.
Specifically, the framework helps to select a small portion of
the input stimuli, from an input set of stimuli, that is likely to
reveal bugs. The invariants are used as an oracle, and the inputs
that are considered interesting are those that create improper
program behaviours. Lastly, Zeng et al. [11] used the invariants
as a metric to understand if software programs are sufficiently
verified. The algorithm iteratively generates new stimuli. If
they do not change any inferred invariant, they are discarded.

Nevertheless, almost all of the previous approaches extract
the invariants only for verifying if they are changed during
the program execution, e.g. [7], [11]. Specifically, the stimuli
that are able to change the invariants are considered more
effective than the others. In this way, invariants are used only for
evaluating the effectiveness of the generated stimuli. However,
invariants are intended to represent behaviours and, therefore,
they can represent particular verification scenarios. As a conse-
quence, invariants can be used to drive the stimuli generation
because, by falsifying or by satisfying certain invariants, the
execution can be guided towards different execution paths,
with the aim of discovering bugs in specific corner cases. As
in the case of concolic engines with the formulas that represent
execution paths, e.g. [4], [6]. Furthermore, all the previous
approaches focus only on trace invariants, i.e. logic formulas
that are satisfied in the whole execution of a program. But,
time window invariants [12], i.e. logic formulas satisfied only
in specific instants during the execution, can be used for
the stimuli generation, because they represent the temporary
conditions that are satisfied along specific execution paths. By978-1-5090-3561-8/16/$31.00 c©2016 IEEE
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stressing the conditions that have not been exercised enough
during the simulation, a stimuli generator can identify new
corner cases. Finally, some approaches, for example [10], have
been used in the context of white-box verification, thus requiring
the analysis of the DUV source code or becoming dependent
on the considered programming language or abstraction level.

A. Contributions of the Paper
This work is intended to present a way to complement the

existing stimuli generation techniques by using an invariant
miner in the context of black-box verification. The goal of
this work is proposing a stimuli generator that exploits the
invariants extracted from an initial set of stimuli to effectively
and efficiently guide the generation of new stimuli that increase
the coverage of the state space of the DUV. Specifically, the
approach extracts invariants during the DUV simulation. The
types of invariants to extract is selected by the designer in
according with the DUV specifications. Then, the invariants
are automatically converted in constraints to represent specific
execution paths. Finally, the proposed generator exercises
the DUV with the values that satisfy those constraints, thus
ensuring a more uniform exploration of the DUV state space.

B. Organisation of the Paper
The rest of the paper is organised as follows. Section II

provides the fundamental concepts about invariant mining.
Section III gives an overview of the stimuli generator which
is detailed in Sections IV and V. Section VI deals with experi-
mental results. Lastly, Section VII is devoted to conclusions.

II. BACKGROUND

The invariant mining approaches can be orthogonally classi-
fied with respect to how invariants are inferred and which types
of invariants can be extracted. First, the approaches can be
either static or dynamic. The former explore design models or
implementations to discover the invariants [13]. The latter infer
the invariants from program execution traces [8], [12]. Second,
some approaches can extract temporal propositions [14]. Others
can infer only boolean or arithmetic propositions [8], [12]. In
our approach, a dynamic invariant miner that extracts boolean
and arithmetic propositions has been integrated [12]. In the
following, the most related definitions are provided.

In the rest of the paper, given a model M , the set of variables
V represents the set of inputs of M . The internal variables
are not considered as part of V , because the approach targets
black-box verification.
Definition 1. Given a model M , a set of variables V of M
and a finite sequence of simulation instants 〈t1, . . . , tn〉,
an execution trace E of M is a finite sequence of pairs
〈(V1, t1), . . . , (Vn, tn)〉 where Vi, also called the i-th sample,
is the evaluation of variables in V at simulation instant ti.
Definition 2. Given a set of variables V and an execution trace
E = 〈(V1, t1), . . . , (Vn, tn)〉, a time window for E is a finite
subsequence of contiguous pairs Wi,j = 〈(Vi, ti), . . . , (Vj , tj)〉
of E, where 1 ≤ i ≤ j ≤ n and i 6= 1 ∨ j 6= n (Wi,j ⊂ E).
Definition 3. Given an execution trace E and a set of variables
V a trace invariant (t-invariant) is a logical formula over V
that is always satisfied in the execution trace (in each sample).
Definition 4. Given an execution trace E, a set of variables V
and a time window Wi,j ⊂ E, a time window invariant (tw-
invariant) is a logical formula over V that is always satisfied
in the time window Wi,j (in each simulation instant in Wi,j).

