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1 INTRODUCTION

Globalization of hardware design and fabrication processes have raised serious concerns about
hardware-based attacks [13, 21]. Hardware has been always assumed to be the guarantee of trust-
worthiness in cryptographic algorithms and security protocols. However, several backdoors have
been reported in the last years, especially in military contexts [4, 23]. In 2008, for example, a chip
installed on a Syrian radar was rumoured to have been tampered to avoid warning in case of air as-
saults [4]. In 2012, Skorobogatov and Woods [23] discussed the first case of an hardware backdoor
found in a chip used in military and industrial cores. Besides that, backdoors have been reported
in more familiar contexts as well. In 2012, at the Black Hat Conference [1], it has been showed how
to obtain the key of a cryptographic algorithm to lock or unlock hotel rooms. The attacker gained
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access to the memory of the hotel cards by resetting their fuse bits. To make it worse, the growing
number of today smart devices makes such attacks dangerous and plausible in any context [17].

Among several threat kinds, Hardware Trojans (HTs) are malicious alterations of integrated
circuits with the aim of disrupting their functional or extra-functional behaviours [5]. They are
composed of two main parts: the trigger that activates the malicious behaviour under certain condi-
tions, and the payload that implements the malicious tasks. The triggers can include (i) functional-
based conditions, e.g., a specific value or a sequence of values, which activates the payload once
it has been observed on a certain register or port, (ii) physical-based conditions, e.g., reaching a
value of temperature or power, or (iii) time-based conditions, e.g., a certain number of cycles or
operations that must be counted. Payloads typically exhibit even more diversity, e.g., leakage of
information, data corruptions, performance loss, etc.

HTs can be added during every phase of the fabrication process, e.g., design or synthesis, and
they are designed to remain silent during the whole verification and testing phase, thus causing the
failure of the standard verification approaches. For this reason, several ad-hoc verification tech-
niques have been proposed for the detection of HTs at different levels of abstraction, e.g., [10, 12,
15, 19, 20, 24, 28, 32]. However, especially at the Register-Transfer Level (RTL), the existing solu-
tions are not enough to guarantee the trustworthiness of the Design Under Verification (DUV). In
fact, they present different drawbacks. In some cases, they require manual effort from the designer,
e.g., [15, 19, 20] or modifications of the designs, e.g., [10]; in other cases, they address only specific
types of attacks, e.g., [19, 20]. Indeed, most of them can be applied only at gate level, thus delaying
the identification of HTs late in the design process, when removing the HTs would be too expen-
sive. Besides that, HTs are more and more inserted at RTL because, at this level of abstraction,
attackers have high flexibility to implement any malicious function [31].

1.1 Contributions

To overcome the previous limitations, we present a verification approach that detects different
kinds of HTs in RTL models by exploiting a control-flow subgraph matching algorithm. Our ap-
proach does not require either modifications of the DUV code or manual effort. The kinds of HTs
that can be detected are represented in a library that can be parametrised and extended to cover
different variants of known HTs. In particular, we make the following contributions:

• we define a HT library containing “basic versions” of triggers and payloads of known RTL
implementations of HTs; the HT library can be easily extended by users to keep up with
new types of triggers and payloads;

• we define a set of directives that allow to automatically and dynamically create more com-
plex variants of the basic versions of the HTs included in our HT library, such that camou-
flaged instances of those HTs cannot easily escape the detection; this is essential to detect
the HTs whose implementations can be recursively extended;

• we implement an approach that exploits a control-flow subgraph matching algorithm to
detect the presence of HT variants inside an RTL model; this algorithm flags as suspicious
the parts of the code that have the same topological structure (i.e., nodes and edges) of HT
variants included in the library and of their variants;

• we define confidence metrics to distinguish the presence of actual HT instances from false
positives.

1.2 Organisation

The rest of the paper is organised as follows. Section 2 provides the necessary background. Sec-
tion 3 presents the HT library. Section 4 details the HT detection approach. Section 5 describes
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the confidence metrics to discard false positives. Section 6 deals with the experimental results.
Section 7 describes the limitations of the approach and discusses possible ways to overcome them.
Section 8 summarizes the most-closely related works. Lastly, Section 9 concludes the paper.

2 PRELIMINARIES

We provide the following definitions to formalize the main concepts and the approach presented
in the paper.

Definition 1. Given a process P of a DUV at RTL, a Control-Flow Graph (CFG) for P is a tuple
CFG (P ) = (B,E, ρ, s, e ):

• B = {b1, . . . ,bn } is the finite set of basic blocks, i.e., sequences of consecutive instructions
without any branch;

• E ⊆ B × B is the finite set of edges between the blocks such that (b1,b2) ∈ E if and only if
b2 can be executed after b1 in at least one of the possible executions of the process P ;

• ρ : E → (0, 1] is the function such that ρ (b1,b2) is the probability that b2 follows b1 during
an execution of P ;

• s, e ∈ B are the first and last basic blocks respectively.

The CFG for a DUV at RTL is the union of the CFGs of all processes belonging to the DUV.

Definition 2. Given the the following CFGs:

• CFG (P1) = (B1,E1, ρ1, s1, e1) (which is the pattern)
• CFG (P2) = (B2,E2, ρ2, s2, e2) (which is the tarдet )

thenCFG (P1) is an α−subgraph ofCFG (P2) if and only if there exists (i)h(B0) ⊆ h(B2) and E0 ⊆ E2

(which is the match) and (ii) a mapping function ω : h(B1) → h(B0) such that ∀(b1,b2) ∈ E1 the
following conditions apply:

• (b1,b2) ∈ E1 iff (ω (b1),ω (b2)) ∈ E0;
• | ρ1 (b1,b2) − ρ2 (ω (b1),ω (b2)) | ≤ α .

where h(Bi ) is an abstraction function that removes all the instructions from the basic blocks in
Bi .

