
Simplified stimuli generation
for scenario and assertion based verification

Luca Piccolboni
Department of Computer Science

University of Verona, Italy
Email: luca.piccolboni@studenti.univr.it

Graziano Pravadelli
Department of Computer Science

University of Verona, Italy
Email: graziano.pravadelli@univr.it

Abstract—Simulation-based approaches that require to drive
the design under verification (DUV) to specific conditions, like
for example, scenario-based testing and dynamic assertion-based
verification (ABV), cannot rely on generic coverage-driven stimuli
generators. On the contrary, constraint-based generation must be
adopted. In this context, among several solutions, the Universal
Verification Methodology (UVM) and the SystemC Verification
Library (SCV) represent the main alternatives. However, their
powerfulness is paid in term of easiness of use. In fact, their
application generally requires to write complex pieces of code
to specify the constraints that must be satisfied by the stimuli
generator to produce the desired sequences of values. More is
the complexity of setting up an effective stimuli generator, more
is the risk of failing to capture the right behaviour and/or having
a longer verification time. To overcome these problems, the paper
presents a framework and a corresponding language for the
automatic generation of stimuli that requires to write intuitive
and compact directives representing the desired constraints. The
approach is independent from the language adopted for the DUV
implementation and it works for both embedded hardware as well
as embedded software.

I. INTRODUCTION

The generation of high-quality stimuli represents the basic
step for all simulation-based techniques, which are applied
throughout the abstraction levels of the embedded system
design flow to verify both functional and non-functional (i.e.,
aging, timing, power, thermal) properties. A low-quality set
of stimuli causes a false sense of safety because it is able
to exercise only a small part of the DUV behaviours. In this
case, testing techniques fail to discover bugs, power estimation
approaches generate incomplete and incorrect results, design
exploration methodologies provide non-optimal solutions, etc.
Thus, several static and dynamic approaches have been de-
fined, at different abstraction levels, to guarantee the efficient
generation of effective and as much exhaustive as possible
sequences of stimuli [1].

Static approaches aim at exploring the whole DUV state
space in a rigorous way [2]. They are exhaustive, but they
require to encode and traverse the DUV by exploiting mathe-
matical formalisms (e.g., transition systems, symbolic encod-
ing, etc.) that generally lead to the state explosion problem
for large designs. A faster and less risky alternative for
state explosion, is represented by dynamic approaches [3]. In
this case, random or probabilistic techniques are adopted to
generate stimuli, whose quality is measured through coverage
metrics, like for example, code coverage or fault coverage. The
main drawback of these techniques is represented by the lack
of exhaustiveness, which is only partially compensated by the
possibility of quickly generating a huge amount of stimuli,
hoping that they cover the most of DUV behaviours. Semi-
formal techniques have been proposed too, that try to mix
the use of both dynamic and static algorithms [4]. The first
to rapidly stimulate easy-to-reach states, the second to cover
corner cases.

Independently from the static or dynamic approach, stimuli
generation is mainly performed independently from a specific
objective, and it is generally guided by some structure-oriented
coverage-driven process whose goal is to create a set of stimuli
that achieves an high coverage of the DUV behaviours [5]. In
fact, coverage metrics evaluate how well the code is exercised,
rather than how well design functionalities are stressed.

However, in several cases, after an initial execution of a
coverage-driven stimuli generator, designers, verification engi-
neers and testers need to create few initialization sequences
to bring the DUV into particular states where it is possible
to check specific conditions. This is particularly true, when
verification and/or exploration are performed on the basis of
scenarios [6], where test conditions, data to be used for testing,
and the expected results are provided. The same happens when
dynamic ABV is addressed [7], where assertion checkers must
be stimulated in a non vacuous way. For example, people
that perform verification of embedded system applications are
generally required to follow a test plan. This contains a list of
checks which are formalized into (temporal) assertions to be
verified on specific scenarios. As a practical example, let us
consider the following directive extracted from the test plan of
an industrial mixing machine:

“Bring the machine in a situation where T_cold=5 ◦C,
T_pipe=20 ◦C, T_hot=40 ◦C, and T_set=25 ◦C, then linearly
increase T_pipe= till 30 ◦C, and then activate the water
discharge and check if the final water flow is composed only
by water arriving from the water supply network and from the
hot water container.”

