
A parallelizable approach for mining likely invariants

Alessandro Danese Luca Piccolboni Graziano Pravadelli
University of Verona, Strada le Grazie 15

37134, Verona, Italy
name.surname@univr.it

ABSTRACT
A relevant aspect in design analysis and verification is mon-
itoring how logic relations among different variables change
at run time. Current static approaches suffer from scalabil-
ity problems that prevent their adoption on large designs.
On the contrary, dynamic techniques scale better from the
memory-consumption point of view. However, to achieve
a high accuracy, they require to analyse a huge number
of (long) execution traces, which results in time-consuming
phases. In this paper, we present a new efficient approach
to automatically infer logic relations among the variables of
a design implementation. Both a sequential and a GPU-
oriented parallel implementation are proposed to dynami-
cally extract likely invariants from execution traces on dif-
ferent time windows. Execution traces composed of millions
of simulation instants can be efficiently analysed.

1. INTRODUCTION
Automatic invariant detection is a widely adopted strategy
to analyse several aspects in verification of both SW pro-
grams and HW designs. Without forgetting the importance
of invariants for documentation purposes, invariant inference
has been used, for example, for test generation [5], analysis
of dynamic memory consumption [4], static checking [13],
detection of race conditions [14], identification of memory
access violations [10], generic bug catching [15], and, more
recently, also mining of temporal assertions [6]. Indepen-
dently from its use, an invariant is a logic formula that holds
between a couple (or several couples) of points, A and B,
of an implementation, thus expressing a stable condition in
the behaviour of the system under verification (SUV) for
all its executions. Possibly, A and B may correspond, re-
spectively, to the beginning and the end of the SUV execu-
tion. Different kinds of invariants, like, for example (x ≤ y),
(ax+ b = y), (x �= NULL), can be inferred by either static
or dynamic analysis of the SUV.

Static approaches, like [8, 16], are exhaustive and work well
for relatively small/medium-size implementations. However,

they generally require to formally analyse the source code
and they scale badly for large SUVs.

An alternative to static approaches is represented by dy-
namic invariant mining [7]. In this case, invariants are ex-
tracted by analysing a finite set of execution traces obtained
from the simulation of the SUV. Dynamic inference works
even if the source code is not available and it scales better
for large SUVs. Indeed, the efficiency of dynamic miners is
more related to the length of analysed execution traces and
the number of observed variables than the complexity of the
SUV.

As a drawback, these techniques, being not exhaustive, can
extract only likely invariants, i.e., properties that are only
statistically true during the simulation of the SUV. Then,
to increase the degree of confidence on invariants mined by
dynamic approaches, a large (and representative) set of ex-
ecution traces must be analysed. However, for complex HW
designs this could require to analyse thousands of execution
traces, including millions of clock cycles, and predicating
over hundreds of variables, which becomes an unmanage-
able time-consuming activity for existing approaches. Sim-
ilar considerations apply also for execution traces derived
from embedded SW applications.

To overcome this limitation, this paper proposes a new ap-
proach for dynamically mining likely invariants (Fig. 1) that
greatly reduces the execution time with respect to existing
techniques, without affecting the accuracy of the analysis.
Moreover, thanks to an efficient encoding of information re-
quired for the mining procedure, a parallel version of the pro-
posed approach is also presented that benefits from execu-
tion on graphics processing unit (GPU) architectures. Both
the sequential and the parallel versions allow to manage the
mining on execution traces composed of millions of simula-
tion instants in few seconds. The two algorithms can work
on execution traces from both HW and SW domains. More-
over, when an exhaustive mining of invariants on different
time windows, belonging to the same execution trace, is re-
quired (for example, for extracting invariants to be used in
mining of temporal assertions [6]), the parallel version can
analyse hundreds of thousands of sub-traces on the order of
minutes.

The rest of the paper is organized as follows. Section 2 sum-
marizes the state of the art. Section 3 reports preliminary
concepts and definitions. Section 4 presents the proposed

978-1-4673-8321-9/15/$31.00 ©2015 IEEE 193

Figure 1: Dynamic mining of likely invariants.

mining approach. Finally, Section 5 and Section 6 deal with
experimental results and concluding remarks.