It is worth noting that the abstraction function h allows performing the subgraph matching
between two CFGs by only considering their topological structures, while it does not consider the
instructions belonging the basic blocks of the CFG. This makes the matching independent from
the actual code of the DUV with respect to the HT implementations included in our HT library.
The actual instructions in the basic blocks are used only as confidence metrics (Section 5).

2.1 Threat Model

Given the increasing complexity of RTL descriptions, there exist several possibilities to introduce
malicious behaviours that can escape traditional RTL verification approaches. In addition, HTs
introduced at RTL are generally very hard to be detected. In fact, their detection requires checking
the RTL model against the specification. However, the specification is generally incomplete and
important details (for example cycle-accurate execution models) are not reported [18].

Similarly to [18–20], three scenarios of rogue insertions at RTL are primarily considered in this
paper:

(1) an in-house designer intentionally hides malicious behaviours in the RTL modules before
verification and synthesis steps;
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Fig. 1. Examples of the CFGs of HT triggers in the proposed HT Trojan Library. The dashed boxes represent

the instructions (in pseudo-code) inserted in the basic blocks associated to the nodes. In case of a node with

two outgoing edges, the left and the right edges correspond to the case in which the branching condition

evaluated in the node is true and false, respectively.

(2) third-party RTL modules, which have been intentionally manipulated to insert an HT, are
integrated in the system under development;

(3) a HT is automatically inserted by a CAD tool. For example, a high-level synthesis tool
could add malicious behaviours moving from a TLM to a RTL model; a language translator
can do the same when converting from a hierarchical SystemC model to a flattened VHDL
description. This risk has been underestimated in the past, by thinking that CAD tool
vendors would be ruined if it was discovered that their tools introduce HTs. However,
attackers other than the tool vendors can affect the functionality of the tool such that it
introduces HTs in the manipulated designs without the vendor’s consent, for example, by
exploiting their configuration mechanism, which is very often based on scripting.

Given these premises, our paper is intended to present a tool for the automatic detection of HTs
introduced at the RTL design stage of the fabrication process. It can be used to address each of the
three previous scenarios to detect HTs based on known triggering mechanisms and their variants
as reported in the following sections.

3 HARDWARE TROJAN LIBRARY

To make effective the verification approach presented in this paper, we defined a HT library that
includes the RTL implementations of known HT triggers and their camouflaged variants. We have
currently considered the basic triggers adopted in [22] and [33]. Moreover, we defined a set of
directives that permit to automatically create, during the HT detection phase, variants of the basic
implementations. This makes our approach more general compared to existing solutions and hard
to be defeated by camouflaging the HT basic structures, as it has been done, for example, in [24, 31].
We classified the HT triggers included in the library in three categories: cheat code, dead machines

and timebombs.

Trigger 1. A cheat code is a value (or sequence of values) that enables the payload when it is
observed on a specific location (e.g., a register, which at RTL corresponds to a variable in a partic-
ular state) [27]. A cheat code is hard to be detected by using the standard verification approaches
because it generally behaves as an extremely rare corner case. Figure 1(a) reports a simple example
of CFG of a cheat code’s trigger based on two processes. The process on the right implements a se-
quence of branches that checks if the required cheat code sequence (in this example, the sequence
〈c1, c2〉) has been read. When the cheat code value c1 (respectively, c2) is caught in b3 (b5), then the
variable v1 (v2) is updated to 1 in b4 (b6). When both v1 and v2 are 1, the process on the left flags
the activation to the payload in b1. The cheat code sequences can be quite long: this complicates
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the activation of the trigger condition with standard verification approaches, due to the very low
probability of exploring the path corresponding to the sequence.

Trigger 2. A dead machine activates the HT when specific state-based conditions are met. It can
be considered a generalization of cheat codes to create even more complex conditions of activation.
Figure 1(b) shows a possible implementation. The process on the left verifies if a global condition
is satisfied to activate the payload. The process on the right implements a state machine. Each
state is used to evaluate a sub-condition. When all sub-conditions are met the global condition is
satisfied. For example, the state machine in Figure 1(b) can be used to count the number of times
a set of instructions of a processor has been executed. Basic blocks b3, b5, b7 check three different
instructions, while basic blocks b4, b6, b8 update internal variables to count their occurrences in
the program executed by the processor. When all these three instructions are executed a specific
number of times, the HT’s trigger is enabled in b1. Again, standard verification approaches fail
to detect such a trigger due to the huge number of possibilities that must be verified before the
trigger becomes active.

Trigger 3. A ticking timebomb enables the payload when a certain number N of clock cycles has
been counted. Standard verification approaches fail to check this trigger. In fact, if N is sufficiently
high, dynamic methods require long simulations, while formal approaches face the state explosion
problem. Figure 1(c) illustrates the CFG of a possible implementation of this trigger based on two
processes. The process on the left resets the counter whenever the DUV is reset, to avoid being
found during functional verification. The process on the right realises a counter and once it reaches
the value N the malicious task is enabled (in the block b5).

The HT library we defined includes a basic implementation and a configuration file for each of the
previous triggers. The basic implementation consists of the simplest form of the trigger’s code. The
configuration file includes extension directives and confidence directives to make the triggers para-
metric. In this way, our detection algorithm (Section 4.2) can identify also more complex variants.
These directives are grouped in Figure 2 depending on the purpose.