To test the previous directive, verification engineers must
put the mixing machine in the correct state (where the temper-
atures are as required), and then they must drive the simulation
to respect that T _pipe increases its value linearly till 30 ◦C. It
is almost impossible to reproduce such a situation by means
of a traditional structure-oriented stimuli generator, whose aim
is just to maximize the targeted coverage. On the contrary,
constraint-based approaches, which explicitly generate stimuli
that respect specific constraints, should be adopted [8].

In this context, the UVM represents one of the most pop-
ular framework for stimuli generation [9]. An UVM testbench
generates stimuli corresponding to a specific verification goal
and it sends them to the DUV. Coverage monitors are added
to measure progress and identify non-exercised functionalities.
Checkers can also be included to identify undesired DUV
behaviours. However, the use of UVM requires to write com-
plex pieces of code. Such a complexity to set up an effective
stimuli generator reflects in the risk of failing to capture the
right behaviour and/or in a longer verification time. Moreover,
UVM works only for SystemVerilog designs. This is partially
compensated by the definition of different UVM dialects that
cover also other hardware description languages (HDLs) like,
for example, the System Verification Methodology (SVM)

978-1-4799-4711-9/14/$31.00 ©2014 IEEE

for SystemC [10]. Another possibility is represented by SCV
which provides pseudo-random generators and an integrated
constraint solver based on BDDs for SystemC verification [11].
However, similar considerations to the UVM case apply also
for SCV, concerning the complexity of implementing advanced
generators. Moreover, several limitations affect SCV [12].

To overcome UVM and SCV complexity and being HDL-
free, this paper is intended to present a framework for the
constraint-based automatic generation of stimuli that:

• requires to write very few lines of directives rep-
resenting the desired constraints by using a simple
specification language;

• works independently from the language adopted for
the DUV implementation;

• can be applied for both embedded hardware as well
as embedded software;

• and creates sequences of stimuli suited for supporting
verification and exploration methodologies that require
to mimic specific situations, which are necessary, for
example, in scenario-based testing or dynamic ABV.

A preliminary work in this direction, based on SCV, has
been presented in [13], but with respect to [13] the current
paper refines and extends the specification language, replaces
the SCV generation engine with a more flexible C++ SMT-
based approach to remove the SystemC dependency, and
provides a larger set of experimental results.

The rest of the paper is organized as follows. Section II
proposes a specification language to define the behaviour of the
desired sequence of stimuli. Section III describes how stimuli
generators are implemented on the basis of the specification
language defined in Section II. Section IV compares the
proposed approach with respect to the UVM facilities related
to stimuli generation. Section V is devoted to experimental
results. Finally, Section VI draws some concluding remarks.

II. STIMULI SPECIFICATION

The stimuli generation engine relies on a specification
language that allows the user to easily define the sequence
of values that must be generated for each input line of the
DUV. The specification language is defined by means of a
context-free grammar whose syntax is defined in Fig. 1. Non-
terminal symbols are written between chevrons in lower-case
letters. Terminal strings are enclosed in single quotes. Finally,
strings starting with a capital letter and enclosed in chevrons
are tokens that can be considered terminal symbols.

Given an input line, the specification of the sequence of
values that must be generated is defined by a named_generator
with kind OUTPUT. The kind TEMP is used to define stimuli
generators that create sequences of values representing the
basis for more complex OUTPUT generators. The type is used
to define the size of the input line associated to the generator.
The name is the identifier of the generator. The behaviour of
the generator is specified by a generator instance among the
following:

• constant: it is used to generate a sequence whose
elements correspond to the numeric constant Value;

• uniform: it creates a sequence of values uniformly
distributed between Range_min and Range_max;

• reference: it generates the same values of the
named_generator identified by the argument Name

Fig. 1. Grammar of the stimuli specification language.

and it is used to create dependencies among different
generators;