PHASE 1:
RANDOM ATPG

PHASE 2:
T-INVARIANTS

PHASE 3:
TW-INVARIANTS

INVARIANT
MINER

STIMULI
STIMULI

Generation of new
stimuli for the DUV

in each phase of the flow

Until there are no
trace invariants

Until the end of
the simulation

Fig. 1. Overview of the execution flow of the proposed stimuli generator.

Examples of invariants that are considered in this paper are:
var1 < var2, var3 6= 0, var4 = true, var5 = var6 & var7 etc.

III. OVERVIEW

The execution flow of the proposed stimuli generator is
showed in Fig. 1. The objective of the framework is exploring
in a uniform way the state space of the DUV to cover more
easily the corner cases. The execution flow of the stimuli
generator is divided into three incremental phases. The idea is
that each phase contributes to enhance the set of stimuli for
the DUV with complementary strategies of generation:

(i) PHASE 1 uses a pseudo-random Automatic Test Pattern
Generator (ATPG) to initially explore the behaviour of the
DUV. This step is important because with few random
stimuli many or almost all functionalities of the DUV
can be efficiently verified [15]. However, this phase can
fail to check specific corner cases, for example those that
rely on conditions that are hard to satisfy with random
values. Thus, other more-focused strategies are necessary;

(ii) PHASE 2 creates stimuli that falsify all the trace invariants
that are satisfied by the previous set of stimuli. The key
idea is that the trace invariants can represent execution
paths that have already been explored. By falsifying those
invariants, other execution paths can be exercised with
the aim of discovering the corner cases that have not been
checked. Details on this phase are reported in Section IV;

(iii) PHASE 3 uses the time window invariants as a metric to
understand which execution paths have been exercised
less. The key idea is to exercise each path in a more
uniform way independently from the probability of
satisfying the conditions on which it relies. This augments
the chance of checking all the corner cases in the different
paths. Details on this phase are reported in Section V.

PHASES 2 and 3 of the proposed stimuli generator are based
on an invariant miner. The invariant miner infers the trace
and the time window invariants respectively. In the proposed
framework, the invariant miner described in [12] has been
adopted. It has also been extended to infer many other types of
logic and arithmetic relations among variables and constants,
and to count the total number of time windows that satisfy the
time window invariants that have been extracted.
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1 if (inputVar1 == 0) then
22 // A. Difficult to be executed
3 return function1(inputVar1, inputVar2);
4 else if (inputVar1 == inputVar2) then
55 // B. Difficult to be executed
6 return function2(inputVar1, inputVar2);
7 else
88 // C. Very easy to be executed
9 return function3(inputVar1, inputVar2);

10 end

Fig. 2. Example of hard-to-verify corner cases.

PHASE 1:
RANDOM ATPG

PHASE 2:
T-INVARIANTS

STEP 1:
Extraction of
T-Invariants

STEP 2:
Creation of
Constraints

STEP 3:
Generation
of Stimuli

T-Invariants
inputVar1 6= inputVar2
inputVar1 6= 0

Constraints
inputVar1 = inputVar2

Generation
inputVar2 = rand()
inputVar1 = inputVar2

STIMULISTIMULI

Trace of Stimuli
inputVar1 inputVar2

1 2
2 0
... ...

Steps of
PHASE 2

Execution flow
of the Stimuli

Generator

Application to
the Example

in Fig. 2

Until there are no
trace invariants

Fig. 3. Application of PHASE 2 to the Example in Fig. 2.