3.1 Extension Directives

The extension directives are used to automatically modify the CFG of the trigger’s basic implemen-
tations, during the HT detection process. These directives allow creating more complex variants
of the HT’s triggers at run time, such that our detection algorithm cannot be easily defeated by
changing the structure of a known HT (e.g., by increasing the number of conditions in a cheat
code making more difficult its detection, by increasing the number of processes to split the trigger
conditions, or by adding irrelevant states in a dead machine, to hide the presence of the trigger).
Specifically, these directives are optionally specified by the designers in a configuration file and
used by the detection algorithm to extend the CFG of the corresponding trigger implementation
at runtime. Each variant created through such directives will be searched in the CFG of the DUV
to ensure that neither the basic version nor the variants obtained with such directives are present
in the DUV.

For example, suppose that the cheat code depicted in Figure 1(a) is included as a basic imple-
mentation in the HT library. The extension directives shown on the right part of Figure 3 can be
defined to make it parametric and automatically generate a set of its variants during the detec-
tion process. These directives define how many extensions must be recursively done (line 2), and
which blocks and edges must be added or removed in the CFG to make the extension at each it-
eration of the recursion (lines 3–8). The two new nodes, which are added during each extension,
are identified in the directives as $1 and $2. As a result of this configuration file, at run time, our
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Fig. 2. Directives to parametrize the CFGs of the triggers in the HT library.

detection algorithm will search, in the DUV, for the presence of the cheat code, initially, in the
form reported in Figure 1(a). Then, it will extend the code as reported on the left part of Figure 3
by adding two new basic blocks (b8 and b9 outgoing from b7) to increase the length of the cheat
sequence. Then, two new blocks will be added outgoing from b9 (not showed in Figure 3) and so
on, till 10 extended versions of the trigger are created (the directive bound-number is fixed to 10),
and separately checked.

3.2 Confidence Directives

The confidence directives, instead, are used to define the structural characteristics of the trigger’s
CFG, which must be checked by the detection algorithm to calculate a confidence value, after a
possible instance of a HT is found in the DUV. This is used to rank the list of suspicious HT matches
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Fig. 3. Use of the extension directives for the parametrization of a cheat code.

Fig. 4. Example of the RTL code and the CFG of an HT payload.

and discard false positives. Further considerations on the confidence directives will be provided in
Section 5, after the description of the detection algorithm.

In addition to the list of triggers, the HT library includes the known implementations of pay-

loads. They are exploited by the procedure described in Section 5 to calculate the confidence level
of the matches identified by the HT detection algorithm. The library includes an implementation
for each payload similarly to the case of triggers. An example of payload is reported in Figure 4.
It increases the power consumption of the design in which it is inserted by continuously rotating
the power register (in b4). The payload is enabled when all the conditions specified in the trigger
(not reported in the figure) are met, i.e., when the triддer variable becomes true .

4 DETECTION OF HARDWARE TROJANS

The overview of our approach is reported in Figure 5. The user provides as input a behavioural
RTL model of the DUV (Verilog or VHDL) and the HT library presented in the previous section
(optionally extended with different HT triggers and payloads). Our approach returns a report that
includes potential matches with the HTs in the library. Each match is associated to a confidence
value that helps discard the false positives. The approach is based on two main algorithms:

(i) The extraction algorithm creates the CFG for the RTL DUV accordingly to Definition 1
(Section 2) for each process included in the DUV. The algorithm creates the CFGs of the
triggers and payloads included in the HT library as well. In this way, both the structures

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 137. Publication date: September 2017.



137:8 L. Piccolboni et al.

Fig. 5. Overview of the proposed approach.

of the DUV and the HTs are represented with graph-based models that highlight their
execution paths and simplify the detection of HTs. This algorithm is presented in
Section 4.1;

(ii) The detection algorithm identifies the HTs by exploiting a subgraph isomorphism algo-
rithm. First, it searches for the parts of the CFG of the DUV that match the CFGs extracted
from the triggers of the HT library. Afterwards, it analyses the matched instances to pro-
vide confidence values that help discard the false positives. The confidence values take
into account the structural characteristics of the CFGs and the related payloads. This is
described in Section 4.2.

4.1 Extraction Algorithm

The extraction algorithm that extracts the CFGs from the DUV and the HT source code starts by
obtaining the corresponding syntax trees. A syntax tree represents the design with a tree structure
by abstracting the details concerning the syntax of the programming language, but preserving
unaltered its semantics. Each node of the tree represents a construct that occurs in the source code.
In the proposed approach, the syntax trees of the DUV and HTs are created with HIFSuite [6]. This
guarantees to be independent from a particular programming language and makes our approach
more general. Additionally, the use of HIFSuite ensures that hierarchical structural designs are
flattened, and this considerably simplifies the detection of HTs in hierarchical designs. The syntax
tree is then recursively analysed and the CFGs of the RTL processes are created in according with
Definition 1. Specifically, the extraction algorithm analyses sequentially the syntax tree for each
process of the target code. It creates the first and the last basic block and it maintains a reference
to the current basic block. After that, it reads sequentially all the instructions of the process. The
instructions that do not create branches are added to the current block, while for the others the
following rules apply:

• if-then(-else): the branch condition is inserted into the current basic block; a block is created
for the then path and, optionally, another one is created for the else path. The visit proceeds
recursively on the two paths, by updating the current block and by creating the necessary
edges as depicted in Figure 6(a) and (b)1. The edges are labelled with the probability of taking
the corresponding branches. In Figure 6, pt ,pe ,pnt represent, respectively, the probability

1The left edge of a basic block with a branch condition refers to the then path, while the right edge is the else path.
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Fig. 6. CFGs for (a) an if-then, (b) an if-then-else and (c) a for statements.

of traversing the then, else and not-then (for cases without else) paths. Note that with this
rule we cover other constructs that create branching conditions, such as switch and ternary

operators. We handle these cases in the same way, to avoid camouflaging that change the
syntax, but not the semantics of the corresponding code;

• for: a new block, bi , is created for the branch condition as illustrated in Figure 6(c); the visit
proceeds recursively on the internal instructions of the loop with bj and bt that represent
the first and the last basic block of the visit; the corresponding edges are created and finally
the current block is updated to bk , i.e., the first block after the loop. Again, the edges are
labelled with the probability of reaching the destination node, and this rule covers also other
possible variants of expressing loops in the code, which are not semantically different.