• sequence: it allows to create a generator composed
of a sequence of different behaviours specified by
different generators. Each generator in the sequence
is active for a specific Duration. The sequence can
repeat cyclically or the last generator can be used till
the end of the generation, respectively when Do_Loop
equals 1 or 0;

• sum: it sums the values returned by two generators;

• products: it multiplies the values returned by two
generators;

• uminus: it returns the negative of the value returned
by a generator;

• delay: it delays the generation of values according to
the specified generator for Delay_Amount simulation
instants. Before the Delay_Amount is elapsed the
generator returns the constant Initial_Value;

• range_restrict: it restricts the range of values re-
turned by the associated generator within the
interval [Range_min, Range_max]. If the associ-
ated generator returns a value v outside such
an interval, range_restrict returns Range_Min when
v < Range_Min and Range_Max when v >
Range_Max. Otherwise it returns v;

• time_expand: it stretches horizontally the values re-
turned by the associated generator by a given factor
k. If the the associated generator behaves as a function
of time f(t), a time expansion of a factor k produces
the behavior g(t) = f(t/k);

• function: it allows to reproduce the behavior of a
given function Ftype (e.g., sine, cosine, logarithm,
etc.). In particular, the sequence of generated values
is computed by Ftype(Initial_V alue + t ∗ Offset)
where t represents the simulation time;

• input: it allows to recall the associated generator into
a new generation. This is particularly useful when a
sequence of stimuli previously generated is used as
prefix (i.e., it acts as initialization for the DUV) of a
new sequence;

• constraint: it creates values that satisfy complex con-
straints described by an expression representing a first-
order formula, possibly, involving other generators.

978-1-4799-4711-9/14/$31.00 ©2014 IEEE

OUTPUT gen_1
Sequence 0

Uniform −1 1 20
Function s i n 0 0 . 1 30
Constant 0 . 2 4 1

end
OUTPUT gen_2

Range_Res tr ic t 0 2
Function l o g 1 0 . 1

OUTPUT gen_3
Sum

Constant −0.01
Delay 1 0 . 0 1 end Reference gen_3

Fig. 2. Example of a stimuli specification using several generators.

0 2 4 6 8 10

−1

0

1

2

Time

O
u

tp
u

t
v
al

u
es

gen_1
gen_2
gen_3

Fig. 3. Plot of stimuli created by the generators of Fig. 2.

Previous generators create a sequence of values indepen-
dently from the simulation time and from the mechanism
adopted to notify the passing of time. They assume a discrete-
time model where new values are provided to the input lines at
each timestamp. The definition of what a timestamp is depends
on the abstraction level of the DUV and on the simulation
engine. For example, in case of an HW register transfer level
(RTL) model, timestamps are represented by clock cycles,
at transaction level model (TLM), they correspond to the
starting/ending of transactions, in the context of embedded SW,
they are related to the iteration loop of the control application,
etc.. Our framework just needs to know a couple of parameters:
the length of the simulation and the duration of the timestamp.
Thus, for example, to generate a sequence of stimuli for an
RTL simulation of 10 seconds with a clock cycle of 100 ms,
the user can specify the couple (10000, 100) and in this way
a sequence composed of 100 values is generated.

A. Examples of generators

The primary goal of the previous generators is to describe
the behaviour of digital/analog inputs from environmental
probes which typically equip embedded systems. In particular,
the proposed specification language allows the definition of a
library of generators to solve recurring patterns of use whose
definition is quite difficult, like, for example, linear filters,
tracking trends for physical parameters, etc..

Some examples to show the effectiveness and the easiness
of use of the proposed language in specifying the behaviour
of different stimuli generators are described hereafter.

Fig. 2 shows the use of several generators that create
the three sequences of stimuli depicted in Fig. 3. The se-
quence corresponding to gen_1 is obtained by sequencing

TEMP FLOAT 0 f i l t e r _ p a r a m e t e r Constant 0 . 7 5
TEMP FLOAT 0 temp1 Uniform −1 1
OUTPUT f i l t e r

Sum
Product

Sum
Constant 1
UMinus Reference f i l t e r _ p a r a m e t e r

Reference temp1
Product

Reference f i l t e r _ p a r a m e t e r
Delay 1 0 end Reference f i l t e r

Fig. 4. Specification of a linear filter.

