
A Homogeneous Framework for AMS Languages
Instrumentation, Abstraction and Simulation

Enrico Fraccaroli, Luca Piccolboni and Franco Fummi
Department of Computer Science, University of Verona, Italy, name.surname@univr.it

Abstract—In the last years an inversion of trend has brought
new interest to the analog domain. Its integration within modern
digital designs has led to the birth of the so called Analog
and Mixed-Signal (AMS) systems. Functional safety assessment
of such systems must be evaluated by instrumenting both the
analog and digital parts. Such an activity can be simplified if
these parts can be considered as an unique layer. Based on
such an idea, this work brings them to a common ground by
unifying the description language. Such a process is performed
through settled procedures that abstract the AMS description to
a common abstraction level (behavioral) and to a homogeneous
high-level language (C++). This provides a speedup of two orders
of magnitude in the fault simulation of an AMS platform.

Index Terms—Homogeneous fault injection, fault coverage,
digital, analog and mixed-signal, safety

I. INTRODUCTION

Nowadays, complex analog and digital systems are largely
used in safety-critical domains. Functional safety of these sys-
tems is provided through Analog and Mixed-Signal Systems-
on-Chip (AMS-SoCs) very often composed of many third-
party Intellectual Property (IP) cores [1]. As a consequence,
ensuring dependability of such systems is becoming a complex
and critical task, especially when dealing with safety critical
systems [2]. It is needed an effective and reliable procedure
which can assess their correctness. One solution is to move
the safety verification to a higher abstraction level and earlier
in the development process [3]. This would enable the use
of well-established procedures to coordinate the processes of
fault injection. For digital systems solutions can be found at
different levels of abstraction, e.g., Gate-Level [4], Register-
Transfer Level (RTL) [1] or also at Transaction-Level Mod-
eling (TLM) [2]. For analog systems the main challenges
are, the lack of a standardized analog fault model [5] and
the high complexity of performing analog fault testing. This
work proposes a methodology for functional safety assessment
at high abstraction level, taking into account the growing
complexity and the high heterogeneity of modern safety-
critical systems. It focuses on AMS descriptions where analog
and digital sub-parts are described respectively at RTL and
circuit level as shown in Figure I. The contributions of this
work are: 1© an innovative method of code instrumentation
for high-level digital descriptions and 2© a unified flow for
the homogeneous fault simulation of AMS descriptions.

II. HOMOGENEOUS FAULT SIMULATION

The flow of the proposed methodology is depicted in
Figure I. First, the heterogeneous AMS descriptions are trans-
formed into a homogeneous behaviorally equivalent one, then
the code is injected with saboteurs and mutants.

A. Analog abstraction

The methodology proposed in [6] has been used to perform
this step. Its aim is the abstraction of analog models for their
integration inside virtual platforms for smart systems. It takes

Figure I: Overview of the injection methodology.

as input an AMS model described by means of differential
equations and it generates as output a simplified model de-
scribed with a high-level language (e.g., C++). Such a model
is able to reduce the simulation complexity by preserving
only the input/output relation describing the behavior of the
original AMS description. All the other internal details are
not evaluated, since they are not visible from outside the
model and not necessary to ensure its correctness. As such, the
abstraction process generates a high-level description that is a
signal-flow representation of the original model. By referring
to the work in [6] the following assumption can be made:

Assumption I (Analog behavioral equivalence). The descrip-
tion generated by the analog abstraction process preserves the
behavior of the original description w.r.t. the values of interest.

B. Digital abstraction

The digital abstraction flow first transforms the description
from RTL to a behavioral equivalent model by using the state-
of-the-art methodology originally proposed in [7]. The input
description can be written with an arbitrary Hardware Descrip-
tion Language (HDL). First, the HDL data types contained
inside the description are replaced by standard and much more
efficient C++ built-in data types. Then, an analysis of the
dependency graphs of the digital processes is performed in
order to infer their activation order. This allows to implement
an event-driven simulation directly inside the C++ model.
The proof that the RTL faults are preserved into the model
generated by abstraction is given in [8]. In particular the
following assumption can be made:

Assumption II (Preservation of faults behavior). For all the
sets of event sequences inputs, the behavior of the faulty RTL
model obtained through injection is equal to the one of the
faulty TLM model generated after the abstraction.

C. Analog fault injection

As shown in Figure I, the process of analog fault injection is
highly integrated inside the abstraction process. The process of
analog injection has been extensively presented in [9]. Analog
faults can be injected inside a Verilog-AMS model by adding
new differential equations or by drastically altering an existing
process parameter. Given the Assumption I, the physical values

2017 22nd IEEE European Test Symposium (ETS)

!

978-1-5090-5457-2/17/$31.00 ©2017 IEEE

!

d e f i n e MUTATE_8u(I, RHS)\
((RHS & ~masks[I])|(−stuckAt & masks[I])) & uint8_t(255U)

Listing I: Mask for unsigned eight bit variable.

associated with the injected fault must be considered as values
of interest. This is imperative in order to preserve the faulty
behavior through the abstraction process. In conclusion, the
proposed approach can use every type of fault that can be
modeled by means of new equations or by manipulating
the existing ones. Once the type of fault models has been
chosen, the injection process iterates over all the possible fault
locations depending on the type of fault. For each location it
executes two actions: 1© injects the equation that models the
chosen fault and 2© executes the analog abstraction. At each
new iteration, the previous injected equation is removed from
the model, otherwise the process would produce a design that
contains multiple faults. At the end of the process, a series of
abstracted faulty descriptions are produced. Also the fault-free
description goes through the abstraction process.