The probability associated to the edges is one of the four characteristics evaluated to measure
the confidence level when a possible HT match is detected in the DUV, as described in Section 5.
To statically determine the probability of taking a branch, static analysis and slicing approaches
should be used. In fact, it is necessary to determine the dependencies among all the variables in-
volved in the conditions of each branch. However, current slicing algorithms do not scale well with
design complexity. Therefore, an approach based on a SMT constraint solver is adopted. Differ-
ently from a SAT solver, which works only on Boolean values, an SMT solver can solve constraints
according to several theories like integers, bit vectors, etc. [8]. The solver is used to calculate the to-
tal number of models, i.e., assignments to the variables that satisfy the conditions of the branches.
By dividing the number of models by the number of all the possible assignments, it is possible to
determine the probabilities. This approach is more scalable with respect to program slicing, even
if it uses an exponential algorithm, because the expressions that can be found in the condition of
branches of the DUV are often simple and composed of up to three or four variables. Determining
the dependencies among the variables in program slicing is much more expensive because all the
instructions of the DUV could be evaluated. Indeed, to further increase the scalability, the solutions
of simple conditions, e.g., x = 10, z < w , etc., are determined by using the ranges of values of the
variables involved in such conditions, instead of calling the SMT solver.

4.2 Detection Algorithm

The algorithm that detects the presence of HTs in the DUV performs two steps. First, it tries
to match instances of the abstract CFGs of the HT triggers in the abstract CFG of the DUV. The
matching is performed after theh abstraction function of Definition 2 has been applied to generate
the abstract versions of the CFGs (all the instructions from the basic blocks are removed). Second,
the algorithm calculates a confidence value representing how much it is likely that each matched
instance is a HT. The first step is described hereafter, while the second step is discussed in Section 5.
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Fig. 7. Detect HTs with subgraph matching. Fig. 8. Calculate the confidence of matches.

The detection algorithm is showed in Figure 7. The algorithm starts by extracting the CFG of
the DUV with the procedure presented in Section 4.1 (line 2). In the same way, for all the triggers
defined in the HT library, it extracts the corresponding CFGs (lines 3–4). After that, the algorithm
calls the RI subgraph isomorphism algorithm described in [7] (line 6) to find all the subgraphs in
the abstract CFGs of the DUV that match the abstract CFG of the current trigger, accordingly to
Definition 2. Note that during this phase, the instructions in the basic blocks of the CFGs are not
considered for the matching (see function h in Definition 2). In fact, this algorithm identifies only
the parts in the DUV that are topologically similar, i.e., they have the same structure of edges and
nodes, of the HTs. The instructions are only considered later during the calculation of the confi-
dence value. If the trigger’s CFG is parametrizable, it is properly extended by modifying its CFG
(line 7) as required by the extension directives included in the configuration file of the HT library.
In this way, the matching algorithm is repeated for different trigger variants up to a fixed number
of times (line 5). Finally, all the returned matches are evaluated with the procedure described in
Section 5 to determine a confidence measure used to discard false positives.

4.2.1 Guarantees. The matching algorithm guarantees that:

(1) the basic version of a given HT trigger is identified (count = 0);
(2) the extensions of the HT trigger obtained with the extension directives (Section 3) are

identified (count > 0);
(3) any attempt of obfuscating the HT by creating a hierarchical structural design is ineffec-

tive, since the CFG of the DUV is extracted from the flattened version of the RTL model
obtained by using HIFSuite.

Clearly, we fix a maximum bound for the application of the extension directives (line 5) to allow
the algorithm to terminate. Thus, this implies that only the extended versions of the HT trigger
obtained with a number of extensions lower than the bound are identified.

4.2.2 Complexity. The complexity of the matching algorithm is:

O (lHT ∗ bHT ∗C (nDU V ,nHT ))

where lHT is the total number of triggers in the HT library, bHT is the maximum number of exten-
sions of the HT triggers, nDU V is the number of nodes in the DUV, nHT is the maximum number
of nodes of the HT triggers, and the function C represents the complexity of the subgraph iso-
morphism algorithm, which is exponential in the general case. In fact, the subgraph isomorphism
problem is NP-complete, but the RI algorithm has been showed to be especially efficient with sparse

graphs2, and, indeed, CFGs are often sparse. Besides that, the size of the CFGs of HT triggers, i.e.,

2A graph is sparse if the ratio between the number of edges and the number of vertexes is high.
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nHT , is typically small, since they are designed to be hidden in the code of the DUV. Thus, search-
ing an instance of a small graph (the HT trigger) inside a sparse graph (the DUV) guarantees the
overall scalability of our approach, as shown in Section 6.