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Time

O
u

tp
u

t
v
al

u
es

filter
temp_1

Fig. 5. Plot of stimuli created by the filter specification of Fig. 4.

tree behaviors through the sequence generator such that the
generated values respect a uniform distribution between -1 and
1 till simulation instant 20, then a sine function till simulation
instant 30, and finally a constant. Then, gen_2 shows the use of
range_restrict to create a logarithmic waveform with an upper
bound represented by the value 2. Finally, gen_3 generates a
decreasing sequence of values by using delay and reference to
reproduce the effect of the function f(t) = f(t − 1) − 0.01,
where f(0) = 0.01. The corresponding plot is shown in Fig.
3 where the couple (10000, 100) has been used to specify the
simulation time and the timestamp length.

An interesting example is shown in Fig. 4, where a gen-
erator to implement the behavior of a linear filter is defined.
temp_1 is a uniform generator returning value in [-1,1]. filter
is the linear filter that uses temp_1 according to the following
expressions:

filter(t) = 0;
filter(t+ 1) = 0.25 ∗ temp_1(t+ 1) + 0.75 ∗ filter(t).

The corresponding plot is shown in Fig. 5.

The use of the input generator is shown in Fig. 6. The
sequence created by the gen_4 generator is composed of
a prefix including the first 40 elements produced by the
prev_sequence generator, which is supposed to have been
previously defined and possibly used for a different verification
run. The input generator is used to import the values provided
by prev_sequence into the prev TEMP generator. Then, the
sequence is completed according to a sine function specified by
the post TEMP generator. Finally, prev and post are referenced
by gen_4 to create the final sequence. The corresponding plot
is shown in Fig. 7.

A final example, in Fig. 8, is related to the use of the
constraint generator. The generator gen_5 imposes that each

978-1-4799-4711-9/14/$31.00 ©2014 IEEE

OUTPUT p r e v _ s e q u e n c e
Sequence 1

Constant −1 5
Constant 1 5

end

TEMP FLOAT 0 prev Input p r e v _ s e q u e n c e 0
TEMP FLOAT 0 p o s t Function s i n 1 0 . 1
OUTPUT gen_4

Sequence 0
Reference prev 40
Reference p o s t 1

end

Fig. 6. Specification of a stimuli sequence with an initialization prefix
imported from a previous generation.

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Time

O
u

tp
u

t
v
al

u
es

prev
post

Fig. 7. Plot of the generator gen_4 defined in Fig. 6.

returned value v satisfies the constraint v > x and v < y,
where x and y are specified by a couple of function generators
which represent the allowed upper and lower bounds for v. The
corresponding plot is shown in Fig. 9.

III. STIMULI GENERATION

Given a file containing the specification of a set of gen-
erators according to the syntax described in Section II, the
corresponding sequence of stimuli is generated by a C++
engine. In particular, only constant, uniform, function and
constraint generate values, while reference, sequence, sum,
product, uminus, delay, range_restrict, time_expand and input
are used to reuse, combine or modify the values returned by
other generators.

The C++ engine straightforward implements the constant
and function generators, by returning, respectively, the required
constant value or a sequence of values respecting the specified
function at varying of time. Several standard C functions are
already built-in, while the engine can be extended by adding
further used-defined functions.

On the contrary, the implementation of the uniform and
constraint engines relies, respectively, on the Random-Boost
library [14], and the MathSAT5 constraint solver [15].

The Random-Boost library provides a set of powerful
engines that generate random (integer and real) numbers
according to the most popular probabilistic distributions, like,
for example, the uniform distribution. Custom distributions can
be defined as well. Moreover, by using the seed provided by
the random_device class, we are guaranteed that the generated
numbers are actually random, even in the case they are
generated at a very high frequency. The same assurance cannot

OUTPUT LowerBound Function l o g 1 0 . 1
OUTPUT UpperBound

Product
Function l o g 1 . 1 0 . 1
Constant 2

OUTPUT gen_5
C o n s t r a i n t

Reference LowerBound x
Reference UpperBound y

end (a s s e r t (and (> t h i s x) (< t h i s y))) ;

Fig. 8. Specification of a stimuli sequence by means of the constraint
generator.