IV. T-INVARIANT-BASED GENERATION

In PHASE 2, the stimuli generator uses the invariant miner
to extract the trace invariants from the set of stimuli1generated
in PHASE 1. The idea is that the trace invariants can represent
the execution paths of the DUV that the random simulation has
exercised. According to Definition 3, the trace invariants are
logic formulas that are satisfied in the whole simulation of the
DUV. Thus, the trace invariants represent particular scenarios
that have been verified. By falsifying the trace invariants, new
execution paths can be discovered. In this way, the corner cases
in those execution paths can be verified (as pointed out in [9]).

A. Motivating Example
Consider, for example, the code reported in Fig. 2. Suppose

that the values of the variables are represented with 32 bits.
In this case, it is very improbable that the random simulation
is able to generate the value zero for the first input variable
(inputVar1) or two identical values for both the input variables
to test the function calls at line 3 or 6 respectively. However, by
using the trace invariants, these function calls can be checked
(Fig. 3). The trace invariants are inferred from the set of random
stimuli, that has been previously used to exercise the code.
Then, a subset of the trace invariants is selected, negated and
converted into constraints (it is necessary to select only a subset
of the invariants to avoid cyclic dependencies on the constraints
as clarified later). Lastly, the constraints are used to generate the
values that falsify the original trace invariants. Note that, in this
case, only one invariant has been used (inputVar1 6= inputVar2).
But, by repeating the process, also the other invariant can be
selected. In this way, both the function calls can be verified.

It is important to note that the algorithm effectiveness in
exploring the DUV state space depends on the invariants that

1Note that in our approach the set of stimuli of PHASE 1 has been generated
by using a pseudo-random ATPG. Nevertheless, any other type of ATPG (e.g.
more sophisticated ATPGs) could be used to generate the initial set of stimuli.

the stimuli obtained with PHASE 1

the number of the new stimuli

the inputs of the DUV

Name:
phase2(trace, variables, valueNumber)

Algorithm :
1 values = ∅;
22 // Step 1: Extraction of T-Invariants
3 invariants = miner.getTInvs(trace, variables);
4 if (invariants.size() == 0) then
5 return phase3(tw, trace,
6 variables, valueNumber);
7 end
88 // Step 2: Creation of Constraints
9 constraints = getConstraints(invariants, variables);

10 constraints = negateConstraints(constraints);
11 while (values.size() < valueNumber) do
12 try
1313 // Step 3: Generation of Stimuli
14 values ∪= solver.getValues(constraints);
15 catch (UnsatException exception) do
16 constraints \= exception.getConstraint();
17 end
18 end
19 return values;

Fig. 4. The algorithm used in PHASE 2 of the flow in Fig. 1.

the miner is able to extract. Designers have to choose a proper
set of invariant templates (i.e. which types of relations the
variables satisfy) that can be useful to discover all the DUV
corner cases. It is sufficient, in most cases, to consider which
are the exceptional situations that the DUV has to handle
and derive the types of templates accordingly. In Fig. 2 two
templates are considered: v 6= u and w 6= 0 with u, v, w ∈ V .

B. Stimuli Generation
The algorithm that automatises the flow in Fig. 3 is realised

by the function phase2, depicted in Fig. 4. The main steps are:

1) Step 1: Extraction of T-Invariants: the trace invariants
are inferred with the invariant miner. If all the trace invariants
have already been falsified, the algorithm passes to PHASE 3
(line 5 of Fig. 4). Otherwise, the following steps are performed.

2) Step 2: Creation of Constraints: after the mining of the
trace invariants, a set of constraints is created. The algorithm is
depicted in Fig. 5. The function getConstraints returns the
largest set of constraints that can be obtained from the given
set of invariants by using each variable at most one time in
all the constraints. Each variable is used at most once because
in this way the algorithm avoids to create cyclic dependencies
on different constraints and some unsatisfiable situations. For
example, the set of constraints {v1 = v2, v2 = v3, v3 6= v1}
defines an unsatisfiable dependency on the generation of values
(this comes from the invariants {v1 6= v2, v2 6= v3, v3 = v1}).
Moreover, using distinct variables permits to generate stimuli
that are uniformly distributed. For instance, consider again
the flow reported in Fig. 3. Two trace invariants have been
extracted, but only the first has been used at the first iteration
of the algorithm. If both of them would have been selected
at the same iteration, the only case, that satisfies both the
constraints, consists of generating zero for both variables. But,
it is clear that in the code of Fig. 2 this would have not been
let to test both the function calls. In general, it is better to limit
the dependencies among the selected constraints to have the
possibility of generating uniformly-distributed sets of stimuli.
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the set of inferred invariants

the inputs of the DUV
Name:

getConstraints(invariants, variables)