5 MATCHING CONFIDENCE

Figure 8 depicts the algorithm that returns the confidence values of the triggers found by the
procedure described in Section 4.2. For the sake of clarity, in the following, the term match refers
to the trigger instances returned by the procedure of Figure 7, while pattern refers to the trigger
instances of the HT library. The algorithm in Figure 8 takes in inputs the DUV, the matches, and
the HT library. It returns for each match a confidence value in the range [0, 1], where 1 indicates
the highest confidence level. The algorithm starts by extracting the CFGs of the payloads of the HT
library (lines 2–3). After that, it evaluates the following characteristics to determine the confidence
value of the match:

c1: presence of variables (line 5): the algorithm verifies if the match uses some variables in the

same way of the corresponding pattern. For example, in the case of Trigger 3 it checks if
there is a variable used as a counter in the match, but not necessarily with the same name
of one in the trigger. The check-variables function returns the ratio between the number
of variables found in the same basic blocks of the pattern and the number of variables
specified with the var. directives of Figure 2. In particular, the directive var-names defines
where are the names of the variables that must be considered (to not depend on the names
used in the pattern) and the directive var-checks specifies the basic blocks to be checked.
The other two variable directives in Figure 2 are used to update these blocks in case of
extensions. For specific triggers other directives are used to check how the variables are
used, e.g., where the counter is increased (time directives) or the cheat code variables are
updated (cheat directives).

c2: presence of the reset logic (line 6): the algorithm checks if the match has a reset logic similar
to the reset logic of the pattern. For example, in the case of Trigger 3, it checks if a variable
(counter) is reset whenever the DUV is reset. The check-resetlogic function returns a
value in the range [0, 1] depending on the number of characteristics that are identified: i.e.,
presence of the reset signal and variables that are reset and used in the same blocks. The
reset directives in Figure 2 are used to specify which are the basic blocks and the variables
to be considered.

c3: average distance of the probabilities of the match and the corresponding pattern (line 7): the
algorithm calculates the distance between the probabilities of traversing each edge in the
match and the expected probabilities for traversing the corresponding edges in the pattern;
nearer are the probabilities, more is likely that the match is a real instance of the pattern.
Several triggers create branches with low or high probabilities, making this characteristic
useful to evaluate their confidence (for example Trigger 1). The check-probabilities func-
tion returns a value in the range [0, 1], where 1 is used to indicate a perfect correspondence
of the probabilities.

c4: degree of dependence between the match and the most affine payload (line 8): the algorithm
verifies if there are shared variables, i.e., registers, between the match and one of the payload
specified in the HT library. Specifically, the check-payloads calculates the ratio between
the number of shared variables that have been identified and the number of variables defined
with the payload directives in the configuration file. This permits to augment the confidence
of the matches that have a payload in the DUV. Each trigger is checked against each payload
instance to find the most affine, i.e., the payload that has the highest ratio for that trigger.
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Table 1. Main characteristics of the Trush-HUB benchmarks

Name Trigger Payload Blocks Edges

AES-T400 Cheat code info leakage 2118 3176
AES-T500 Cheat code power waste 2109 3165
AES-T600 Cheat code info leakage 2114 3170
AES-T700 Cheat code info leakage 2112 3166
AES-T800 Cheat code info leakage 2117 3174
AES-T900 Time bomb info leakage 2114 3168
AES-T1000 Cheat code info leakage 2109 3162
AES-T1100 Cheat code info leakage 2114 3170
AES-T1200 Time bomb info leakage 2113 3168
AES-T1300 Cheat code info leakage 2141 3221
AES-T1400 Cheat code info leakage 2150 3236
AES-T1500 Time bomb info leakage 2148 3232
AES-T1600 Cheat code info leakage 2127 3191
AES-T1700 Time bomb info leakage 2114 3169
AES-T1800 Cheat code power waste 2101 3152
AES-T1900 Time bomb power waste 2106 3160

Name Trigger Payload Blocks Edges

RS232-T100 Cheat code stuck-at 0/1 134 200
RS232-T200 Time bomb reliability issue 130 193
RS232-T300 Cheat code info leakage 132 195
RS232-T400 Time bomb info leakage 130 192
RS232-T500 Cheat code stuck-at 0/1 132 195
RS232-T600 Dead machine stuck-at 0/1 157 233
RS232-T700 Dead machine stuck-at 0/1 155 230
RS232-T800 Cheat code reliability issue 124 184
RS232-T900 Dead machine reliability issue 159 236
RS232-T901 Cheat code reliability issue 159 236

BasicRSA-T100 Cheat code info leakage 81 119
BasicRSA-T200 Cheat code reliability issue 81 120
BasicRSA-T300 Time bomb info leakage 92 137
BasicRSA-T400 Time bomb info leakage 93 139

Table 2. Main characteristics of the Cryptoplatform

Name Trigger Payload Blocks Edges

Crypto-T000 N/A N/A 4402 6503

Crypto-T100 Time bomb info leakage 4424 6537

Crypto-T100 Cheat code info leakage 4424 6537

Crypto-T200 Time bomb info leakage 4416 6525

Crypto-T300 Time bomb info leakage 4410 6519

Crypto-T400 Cheat code info leakage 4406 6516

Finally, these four characteristics are combined with a linear combination to calculate the con-
fidence value β of each match, i.e. β = α1c1 + α2c2 + α3c3 + α4c4 where the constants αi depend on
the trigger, such that

∑
i αi = 1.

6 EXPERIMENTAL RESULTS

The effectiveness of our approach has been evaluated on a set of RTL benchmarks from Trust-
HUB [3] and on the RTL implementation of the Cryptoplatform that includes some cryptographic
cores (aes, camellia, des, sha, xtea), a plasma-cpu and a memory from OpenCores [2]. Tables 1 and
2 shows the characteristics of these benchmarks. They report the name, the types of triggers and
payloads and the number of basic blocks and edges of their CFGs. Each benchmark includes one
HT, except for Crypto-T000 that is a Trojan-free instance of the Cryptoplatform, and Crypto-T100
that hides two HTs.