0 2 4 6 8 10

0

1

2

3

4

5

Time

O
u

tp
u

t
v
al

u
es

LowerBound

UpperBound
gen_5

Fig. 9. Plot of the generator defined in Fig. 8.

be obtained by using the classical rand function of the standard
C library that in case of two very close consecutive calls can
provide the same value, even when the srand function is called
to initialize the seed.

On the other hand, the generation of random stimuli
that respect a constraint expressed by a first-order formula
requires the adoption of a constraint solver. In our case, the
MathSAT5 Satisfiability Modulo Theories (SMT) solver has
been exploited. Differently from a SAT solver, which works
only for the theory of Boolean values, an SMT solver can
solve constraints according to several theories like integer,
real, array, etc.. MathSAT5 has been integrated in the proposed
environment by means of the SMT-Lib 2.0 library [16]. Such
a library represents a common interface for the most popular
SMT solvers. In this way, MathSAT5 could be substituted,
in the future, with more efficient constraint solvers without
changing the grammar of the constraint generator.

IV. COMPARISONS WITH UVM

UVM represents the most popular framework for testbench
generation. It is based on the SystemVerilog language, but
UVM Multi-Language (UVM-ML), a modular solution for
integrating verification components written in different lan-
guages, is also available with some restrictions [17].

An UVM testbench is composed of reusable verification
environments called verification components. A verification
component is an encapsulated, ready-to-use, configurable ver-
ification environment for an interface protocol, a design sub-
module, or a full system. It allows to stimulate the DUV
by generating constrained-random stimuli, measure the DUV
coverage and monitor assertion checkers.

In the following, the UVM facilities concerning
constrained-random stimuli are compared, by means of
an example, against the stimuli generation framework

978-1-4799-4711-9/14/$31.00 ©2014 IEEE

c l a s s t r i d o m i x _ t r a n s e x t e n d s uvm_sequence_i tem ;
rand i n t t s e t ;
r and i n t t c o l d ;
rand i n t t c o l d _ d e r ;
i n t unsigned d e l t a _ A = 2 ;

f u n c t i o n new () ;
s u p e r . new () ;

endfunc t ion

/ / c o n s t r a i n t s
c o n s t r a i n t lower_bound {

t s e t > (t c o l d − d e l t a _ A) ; }
c o n s t r a i n t upper_bound {

t s e t < (t c o l d + d e l t a _ A) ; }
c o n s t r a i n t d e r i v a t e {

abs (t c o l d _ d e r) <=1 ; }
e n d c l a s s

c l a s s my_dr ive r # (t y p e REQ = uvm_sequence_i tem)
e x t e n d s uvm_dr ive r # (REQ) ;

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
s u p e r . new (name , p a r e n t) ;

endfunc t ion

tas k run_phas e (uvm_phase phas e) ;
REQ r e q ;
f o r e v e r begin

/ / t o g e t a t r a n s a c t i o n from t h e s e q u e n c e r
s e q _ i t e m _ p o r t . g e t (r e q) ;
/ / t r a n s a c t i o n f i e l d s ar e us ed on t h e DUV
d r i v e _ i t e m (r e q) ;
/ / r e q u e s t comple ted
s e q _ i t e m _ p o r t . i t em_done () ;

end
endtask

f u n c t i o n d r i v e _ i t e m (REQ r e q)
/ / t o be imp lemen ted

end f u n c t i o n
e n d c l a s s

‘ d e f i n e NUM_SEQS 1000
c l a s s env e x t e n d s uvm_env ;

uvm_sequencer # (t r i d o m i x _ t r a n s) s q r ;
my_dr ive r # (t r i d o m i x _ t r a n s) d rv ;
t r i d o m i x _ t r a n s s equence [‘NUM_SEQS] ;