2. RELATED WORK
To the best of our knowledge the most effective and flexi-
ble miner of likely invariants is Daikon [7]. It analyses ex-
ecution traces through an inference engine that incremen-
tally detects invariants according to templates specified in
a grammar configuration file. To extract invariants on spe-
cific points of a program, code instrumentation is required.
Daikon has been mainly used for documentation, debug-
ging, testing and maintainability of SW programs. A brief
overview of Daikon’s functionalities is reported in Section 3.2.

Several mining tools alternative to Daikon, and the relative
uses, are referenced in [2]. In this section, we refer to some
of them in representation of different categories (commer-
cial vs. academic, hardware- vs. software-oriented). For
example, from a commercial point of view, Daikon inspired
the creation of Agitator [11] that dynamically extracts in-
variants to check their compliance with respect to manually
defined conditions. An alternative academic approach is im-
plemented in DIDUCE [15]. It aids programmers to identify
root causes of errors on Java programs. DIDUCE’s engine
dynamically formulates strict invariant hypotheses obeyed
by the program at the beginning, then it gradually relaxes
such hypotheses when violations are detected to include new
behaviours. Finally, in the HW domain, IODINE [9] infers
likely invariants for HW design descriptions. Inferred invari-
ants refer to state-machine protocols, request-acknowledge
pairs, and mutual exclusion between signals.

Contrary to the approach proposed in the current paper,
previous approaches require the instrumentation of program
points which can be done only when the source code of the
SUV is available. Moreover, they cannot take advantage of
massive parallel execution on GPUs, thus they scale badly
for large sets of long execution traces.

3. BACKGROUND
This section first reports preliminary definitions that are
necessary to understand the proposed methodology. Then
it summarizes the main idea underlying the Daikon miner,

which is used as a comparison in the experimental results.
Finally, it presents a brief overview of the GPU architec-
ture to create the necessary background for describing the
parallel version of the proposed mining approach.

3.1 Preliminary definitions
In the context of dynamic mining of likely invariants the
following definitions are relevant.

Definition 1. Given a finite sequence of simulation in-
stants 〈t1, . . . , tn〉 and the set of variables V of a model
M, an execution trace of M is a finite sequence of pairs
T = 〈(V1, t1), . . . , (Vn, tn)〉 where Vi = eval(V, ti) is the eval-
uation of variables in V at simulation instant ti.

Definition 2. Given an execution trace T =
〈(V1, t1), . . . , (Vn, tn)〉, and two simulation instants ti
and tj such that 1 ≤ ti ≤ tj ≤ n, a time window
TWi,j = 〈(Vi, ti), . . . , (Vj , tj)〉 is a subsequence of contigu-
ous elements of T .

More informally, an execution trace describes for each sim-
ulation instant ti the values assumed by each variable in-
cluded in V during the evolution of the model M. A time
window is a sub-trace of an execution trace. Our approach
automatically infers likely invariants by analysing a whole
execution trace as well as a sequence of its time windows.

Definition 3. Given a set of variables V of a model M
and an execution trace T , a trace invariant (T-invariant)
is a logic formula over V that is true for each simulation
instant in T .

Definition 4. Given a set of variables V of a model M, an
execution trace T , and a time window TWi,j ⊆ T , a time
window invariant (TW-invariant) is a logic formula over
V that is true for each simulation instant in TWi,j .

194

3.2 Daikon
Daikon analyses the execution traces through an inference
engine that incrementally detects likely invariants accord-
ing to a list of templates specified in a configuration file.
The execution traces are generally obtained by running an
instrumented target program that reports the values of sev-
eral program points. Usually, the most used program points
on which Daikon infers invariants are global variables and
input/output arguments of methods. The internal engine of
Daikon can be represented as a hierarchy of classes. Each
of them implements a checker for a specific arithmetic/logic
pattern between variables. Several variables’ domains are
currently supported, e.g., Daikon can extract likely invari-
ants for Boolean, numeric, string and vector variables. The
main idea behind the incremental invariant-inference engine
of Daikon can be summarized in three steps: 1) instantiate a
candidate invariant (i.e., a class) for each selected template
given a combination of variables; 2) remove the candidate in-
variants contradicted by a sample of the trace; and 3) report
the invariants that remain after processing all the samples,
and after applying post-processing filtering. In order to ef-
ficiently extract invariants many optimizations have been
implemented in Daikon. The most relevant of them are:

• If two or more variables are always equal, then any
invariant that can be verified for one of those variables
is also verified for each of the other variables.