Each benchmark is verified against the HT library we defined in Section 3. The characteristics of
the library are reported in Table 3. The tables show the CFG size of the different instances in terms
of number of basic blocks and edges. We included different implementations of the same triggers
because they cannot be obtained from the others by applying only the defined directives. In fact,
even if the triggers are similar, their implementations are topologically different from the others.
The table reporting the payloads includes also a brief description of their effects when inserted in
the DUV.
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Table 3. Main characteristics of the triggers and payloads in the HT Library

Triggers

Name Blocks Edges

cheat-T001 4 4
cheat-T002 5 6
cheat-T003 6 7
cheat-T004 16 21
cheat-T005 11 14
cheat-T006 11 14
mach-T001 10 11
mach-T002 11 13
timeb-T001 13 16
timeb-T002 14 19
timeb-T003 12 15
timeb-T004 6 7
timeb-T005 14 17

Payloads

Name Brief Description Blocks Edges

payload-T001 transmits critical information 16 21
payload-T002 increases power consumption 8 9
payload-T003 steals information (covert channel) 10 13
payload-T004 steals information (leakage current) 12 15
payload-T005 changes the memory addresses 7 7
payload-T006 manipulates the output signals 7 7

6.1 Experimental Evaluation

To verify the effectiveness of our approach we used the following evaluation strategy. The HT
library reported in Table 3 contains the same categories (but not the same code) of HTs included
in the benchmarks described in Table 1. The HT library and the HTs injected in the considered
benchmarks derive both from Trust-HUB. This is necessary because our approach can detect only
the known categories of HTs that are inserted in the HT library, including their variants obtained
by applying the rules defined in Section 3 (the implications of this observation are discussed in de-
tails in Section 7). Thus, we decoupled the triggers of Trust-HUB from the corresponding payloads,
and we included the basic versions of the triggers in our library. Note also that our algorithms do
not depend on the actual implementations of the specific HTs. The detection algorithm considers
only the topological structure of the CFGs of the HTs without taking into account the instructions
in the CFGs (Section 4.2). Indeed, the algorithm that assigns the confidence does not depend on the
names and the specific instructions used in HTs. In fact, it tries to discover behaviours (Section 5).

With such a premise, we expect that our verification approach detects all the HTs included in
the considered benchmarks, as they are known by the HT library. Thus, our goal is to show that
our verification approach can help users to distinguish actual HTs from the false positives and
classify them accordingly to their respective categories.

6.2 Trust-HUB Benchmarks

The proposed approach has been compared with three state-of-the-art methodologies presented
in [10, 19, 20]. The results of these experiments are reported in Table 4. The first column reports
the names of the benchmarks. The following three columns report if the HTs can be detected by
the three considered state-of-the-art techniques. The rest of the columns report the results for the
proposed approach. Specifically, they show if the approach is able or not to detect the HTs (Found),
the number of identified matches (Matches), the confidence level of the match corresponding to
the HT actually present in the design (βHT ), the highest confidence level among the matches cor-
responding to false positives (βmax ), the number of matches with a confidence that is higher than
the confidence of the HT actually present in the design (FP ), and lastly the time in seconds re-
quired by the proposed approach (T (s )). The techniques proposed in [20] and [19] are specialized
for specific kinds of payloads: register corruptions and information leakage respectively. Thus,
they are able to find only a limited number of HTs and they do not guarantee the trustworthiness
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Table 4. Results: Trust-HUB Benchmarks

State of the art Proposed Approach

Name [20] [19] [10] Found Matches βHT βmax FP T(s)

AES-T400 no no ∼ yes 3 0.95 0.64 0 5.04

AES-T500 no no ∼ yes 7 0.93 0.68 0 4.80

AES-T600 no yes ∼ yes 5 0.93 0.41 0 5.12

AES-T700 yes yes ∼ yes 5 0.85 0.50 0 5.11

AES-T800 yes yes ∼ yes 9 0.93 0.65 0 5.04

AES-T900 no yes ∼ yes 7 0.95 0.62 0 4.78

AES-T1000 no yes ∼ yes 4 1.00 0.64 0 4.76

AES-T1100 yes yes ∼ yes 5 0.94 0.47 0 5.67

AES-T1200 no yes ∼ yes 4 0.96 0.54 0 4.69

AES-T1300 no no ∼ yes 82 1.00 0.65 0 5.62

AES-T1400 no no ∼ yes 81 0.99 0.69 0 4.85

AES-T1500 no no ∼ yes 83 0.98 0.65 0 5.80

AES-T1600 no no ∼ yes 7 0.96 0.54 0 4.86

AES-T1700 no no ∼ yes 3 0.98 0.63 0 5.38

AES-T1800 no no ∼ yes 9 1.00 0.69 0 4.86

AES-T1900 no no ∼ yes 11 0.97 0.72 0 4.82

AES-T2000 no yes ∼ yes 6 0.93 0.41 0 4.56

AES-T2100 no yes ∼ yes 5 0.95 0.75 0 4.75

RS232-T100 no no yes yes 7 0.36 0.50 2 4.12

RS232-T200 no no ∼ yes 8 0.92 0.56 0 3.13

RS232-T300 no no yes yes 6 0.92 0.31 0 2.74

RS232-T400 no no yes yes 8 0.56 0.51 0 2.32

RS232-T500 no no yes yes 6 0.93 0.31 0 2.80

RS232-T600 no no yes yes 11 0.67 0.35 0 2.39

RS232-T700 no no yes yes 11 0.67 0.53 0 2.58

RS232-T800 no no yes yes 7 0.36 0.50 2 3.23

RS232-T900 no no yes yes 11 0.67 0.52 0 2.43

RS232-T901 no no yes yes 11 0.67 0.52 0 2.48

BasicRSA-T100 no yes yes yes 4 0.25 0.25 3 1.13

BasicRSA-T200 no no yes yes 3 0.25 0.25 1 1.45

BasicRSA-T300 no yes yes yes 4 1.00 0.42 0 1.41

BasicRSA-T400 no no yes yes 5 0.96 0.52 0 1.46

∼ depends if activated in the learning phase [10].
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Table 5. Results: Cryptoplatform