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
s u p e r . new (name , p a r e n t) ;
/ / C r e a t i o n o f t h e s e q u e n c e r
s q r = new (" t r i d o m i x _ s e q u e n c e r " , t h i s) ;
/ / C r e a t i o n o f t h e d r i v e r
drv = new (" t r i d o m i x _ d r i v e r " , t h i s) ;
/ / C r e a t i o n o f t h e t r a n s a c t i o n s equence
f o r (i n t i = 0 ; i < ‘NUM_SEQS; i ++) begin

s equence [i] = new (" s equence ") ;
end
/ / Connec t ion be tween t h e d r i v e r and t h e s e q u e n c e r
drv . s e q _ i t e m _ p o r t . c o n n e c t (s q r . s e q _ i t e m _ e x p o r t) ;

endfunc t ion

tas k run_phas e (uvm_phase phas e) ;
phas e . r a i s e _ o b j e c t i o n (t h i s) ;
f o r (i n t i = 0 ; i < ‘NUM_SEQS; i ++) begin

fork
s equence [i] . s t a r t (s q r , n u l l) ;
j o i n _ n o n e # 0 ;

end
wai t fork ;
phas e . d r o p _ o b j e c t i o n (t h i s) ;

endtask
e n d c l a s s

module t o p ;
i m p o r t us e r_pkg : : ∗ ;
i m p o r t uvm_pkg : : ∗ ;
env e ;

i n i t i a l begin
e = new (" env " , n u l l) ;
r u n _ t e s t () ;

end
endmodule

Fig. 10. UVM code to generate a test sequence for the mixing machine.

proposed in this paper. Let us consider, the following directive
from the industrial test plan of a mixing machine.

It is necessary to verify that the machine moves from the state

OUTPUT t c o l d Uniform −20 5
OUTPUT t c o l d _ d e r

C o n s t r a i n t
Constant 0 . 3 x

end (a s s e r t (< t h i s 0 . 3)) ;
OUTPUT d e l t a _ A Constant 2
TEMP FLOAT 0 lower_bound

Sum
Reference t c o l d
UMinus Reference d e l t a _ A

TEMP FLOAT 0 upper_bound
Sum

Reference d e l t a _ A
Reference t c o l d

OUTPUT t s e t
C o n s t r a i n t

Reference lower_bound low
Reference upper_bound up

end (a s s e r t (and (< t h i s up) (> t h i s low))) ;

Fig. 11. Proposed specification directives to generate a test sequence for the
mixing machine.

IDLE to the state SECOND_TEMP when all the following
conditions are true:

• Tcold −DeltaA < Tset;

• Tset < Tcold +DeltaA;

• | derivative(T _cold) |< 0.3;

where Tcold is the temperature of the cold water measured by
a probe, DeltaA is a constant defined by the installer, and Tset

is the required temperature set by the user.

In the context of ABV, the verification of the previous
directive requires: (i) to define an assertion that captures the
desired intent, and (ii) to generate a set of stimuli sequences
that fire the assertion to avoid its vacuous passing. Clearly, the
assertion is fired only when the three conditions described in
the test plan are satisfied.

The UVM code to create a stimuli sequence that satisfies
the conditions reported in the test directive of the mixing
machine is reported in Fig. 10. Class tridomix_trans is the
basic transaction, which represents the data items to create the
input values for the DUV according to the desired constraints.
Class my_driver is the driver for the DUV. In particular, the
function drive_item, whose implementation is not reported for
saving space, uses values generated by the transaction to drive
the DUV simulation. Class env is the verification environment
that instantiates a sequencer, a driver and a sequence of
transactions. The sequencer is an advanced stimulus generator
that returns a random data item upon request from the driver
according to constraints specified in the transaction. Finally,
the module top instantiates the verification environment and
runs the stimuli generation. On the contrary, Fig. 11 shows
what a user should write to create a corresponding sequence
of stimuli by means of the framework proposed in the previous
sections.

By comparing Fig. 10 and Fig. 11 it appears that creating
a sequence by means of the proposed specification framework
is much more easier than implementing a corresponding UVM
verification environment. Moreover, it is worth remembering
that UVM works only for SystemVerilog hardware descrip-
tions, while the proposed framework can be adopted for both
HW and SW designs. On the other hand, UVM provides
further features, like coverage measure and assertion monitors,
which make it a comprehensive verification environment, while
the proposed framework is only intended to provide an easy-
to-use and effective stimuli generator to drive the DUV during
specific simulation approaches like, for example, scenario-
based testing and assertion-based verification.