Algorithm :
1 usedVars = ∅;
2 constraints = ∅;
3 foreach inv in invariants do
4 if (inv.getVariables() ∩ usedVars == ∅) then
5 constraints ∪= convertConstraint(inv);
6 usedVars ∪= inv.getVariables();
7 end
8 if (usedVars.size() == variables.size()) then
9 return constraints;

10 end
11 end
12 return constraints;

Fig. 5. The algorithm used in Step 2 of Fig. 4.

3) Step 3: Generation of Stimuli: to generate the stimuli a
constraint solver is used. The constraints obtained from the
trace invariants are converted in the format of SMT-LIB [16]
(at line 5 of Fig. 5) and a model (i.e. a set of assignments for
all the variables), in which all these constraints are satisfied,
is determined with the SMT solver MathSAT [17]. However,
some constraint solvers, in the state of the art, do not always
allow to obtain uniformly-distributed models that satisfy a
given constraint. They often return the same assignments for a
set of constraints unless the constraints are not modified. Other
constraint solvers can return the different models in which
the constraints are satisfied but without a uniform distribution.
Nevertheless, this would be a valuable feature for the stimuli
generation because with different values (that satisfy the same
expressions) it is more likely that specific parts of the code
can be exercised better. For instance, consider the case of fault
simulation where a 32-bit variable is injected with stuck-at
faults. To activate a certain fault (i.e. by assigning a value
to the injected variable so that the value of the bit injected
differs from the original one), it is essential to generate highly-
distributed values. In this way, the faults that are both in the
most and in the least significant bits can be activated and found.

Thus, to generate highly-distributed values (independently
from the solver, that could be changed for performance reasons),
given an invariant, a variable is selected. Then, this variable
is constrained so that it has to falsify that logic formula. For
all the other variables, the algorithm generates random values
instead. In this way, several assignments can be always obtained.
Consider the flow in Fig. 3 and the constraint inputVar1
= inputVar2 (that derives from the corresponding negated
invariant). The first variable is chosen so that it has to satisfy the
constraint. For the other variable a random value is generated.
In this way, by generating different values, many uniformly-
distributed assignments can be obtained. However, it can happen
that for certain values the constraint cannot be satisfied. If this
happens, the constraint is removed (line 16 in Fig. 4). It will
be considered later if the corresponding invariant has not been
already falsified. The constraints that are always unsatisfiable
(e.g. two variables with disjoint ranges that must be equal) are
statically identified and discarded (for performance reasons).

V. TW-INVARIANT-BASED GENERATION

In this phase, the stimuli generator uses the invariant miner
to extract the time window invariants from the previous stimuli
(of PHASES 1-2). For each time window invariant the number
of time windows (also called number of occurrences), that
satisfy it, is also calculated. The key insight is that the number
of time windows that satisfy a time window invariant is a

1 if (inputVar1 == inputVar2) then
2 if (inputVar3 == 8) then
33 // A. Very difficult to be stressed
4 return function1(inputVar1, inputVar2);
5 else
66 // B. Difficult to be stressed
7 return function2(inputVar1, inputVar2);
8 end
9 else

1010 // C. Very easy to be stressed
11 return function3(inputVar1, inputVar2);
12 end

Fig. 6. Example of paths with different probabilities to be exercised.

PHASE 2:
T-INVARIANTS

PHASE 3:
TW-INVARIANTS

STEP 1:
Extraction of
TW-Invariants

STEP 2:
Selection of
Constraints

STEP 3:
Generation
of Stimuli

STEP 4:
Update of

TW-Invariants

TW-Invariants
#1 inputVar1 = inputVar2
#3 inputVar1 6= 0

Constraints
inputVar1 = inputVar2

Generation
inputVar2 = rand()
inputVar1 = inputVar2

TW-Invariants
#6 inputVar1 = inputVar2
#4 inputVar1 6= 0

STIMULISTIMULI

Trace of Stimuli
inputVar1 inputVar2 inputVar3

1 1 0
2 0 3
... ... ...