Proposed Approach

Name Found Matches βHT βmax FP T(s)

Crypto-T000 no 23 N/A 0.35 N/A 11.80

Crypto-T100 yes 34 0.81 0.39 0 12.88

Crypto-T100 yes 34 0.72 0.39 0 12.88

Crypto-T200 yes 31 0.96 0.71 0 13.43

Crypto-T300 yes 42 0.88 0.29 0 15.03

Crypto-T400 yes 34 0.90 0.50 0 15.67

of the designs. Furthermore, they require (i) manual efforts for defining the properties that rep-
resent the corresponding payloads and (ii) the use of model checking that faces some limitations
with temporal-based triggers. On the other hand, the approach proposed in [10] covers a wider
range of HTs. Unfortunately, the approach in [10] (i) does not guarantee to find all the HTs, since
it adopts some heuristics during the identification of triggers, and (ii) requires modifications to the
DUVs (with up to 15.25% of area overhead for the additional circuits added to the designs). Never-
theless, as expected, with the proposed approach we identified all the HTs. Indeed, our approach
takes only few seconds, without requiring manual efforts or design modifications. The number
of false positives is limited in almost all the cases except for few cases where the basic version
of the cheat code (composed of a single value) is detected several times (AES-T1300, AES-T1400,
AES-T1500). However, in these few cases, by looking at the confidence levels reported in Table 4,
we can see that the actual HT has a confidence level (βHT ) whose value is at least 30% higher
than the highest confidence level (βmax ) of the false positives. In general, by looking at the whole
Table 4, the confidence values of the matches corresponding to actual HTs are between 21% and
67% higher with respect to the false-positive matches, except for few cases (BasicRSA-T100/T200,
RS232-T100/T800). In these special cases, the basic version of the cheat code reports lower con-
fidence values due to the low numbers of characteristics that can be evaluated on their CFGs
(composed by only one branch). But, note that even in these cases, the number of matches that
have a confidence higher than the confidence of the HT is limited to three. The confidence value
has been calculated by using the formula reported in Section 5. The different triggers use different
values for the constants αi . Specifically, in the case of cheat codes, the constant with higher values
correspond to the condition c4 and c3. For the ticking timebombs, we gave more importance to the
presence of the counter in particular nodes (i.e., time-directives) and finally, for the dead machine
we used a uniform distribution of the different conditions.

6.3 Cryptoplatform

Table 5 reports the results for the Cryptoplatform3. The format of the table for the results regarding
our approach is the same used in Table 4. The first benchmark confirms that the algorithm that
assigns the confidence to each match is effective because all the matches receive a very low value
(0.35 or lower) because there are no HTs. The other benchmarks show that the proposed approach
returns a limited number of false positive, and their confidence level is low compared to βHT ,
regardless of the number of the designs in the Cryptoplatform to be analysed. The last column of

3[10, 19, 20] were not available for a comparison on the Cryptoplatform.
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Table 5 shows that our approach scales well in case of more complex designs than the Trust-HUB
benchmarks.

As a final consideration it is worth noting that the HT included in Cripto-T300 and Cripto-T400

are particular difficult to be detected, as they do not present a suspicious aspect that generally
characterizes HT triggers, i.e. having branches with unbalanced probabilities of being traversed.
The low-probable branches are generally associated to the HT activation conditions, thus making
their identification easier. To remove this characteristic, the HT of Cripto-T300 includes a variant of
the time bomb trigger that uses more than a counter to activate the trigger condition. This approach
was used in [31] to defeat UCI. The HT included in Cripto-T400, instead, derives the trigger cheat
code from multiple clock cycles, thus making again similar the branches probabilities. However,
our approach can detect both of them.

7 LIMITATIONS AND EXTENSIONS

In our experimental results, we first consider the Trust-HUB benchmarks to make a fair compar-
ison with the state-of-the-art methodologies proposed in [10, 19, 20] (Section 6.2). In addition,
we showed that our approach works well also with different benchmarks, e.g., the Cryptoplat-
form (Section 6.3). It is worth to note, however, that insertions of HTs can be unpredictable and
unexpected [30]. Our approach exhibits two main limitations in this regard. First, if a HT is not
included in the library we defined, our approach can detect neither it nor its variants. This is also
the case for software programs where antivirus can reveal only known malwares, indeed. How-
ever, note that while software malwares are often distributed, the distribution of HTs is a less
common practice today. The research community is working on developing and classifying new
threats, e.g., [5, 24, 25, 29, 31, 33], but a lot of work is to be done. Second, if a HT results to be
very similar to actual legal code, our approach can result in false positives. This is especially true
in the case of HTs based on very simple trigger conditions, e.g., a cheat code looks like an if-else
construct (or a sequence of if-else constructs). We showed that our approach already works well
since the number of false positives is very limited in most cases. However, for these types of HTs
our approach is not currently able to clearly discriminate an HT from the actual legal code (see
RS232-T100/T800, BasicRSA-T100/T200 in Table 4). We believe that by augmenting the number
of characteristics taken in consideration to calculate the confidence of a match (Section 5) it is
possible to significantly reduce the false positives. Indeed, we set the weights of each confidence
characteristic experimentally. In future work, we plan to use a machine learning algorithm to find
the best weights of the characteristics to discriminate the HTs from the false positives.

Despite such limitations, one main contribution of our work is that the approach we propose
can be adapted for the detection of new threats, without being dependent on a specific HT trigger
or payload. Our HT library is dynamic; it currently contains implementations of known HTs, but it
can be easily extended by the user, in case of new threats, without the need of recoding the tool. On
the contrary, many state-of-the-art approaches focus only on specific HTs and they are not easily
extendible. To extend the library for a new HT, the user has to provide the basic model of the HT
in Verilog or VHDL at RTL. In addition he/she can specify transformation rules (see Figure 2) to
let the tool automatically covers different variants of the new HT. This guarantees that the users
can customize the HT library depending on their own needs.