978-1-4799-4711-9/14/$31.00 ©2014 IEEE

DUV ST.-ORIENTED OUR APPROACH

NAME LINES ASS. ACT. TIME ACT. DIR. TIME

Breadmaker 2006 20 30% 0.008s 100% 7 0.064s
RPC-3D-door 22043 63 98% 0.012s 100% 168 0.132s
DSC-2L 37545 14 35% 0.004s 100% 114 1.676s

TABLE I. EXPERIMENTAL RESULTS (EMBEDDED SW APPLICATIONS).

DUV ST.-ORIENTED OUR APPROACH

NAME LINES FAULTS COV. TIME COV. DIR. TIME

ADPCM 341 143 75.5% 0.008s 96.5% 102 0.448s
AM2910 622 156 48.7% 0.004s 85.3% 506 0.136s

TABLE II. EXPERIMENTAL RESULTS (HARDWARE COMPONENTS).

V. EXPERIMENTAL RESULTS

The effectiveness of the proposed framework has been eval-
uated in two ways. First, we evaluated its capability in the con-
text of dynamic ABV of C++ embedded software applications.
As briefly summarized in the introduction, dynamic ABV
requires to stimulate the DUV with high-quality sequences
such that assertion checkers can be actually activated to avoid
vacuous passing of the corresponding assertions. The second
experiments has been conducted to measure the quality of the
proposed framework in the context of traditional fault simu-
lation of SystemC RTL hardware components. In both cases,
the framework has been compared, from the effectiveness point
of view, with respect to a structure-oriented (coverage-driven)
generator included into a commercial verification suite [18].
We do not report such a comparison with respect to UVM
since our approach and UVM have the same capability from
the point of view of (SAT/SMT) constraint-based generation.
Thus, the most relevant comparison between UVM and our
approach concerns the difference in the easiness of use and
the application domain, as described in the previous section.

Table I presents the results in the context of dynamic
ABV. Columns report benchmarks characteristics, i.e., the
DUV name (NAME), the number of code lines (LINES) and
the number of defined assertions (ASS.), and results, in terms
of percentage of fired assertions (ACT.) and time required for
stimuli generation (TIME) by using both the structure-oriented
engine and the proposed framework. The total number of
directive lines written by means of the specification language
defined in Section II is also reported (DIR.). To be fair, both
the generators have been required to create sequences of the
same length (thousands of test vectors). Our approach allows
to activate all the assertions for all the considered benchmarks,
while the structure-oriented generator achieves a good activa-
tion percentage only in one case. This is motivated by the
fact that the activation of assertions for Breadmaker and DSC-
2L depends on conditions which cannot be simply guaranteed
by a structure-oriented generator. Indeed, for the most of
assertions, an initialization sequence is required to bring the
application in a particular state from which their activation
is guaranteed. Such initialization sequences, reproducing the
real environment where the application operates, can be easily
obtained by reproducing the required behaviours with the
specification language described in Section II. Execution times
show that our approach is more expensive, in particular for
DSC-2L where an extensive use of the SMT-based Constraint
generator has been required. Indeed, generation time is almost
negligible for all benchmarks.

Table II reports a similar analysis for the fault simula-
tion context. In this case, the number of assertions and the
percentage of their activations are replaced by the number of
faults (FAULTS) and the achieved fault coverage (COV.). The
fault model defined in [19] has been adopted. The proposed
approach provides an higher fault coverage than the structure-

oriented engine showing its effectiveness also for a “coverage-
driven” goal. However, the number of directives that we
needed to write for the AM2910 micro controller is quite high
compared to the complexity of the DUV. This is due to the
necessity of mimic the behaviour of an AM2910 program by
means of the specification language of Section II, to accurately
stimulate its instruction set architecture, which is composed
of 16 instructions. On the other hand, for the same reason,
the coverage achieved by the structure-oriented approach is
very low due to its inability of simulating a real operating
environment for the micro controller.