Steps of
PHASE 3

Execution flow
of the Stimuli

Generator

Application to
the Example

in Fig. 6

Until the end of
the simulation

Fig. 7. Application of PHASE 3 to the Example in Fig. 6.

quantitative measure of how much the execution paths, where
that invariant is verified, have been stressed. According to
Definition 4, a time window invariant is satisfied only in a
specific time window of a given length. If the number of
occurrences for a given invariant is too much low compared to
the others, probably this invariant has not been stressed enough
(e.g. if it is hard to satisfy). On the other hand, if the number of
occurrences is high, it is likely that the corresponding execution
paths have been sufficiently exercised. Therefore, in this phase
the algorithm tries to stress the time window invariants with
a low number of occurrences with the aim of discovering the
corner cases that reside in the corresponding execution paths.

A. Motivating Example
Consider the code reported in Fig. 6. Suppose that the values

of the variables are represented with 32 bits. In this case, it
is very unlikely that all the execution paths are stressed in a
uniform way. In fact, as in the example of Fig. 2, the first
branch (lines 2-8) has a lower probability of being exercised.
However, by using the time window invariants, the visit of this
code can be better uniformed. In fact, it is often not sufficient
to visit a path only one time. After a new execution path has
been discovered (e.g. with PHASE 2) it is necessary to visit
it multiple times to discover all the corner cases that can be
nested inside, as in the case of the first branch. Moreover, in the
case of fault simulation this is even more important because,
in this way, different values that satisfy the same invariants
can be brought in specific parts of the code. For these reasons,
the time window invariants are inferred from the set of stimuli,
that has been used to exercise the code (Fig. 7). Then, a subset
of the time window invariants, that have the lowest number of
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the stimuli obtained with PHASE 2 and 3

the number of the new stimuli

the inputs of the DUV

the length of time windowsName:
phase3(tw, trace, variables, valueNumber)

Algorithm :
1 values = ∅;
22 // Step 1: Extraction of TW-Invariants
3 invariants = miner.getTWInvs(trace, tw, vars);
44 // Step 2: Creation of Constraints
5 invariants = orderTWInvs(invariants);
6 constraints = getConstraints(invariants, vars);
7 while (values.size() < valueNumber) do
8 try
99 // Step 3: Generation of Stimuli

10 values ∪= solver.getValues(constraints);
11 catch (UnsatException exception) do
12 constraints \= exception.getConstraint();
13 end
1414 // Step 4: Update of TW-Invariants
15 miner.upTWInvs(invariants, trace, tw, vars);
16 end
17 return values;

Fig. 8. The algorithm used in PHASE 3 of Fig. 1.

occurrences, is selected and converted into constraints. Lastly,
the constraints are used to generate the values that satisfy the
original time window invariants. Note that, in this case, only
one time window invariant has been selected. But, by repeating
this process, the number of occurrences of the time window
invariants (that is updated as soon as new stimuli are generated)
can be made very similar, allowing to exercise all the different
execution paths and the corner cases in a more uniform way.

B. Stimuli Generation
The algorithm that automatises the flow in Fig. 7 is realised

by the function phase3, depicted in Fig. 8. The main steps are:
1) Step 1: Extraction of TW-Invariants: instead of mining

the trace invariants, in this phase, the algorithm infers the time
window invariants. In particular, all the time window invariants
for a specific time window length are extracted. The length of
the time windows allows to change the order with which the
invariants are selected at every iteration of the algorithm. In
our approach, it is sufficient to consider small time windows,
up to five samples. With longer time windows, the number
of occurrences, for all the time window invariants, goes to
zero [12], making the history of the previous stimuli completely
meaningless. On the contrary, with smaller time windows, it
is possible to verify which invariants have been satisfied less
by the set of stimuli from which they have been extracted. As
a result, the less-exercised executions paths can be explored.