D. Digital fault injection

The digital fault injection instruments the code with mutants
that simulate fault models at the bit level (i.e., stuck-at bit). The
output description contains all the mutations that are able to
reproduce the faulty design behavior. A previous methodology
presented in [8] proposed to inject mutants by means of
mutation functions. The first source of overhead is due to the
time required to execute the function call. Furthermore, such
functions must be called each time an event is generated in
the corresponding logic and thus many times. This is another
source of overhead. All these operations could be avoided
by means of the function-like macros provided by C++. The
technique developed in this work takes advantage of this
feature and it assigns a bit mask to each mutation location
identified by means of an index. When a mask is set to the
value 0 the corresponding location is fault-free. If a mask has
a bit set to 1, then the mutation location has that bit mutated.
This mechanism is able to simulate the stuck-at behavior by
means of bitwise operations that apply the mask to the original
value. Bitwise operations are much more faster than a function
call and can be easily used with macros. Listing I shows an
example of mask which takes two parameters: the Index of
the mutation location and the Right-Hand Side original value.
stuckAt is a global variable which indicates which value of
stuck-at must be applied (i.e., zero or one).

E. Homogeneous fault simulation

After both the analog and digital sub-parts have been
abstracted and injected with all the faults, the resulting descrip-
tion is enriched with an array of masks. Each mask is mapped
to a mutation location and progressively associated with the
corresponding index. For what concerns the analog faults,
each set of equations produced by the abstraction process is
associated with a progressive index starting from the last one
used for indexing the digital faults. This allows to enable both
digital and analog faults without discrimination.

III. EXPERIMENTAL RESULTS

A complex hardware description has been identified with the
purpose of showing the effectiveness of the proposed approach
on a real case study. The design comprises the hierarchical
Verilog description at RTL of the 8-bit microcontroller M6502
and an Accelerometer written in Verilog-AMS. The total

Table I: Simulation times for the diagnostic coverage evaluation.

Code Version Times SpeedUp (x)

Verilog-AMS 532h 48m 31.9s reference
Functions 6h 12m 45.0s 85.7
Masks 5h 9m 49.8s 103.1

number of digital faults injected in every version is 4151,
among 536 mutation locations found. For the analog sub-part,
the choice of fault models fell on open and short circuits. The
total number of analog faults is 50. The evaluation of the
diagnostic coverage metric exploits three safety mechanisms:
• Hardware (Watchdog) – It checks if the CPU executes the

workload in a fixed number of clock cycles.
• Software (FIR Filter) – It checks if the computation is

correct by comparing each value generated by the program
with a reference value known a priori.

• Software (Analog) – It is a Mixed-Signal Built-In Self-
Test (MS-BIST) that checks whether the accelerometer is
behaving correctly or not.

The execution times of this experiment are reported in Table I.
Let us define the following set of variables and their values:

λWD = #errors flagged by Watchdog = 1641

λFIR = #errors flagged by FIR filter = 22

λMSBIST = #errors flagged by MSBIST = 46

The Diagnostic Coverage metric evaluated for each safety
mechanism [10] is as follows:

DCWD =
λWD

faults
=

1641

4151
= 0.3953

DCFIR =
λFIR

faults
=

22

4151
= 0.0052

DCMSBIST =
λMSBIST

faults
=

46

50
= 0.9200

While the overall Diagnostic Coverage is:

DC = DCWD +DCFIR +DCMSBIST = 1.3205

IV. CONCLUDING REMARKS

An innovative automatic flow has been proposed that ab-
stracts the whole AMS system to behavioral level and then
performs a fault injection campaign. Results show how this
flow can dramatically reduce the efforts needed to assess the
functional safety of an analog mixed-signal platform.

Acknowledgments: We would like to thank Nicoló Danzi
for an initial analysis and implementation of the framework.

REFERENCES

[1] R. Mariani, G. Boschi, and F. Colucci, “Using an innovative SoC-level
FMEA methodology to design in compliance with IEC61508,” in Proc.
of IEEE/ACM DATE 2007, apr, pp. 492–497.

[2] Y. Y. Chen, C. H. Hsu, and K. L. Leu, “SoC-level risk assessment using
FMEA approach in system design with systemC,” in Proc. of IEEE SIES
2009, pp. 82–89.

[3] A. Sherer, J. Rose, and R. Oddone, “Ensuring functional safety compli-
ance for ISO 26262,” in Proc. of IEEE/ACM DAC 2015, pp. 1–3.

[4] A. Fin and F. Fummi, “A VHDL error simulator for functional test
generation,” in Proc. of IEEE/ACM DATE 2000, pp. 390–395.

[5] M. Soma, “Challenges in analog and mixed-Signal fault models,” IEEE
Circuits and Devices Magazine, vol. 12, no. 1, pp. 16–19, 1996.

[6] E. Fraccaroli, M. Lora, S. Vinco, D. Quaglia, and F. Fummi, “Integration
of mixed-signal components into virtual platforms for holistic simulation
of smart systems,” in Proc. of IEEE/ACM DATE 2016, pp. 1586–1591.

[7] S. Vinco, V. Guarnieri, and F. Fummi, “Code Manipulation for Virtual
Platform Integration,” IEEE Transactions on Computers, vol. 65, no. 9,
pp. 2694–2708, sep 2016.

[8] N. Bombieri, F. Fummi, and V. Guarnieri, “FAST: An RTL fault
simulation framework based on RTL-To-TLM abstraction,” Journal of
Electronic Testing: Theory and Applications, vol. 28, no. 4, pp. 495–510,
2012.

[9] E. Fraccaroli and F. Fummi, “Analog Fault Testing Through Abstrac-
tion,” in Proc. of IEEE/ACM DATE 2017, pp. 1–4.

[10] I. E. Commission et al., “IEC 61508 : Functional safety of electrical/-
electronic/ programmable electronic safety-related systems,” pp. 7–13,
2010.

!

!