VI. CONCLUSIONS

The paper presented a stimuli specification language and
a corresponding stimuli generation engine targeting the re-
production of specific conditions, as required, for example,
by scenario-based testing and dynamic ABV. The language
allows to intuitively write directives for the engine to generate
constraint-based stimuli sequences that respect the desired con-
ditions. In comparison to the popular UVM environment, our
approach is intended to provide a simpler way of specifying
sequence behaviours, it works independently from the abstrac-
tion level and from the DUV implementation language, and it
can be used for the hardware as well as the software domain. In
comparison to a structure-oriented engine we showed that our
framework generates stimuli which more effectively activate
assertions and achieves higher fault coverage.

REFERENCES

[1] D. Pradhan and I. Harris, Practical Design Verification. Cambridge Univ Press,
2009.

[2] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs,” in Proc. of OSDI, 2008,
pp. 209–224.

[3] S. M. Plaza, I. L. Markov, and V. Bertacco, “Random stimulus generation using
entropy and XOR constraints,” in Proc. of ACM/IEEE DATE, 2008, pp. 664–669.

[4] G. Di Guglielmo, M. Fujita, F. Fummi, G. Pravadelli, and S. Soffia, “EFSM-
based model-driven approach to concolic testing of system-level design,” in Proc.
of ACM/IEEE MEMOCODE, 2011, pp. 201–209.

[5] S. Yang, R. Wille, D. Grobe, and R. Drechler, “Coverage-driven stimuli genera-
tion,” in Proc. of IEEE DSD, 2012, pp. 525–528.

[6] C. Kaner, “An introduction to scenario testing,” Lecture Notes, Center for Software
Testing Education and Research, Florida Institute of Technology, 2003.

[7] D. Tabakov, “Dynamic assertion-based verification for SystemC,” Ph.D. disserta-
tion, 2010, Rice University.

[8] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data generation,”
IEEE Trans. Softw. Eng., vol. 17, no. 9, pp. 900–910, 1991.

[9] Accellera Organization, “Universal Verification Methodology,”
2012. [Online]. Available: http://www.accellera.org/downloads/standards/
uvm/uvm_users_guide_1.1.pdf

[10] M. F. Oliveira, C. Kuznik, H. M. Le, D. Grosse, F. Haedicke, W. Mueller,
R. Drechsler, W. Ecker, and V. Esen, “The system verification methodology for
advanced TLM verification,” in Proc. of IEEE/ACM/IFIP CODES+ISSS, 2012,
pp. 313–322.

[11] Accellera Organization, “SystemC Verification Library,” 2012. [Online].
Available: http://www.accellera.org/activities/committees/ systemc-verification/

[12] D. Grosse, R. Ebendt, and R. Drechsler, “Improvements for constraint solving in
the Systemc Verification Library,” in Proc. of ACM GLSVLSI, 2007, pp. 493–496.

[13] G. Di Guglielmo and G. Pravadelli, “A testbench specification language for
SystemC verification,” in Proc. of IEEE/ACM/IFIP CODES+ISSS, 2012, pp. 333–
342.

[14] “Random boost library.” [Online]. Available: http://www.boost.org/

[15] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The MathSAT5 SMT
solver,” in TACAS, ser. Lecture Notes in Computer Science, vol. 7795. Springer,
2013, pp. 93–107.

[16] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” in
Proc. of International Workshop on Satisfiability Modulo Theories, 2010.

[17] “UVM -ML Open Architecture,” 2013. [Online]. Available:
http://forums.accellera.org/files/file/ 65-uvm-ml-open-architecture/

[18] “radCHECK.” [Online]. Available: http://www.verificationsuite.com

[19] V. Guarnieri, G. Di Guglielmo, N. Bombieri, G. Pravadelli, F. Fummi, H. Hantson,
J. Raik, M. Jenihhin, and R. Ubar, “On the reuse of TLM mutation analysis at
RTL,” J. Electron. Test., vol. 28, no. 4, pp. 435–448, 2012.

978-1-4799-4711-9/14/$31.00 ©2014 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