2) Step 2: Creation of Constraints: the algorithm used for
selecting the constraints is the same used in the previous phase
and reported in Fig. 5. The only difference is that the invariants
are ordered with respect to the number of occurrences before
they are selected by the algorithm (line 5 in Fig. 8). In this
way, at each iteration of the loop in Fig. 5, the time window
invariants with the lowest number of occurrences are chosen
with respect to the variables that are still free (i.e. not used
in any other constraint). This allows to stress the corner cases
that have been exercised less by the previous set of stimuli.

3) Step 3: Generation of Stimuli: the algorithm used for
generating the stimuli is similar to that used in PHASE 2 (see
Section IV-B3), but the inferred invariants are not negated.

BENCH. PRIMARY PRIMARY COMP. COMP. SIMULATION
NAME INPUTS OUTPUTS NLOC CCN TIME (2M)

CRC 55 34 ∼800 22 250.65 sec
MUL 65 32 ∼800 17 261.89 sec
DIV 99 65 ∼200 11 197.99 sec
GCD 65 32 ∼100 8 2196.14 sec
MUX 214 97 ∼200 9 213.28 sec

TABLE I
CHARACTERISTICS OF BENCHMARKS

4) Step 4: Update of TW-Invariants: the number of occur-
rences of each time window invariant is updated in order to
reflect the current set of stimuli. Specifically, to update the
number of occurrences it is sufficient to consider all the new
stimuli that have been generated and some of the stimuli that
has been previously used depending on the length of the time
windows. On this set of stimuli, the time window invariants
are checked and the occurrences are updated accordingly.

VI. EXPERIMENTAL RESULTS

The effectiveness of the proposed stimuli generator has been
evaluated on a set of SystemC RTL HW components. The
effectiveness of the approach has been evaluated by measuring
the achieved fault coverage. The injected faults realise the
bit coverage model [18], that is an RTL abstraction of the
well-known stuck-at model generally used at gate level.

A. Description of Benchmarks
The most important characteristics of the considered bench-

marks are reported in TABLE I. The first column reports
the names of the benchmarks while the second and third
show the sizes of input and output ports in bits. The first
benchmark performs the cyclic redundancy check, a common
error detecting technique used in digital networks or store
devices. The second design is a floating point unit that
calculates the multiplication of two given floating point
numbers specified with the IEEE 754 standard. The next two
realise calculations using unsigned integers. Specifically, they
calculate respectively the integer division and the greatest
common divisor of two given inputs. Finally, the last one is
a bus multiplexer that can be found in common CPUs [19].
The fourth column reports the number of code lines. The
fifth column shows the maximum cyclomatic complexity [20]
among all the processes of each benchmark, obtained with
Lizard [21]. According to [20], a value greater than 10 indicates
a code hard to check. Finally, the last column, as a way to
understand the cost for the pure simulation of the considered
benchmarks, reports the time required for a fault-free simulation
consisting of two millions of input stimuli. Note that GCD can
be particularly slow in case of large unsigned integers.

B. Stimuli Generation
The result of the stimuli generation is reported in TABLE II2.

The first column shows the names of the benchmarks, while
the second reports the total number of bit coverage faults that
have been injected in the source code. The untestable faults
have not been considered. The proposed stimuli generator has
been compared with a pseudo-random ATPG that uses an
incremental approach: it generates 2 ∗ n new input stimuli
if the last n stimuli have detected at least one fault, with

2The experimental results have been carried out on an Intel Xeon E5649
@2.53Ghz equipped with 8 GB of RAM and running Ubuntu 12.04. The
length of the time windows that has been used for the experiments of PHASE
3 is 2. Finally, all the reported experimental results are the average of 10 tests.
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BENCH.
NAME