• A dynamically constant variable is one that has the
same value at each observed sample. The invariant
x = a (for constant a) makes any other invariant over
(only) x redundant.

• Suppression of invariants logically implied by some set
of other invariants is adopted. For example, x > y
implies x ≥ y, and 0 < x < y and z = 0 imply xdivy =
z.

With respect to the approach proposed in Daikon, in this
paper we do not need code instrumentation, and we encode
information on candidate invariants by means of a vector-
based data structure, which is more efficient and particularly
suited for parallel computing, as proved by experimental re-
sults. On the contrary, the inference engine of Daikon cannot
be easily ported on a GPU. To the best of our knowledge
this is the first implementation of an invariant miner that
runs on a GPU.

3.3 GPU architecture
GPUs are multi-core coprocessors originally intended to
speed-up computer graphics. However, their highly-parallel
structure makes GPUs powerful devices also for the elabora-
tion of general-purpose computing-intensive processes that
work in parallel on large blocks of data. This approach is
commonly known as general-purpose computing on graphics
processing units (GPGPU). The affirmation of GPGPU was
further supported by the definition of ad hoc parallel com-
puting platforms and programming models, like CUDA [1]
and OpenCL [3]. Figure 2 shows the internal architecture of
common GPUs. A GPU is composed of various (streaming)
multiprocessors, each one consisting of several processing
cores that execute in parallel a sequence of instructions, com-
monly known as kernel-function. Multiple program threads

Figure 2: GPU architecture.

organized in blocks are distributed and concurrently exe-
cuted by the cores of each multiprocessor. Inside a multi-
processor, data are elaborated in SIMD (single instruction,
multiple data) mode. As a consequence, threads running
on the same core that need to perform instructions on dif-
ferent branches of a conditional statement are executed se-
quentially. This issue is known as “divergence” and it is
one of the most important cause of performance degrada-
tion in GPGPU. In this computational platform, there are
four types of memories, namely shared, constant, texture and
global memory. All of them, but shared memory, are freely
accessible by an external CPU, which is used to submit ker-
nels to the GPU. The shared memory is very fast and it is
available only for threads belonging to the same block for
data sharing.

4. INVARIANT MINING
This paper presents a dynamic parallelizable approach for
mining both trace invariants and time window invariants.
Indeed, a T-invariant is a TW-invariant for a time win-
dow that extends from the first to the last simulation in-
stant of the corresponding trace. Thus, to avoid burdening
the discussion, in the following, we use the term invariant
when concepts apply indistinctly to T-invariants and TW-
invariants. We first propose a simple but efficient sequen-
tial algorithm (Section 4.1) to dynamically infer invariants.
Then, changes we made to implement a faster parallel ver-
sion running on a GPU are discussed (Section 4.2).

Given a set of variables V of a model M, both the sequential
and parallel algorithms rely on a bit vector-based data struc-
ture, called invariant vector, to efficiently represent logic
relations among the variables in V . Without lack of gen-
erality, let us consider a time window TW and a list of n
invariant templates I = {inv1, inv2, . . . , invn} representing
logic relations among the set of variables V . We track if a
m-ary logic relation corresponding to the invariant invi ∈ I,
instantiated with a tuple1 of variables (v1, . . . , vm) ∈ V m,
holds in TW by using an invariant vector, inv result, com-
posed of n elements. Element i of inv result corresponds
to the instance invi(v1, . . . , vm) of the invariant template
invi referred to the tuple (v1, . . . , vm). Thus, inv result[i]
is 0 if invi(v1, . . . , vm) is false at least once in TW ; it is 1
otherwise.

1The arity of the tuple depends on the arity of the invariant.

195

Figure 3: Use of the invariant vector to check invariants on
different time windows.

Given a set of execution traces and a set of different time
windows, this invariant vector allows us to rapidly analyse
the following conditions, for all instances of the invariant
templates, as described in Sections 4.1 and 4.2:

[C1] invi(v1, . . . , vm) is true for at least one time window of
one execution trace. This is necessary, for example, to prove
that there exists at least one execution run that brings the
model to a stable condition where invi(v1, . . . , vm) remains
true for a given time interval.