8 RELATED WORK

Several methodologies have been proposed for detecting HTs. Trigger conditions limit the possi-
bility of using the standard verification techniques. For example, functional-based triggers require
that dynamic techniques generate an exponential number of values to find those that activate
the HTs, and time-based triggers can lead to the state explosion problem with formal techniques.
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Thus, several specific methodologies have been proposed to detect HTs in both pre-silicon and
post-silicon design stages [21]. Since inserting HTs before fabrication is more likely [32], this pa-
per addresses pre-silicon detection: the approaches are classified in structural-analysis and formal

techniques [20].
Structural-analysis techniques perform (coverage) analysis to identify the areas of the DUV

netlist that potentially hide HTs. For instance, FANCI [28] flags as suspicious the signals of a gate-
level netlist that weakly affect outputs because triggers of HTs typically have a weak impact on
output ports. FANCI calculates a control value that represents the impact between an input and an
output that depends on it, by means of truth tables. A cut-off threshold is selected to determine
the HTs. VeriTrust [32] identifies, on a gate-level netlist, circuits that potentially trigger HTs by
determining the circuits that remain dormant during functional verification. VeriTrust can produce
false positives, i.e., false alarms, in case of incomplete functional verification. It has been showed
that both FANCI and VeriTrust can be defeated by manipulating the trigger design [33]. On the
other hand, our approach can be easily adapted to such manipulations, thanks to the directives
we introduced in Section 3. Haider et al. [10] proposed an alternative approach, called HaTCh,
that starts from a gate-level netlist and inserts additional circuits to prevent the HT manifestation.
It detects untrusted entities through functional testing and adds specific circuits to warn in case
of activation. This approach requires that some HTs must not be activated during the learning
phase [10]. On the other hand, our approach does not have this limitation, and it is able to detect
the same types of HTs (as highlighted in Table 4). A high-level algorithm that can be applied at
structural RTL is UCI [12]. It identifies, as suspicious, the portions of a design that go unused
during the testing phase and flags at runtime their activation. However, UCI has already been
demonstrated to be defeated in [24].

To guarantee the design trustworthiness formal techniques have been proposed as well [9].
These methods apply well-known verification strategies, e.g., theorem proving, model checking
or equivalence checking, to find the HTs. For example, Love et al. [15] defined a protocol for the
acquisition of Intellectual Properties (IPs). The idea is that consumers and vendors agree on a set of
“security properties”, and the IPs are delivered with a formal proof of them. In this way, consumers
can verify the trustworthiness of their IPs with a theorem prover. This technique requires the
manual definition of properties. This can be a time-consuming and error-prone task. Our approach
is somewhat similar since it can be effectively used to verify third-party IPs. However, it does
require minimal manual efforts in defining the directives that characterize the HTs (the extraction
and matching of CFGs are automatic), and no definition of properties is required. Rajendran et al.
proposed to use a model checker to find (i) malicious corruptions of critical registers [20] and (ii)
leakages of critical information [19]. In these cases, formal properties that represent such situations
are defined on a formal model of the design and verified by using bounded model checkers. With
respect to these works, our approach is intended to be more general (as illustrated in Table 4).
Thanks to the definition of the HT library, our approach can be extended to verify the presence
of different kinds of threats. Additionally, by looking at the CFG of the design, our approach can
detect HTs that have time-based triggers that are complex to handle for model checkers.

In addition to the methodologies described above, other methods have been proposed for pre-

venting [27] or detecting at run-time [11, 14, 16, 26] HTs. For example, Waksman et al. [27] proposed
a set of techniques to silence two common HT triggers: cheat codes and ticking timebombs. The
idea is to insert additional logics to prevent the activation conditions of the HTs. Since an ex-
haustive detection of HTs before synthesis is too hard, many researchers proposed to use runtime
approaches to detect HTs after deployment. The idea is to insert additional hardware or software
to detect the activation of HTs during the execution. For example, Kim et al. [14] proposed to insert
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a Dynamic Function Verification (DFV) controller that detects the idle state of untrusted IPs in a
System-on-Chip (SoC) and verifies them during the idle state.

9 CONCLUDING REMARKS

This paper presented an automatic verification approach to detect HTs on RTL designs. It exploits
the structural characteristics of the CFGs of HT triggers and payloads to localize them in the source
code of the DUV. To make our approach as much generic as possible, we defined a HT library that
includes basic implementations of different categories of known HTs. This library guarantees that
our approach is independent from the types of HTs, as opposed to other state-of-the-art techniques
that are able to detect only a specific subset of threats. In fact, while our approach can be easily
extended to keep up with new threats (it is sufficient to add the RTL models of the threats in the
library), most of the other state-of-the-art techniques must be extensively modified. Additionally,
the HT library includes a set of characterization directives, which allow the detection algorithm
to dynamically create variants of the basic implementations of HTs at run time. In this way, our
approach cannot be easily defeated by camouflaging or obfuscation.

We evaluated the efficiency and effectiveness of our approach by first considering the Trust-HUB
benchmarks. Our approach is able to detect all the HTs, as opposed to other techniques in literature,
thanks to the flexibility provided by the HT library. Additionally, we showed that our approach
can be applied to different benchmarks. The Cryptoplatform is a more complex benchmark that
contains different variations of HTs with respect to those included in the Trust-HUB benchmarks.
Lastly, our approach is able to detect the HTs in few seconds, making it an efficient alternative for
the detection of HTs, as opposed to other techniques which do not scale with the complexity of
the benchmarks.
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