STUCK-AT
FAULTS

PSEUDO-RANDOM ATPG I PSEUDO-RANDOM ATPG II PROPOSED APPROACH

#STIMULI %COV. TIME #STIMULI %COV. TIME #STIMULI %COV. #INVS TIME

CRC 616 100000 57.9% 1650.66 sec 200000 72.0% 3188.97 sec 9932 73.4% 56 218.68 sec
MUL 918 1581 98.7% 94.67 sec 100000 98.7% 5561.46 sec 990 99.8% 21 37.03 sec
DIV 782 32212 64.9% 85.71 sec 100000 65.5% 251.36 sec 4670 98.6% 22 81.14 sec
GCD 393 3629 78.9% 734.50 sec 100000 79.8% 10215.86 sec 800 100.0% 4 66.34 sec
MUX 844 87 99.6% 0.44 sec 100000 99.6% 211.19 sec 91 100.0% 210 1.20 sec

TABLE II
EXPERIMENTAL RESULTS FOR THE BENCHMARKS IN TABLE I

at least 50% of fault coverage, but up to a maximum of
100000 stimuli. The number of generated stimuli, the achieved
fault coverage and the execution time are reported between
the third and the fifth columns (PSEUDO-RANDOM ATPG I).
Then, each benchmark has been further stressed with the same
pseudo-random ATPG, but asking it to generate a larger set of
stimuli. The results are reported in the following three columns
(PSEUDO-RANDOM ATPG II). Specifically, for the last four
benchmarks a generation of 100000 stimuli has been carried out,
since in the previous generation (PSEUDO-RANDOM ATPG I)
this limit has not been reached, while 200000 stimuli were
generated for the CRC. The additional stimuli generated by
PSEUDO-RANDOM ATPG II were not useful to sensibly
increase the fault coverage, for all benchmarks, but CRC.
In fact, in these cases, the probability of discovering the
remaining faults is very low because their activation and
propagation require to exercise hard-to-traverse execution paths.
However, the generation of those additional stimuli has an
important impact on the performance, since the execution
times significantly grow. Finally, the final part of TABLE II
(PROPOSED APPROACH) reports experimental results related
to the proposed approach, i.e., respectively, the number of
generated stimuli, the achieved fault coverage, the number of
invariants and the total execution time of the proposed ATPG.
For the last four benchmarks, the proposed approach is able
to find a higher number of faults with a lower number of
stimuli with respect to the pseudo-random ATPG, reaching
100% of coverage for the last two benchmarks. Thanks, to the
trace invariants and the time window invariants, the proposed
approach is able to exercise the execution paths that have not
been exercised enough in the previous simulations, guaranteeing
a more uniform exploration of the state space of the DUV.
For example, in the case of MUL, DIV and GCD exceptional
behaviours in the arithmetic calculations have been covered
(like division by zero or multiplication of two infinite numbers).
In the case of MUX, the randomly generated stimuli fail to test
the situation in which the two input registers are the same. On
the other hand, with the proposed approach this situation has
been verified, by specifying the corresponding template u = v
with u, v ∈ V . Finally, in the case of CRC, approximately the
same fault coverage of the pseudo-random ATPG is achieved,
but a reduction of one order of magnitude in the number of
generated stimuli is observed. Thanks to a lower number of
stimuli the execution times for the proposed approach remain
quite low in all the cases, compared to the random generation.

C. Limitations
The effectiveness of the proposed approach has been shown

on control-dominated designs or designs that heavy rely on
arithmetic computations. These designs more easily highlight
the effectiveness of the proposed approach since it is clear
how to define the templates that permit to drive the simulation
towards specific paths. For other kinds of designs, e.g. data-
dominated designs, it could be more difficult to find such

invariant templates. The applicability of the proposed technique
to different kinds of designs will be addressed in future work.

VII. CONCLUDING REMARKS

This paper presented an invariant-based stimuli generator
for a more uniform exploration of the DUV state space,
thus guaranteeing an higher coverage of corner cases. The
framework (i) uses an invariant miner to dynamically extract
invariants from an initial set of stimuli, (ii) converts the
invariants into constraints, and (iii) exploits a constraint
solver to automatically generate the values that satisfy these
constraints to generate further stimuli that cover DUV areas
not uniformly explored. Experimental results showed the
effectiveness of the approach compared with a pseudo-random
ATPG both in terms of achieved fault coverage, number of
generated stimuli and execution times.
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