[C2] invi(v1, . . . , vm) is true for at least one time window
of all the considered execution traces. This shows a stable
condition occurs, where invi(v1, . . . , vm) is true, for a given
time interval at least once per each execution run of the
model.

[C3] invi(v1, . . . , vm) is true for at least one execution trace.
This can prove that there exist at least one run of the model
where the condition invi(v1, . . . , vm) remains always stable
for the entire duration of the execution run.

[C4] invi(v1, . . . , vm) is true for all the analysed execution
traces. This statistically proves invi(v1, . . . , vm) holds al-
ways each time the model is executed, assuming that the
analysed traces are statistically representative of all the
model’s behaviours.

For example, in Figure 3, the use of the invariant vector
is reported for a simple execution trace involving two nu-
meric variables (u and v) and one Boolean variable (z). Two
time windows of length 3 are highlighted, related, respec-
tively, to the time intervals [0,2] and [1,3]. The six logic
relations on the left and the two on the right are used as
invariant templates, respectively, for the numeric and the
Boolean variables. By considering only numeric variables
(same considerations apply for the Boolean variable), in the
first time window, the invariant templates u �= v and u < v
are true (red box), thus the corresponding invariant vector is
{0, 1, 1, 1, 0, 0}. Meanwhile, in the second time window only
the invariant template u �= v is true (green box), thus the
corresponding invariant vector is {0, 1, 0, 0, 0, 0}. As a con-
sequence, a global invariant vector for the numeric variables,
for example to check condition C1, is obtained by applying
a bitwise OR among the invariant vectors of each time win-
dow. Condition C2 is checked by a bitwise AND among
the global invariant vectors of different execution traces. Fi-
nally, C3 and C4 are similarly obtained by analysing the
whole execution traces without time-window partitioning.

4.1 Sequential algorithm
In the current implementation, our algorithm can infer bi-
nary logic relations represented by the following invariant
templates

• {(u = v), (u �= v), (u < v), (u ≤ v), (u > v), (u ≥ v)}
for a pair of numeric variables (u, v);

• {(v = true), (v = false)} for a Boolean variable v.

However, the approach is independent from the specific tem-
plate, thus it can be easily extended to consider further kinds
of arithmetic logic relations between two or more variables
and constants, like, for example, being in a range (a ≤ v ≤ b)
and linear relationships (v = au+ b).

The sequential approach follows the strategy implemented in
Algorithm 1. Given a set V of variables, an execution trace
T and an integer l > 0, it extracts all formulas that hold
on at least one time window of length l included in T . This
paper is intended to present the mining algorithm and its
optimization for parallel computing, while no consideration
is reported on the choice of the length of the time windows.
Indeed, the selection of the value for the parameter l de-
pends on the desired kind of verification. For example, by
varying the parameter l, different time window intervals can
be analysed to check conditions of kind C1. On the contrary,
if l is set to the size of T , the algorithm computes invariants
holding on the whole execution trace, thus providing results
for analysing conditions of kind C3. Finally, calling the algo-
rithm on several execution traces, the existence of invariants
satisfying conditions C2 and C4 can be analysed too.

Assuming the presence of two sets of invariant tem-
plates: IBool for Boolean variables and INum for nu-
meric variables, the algorithm starts by invoking the
function invariantChecker, which calls getBoolInv and
getNumInv, respectively, on each Boolean variable u ∈ V
and on each pair of numeric variables (u, v) ∈ V × V .

The execution flow of getBoolInv and getNumInv is prac-
tically the same. They first initialize elements of the invari-
ant vector inv result to 0 (lines 17 and 37). In the current
implementation, we have 6 invariant templates for numeric
variables and 2 for Boolean variables, as described at the
beginning of this section. At the end of the algorithm exe-
cution, inv result[i] is 1 if the corresponding invariant invi
holds at least on one time window of T . Then, getBoolInv
and getNumInv iterate the following steps for each time
window of length l belonging to the execution trace T (lines
18-32 and 38-54):

1. Before starting the analysis of a new time window,
another invariant vector (local res) of the same length
of inv result is initialized to 1 (lines 19 and 39). At the
end of the time window analysis, local res[i] is 1 if no
counterexample has been found for the corresponding
invariant invi.

2. During the analysis of a time window, local res[i] is
set to 0 as soon as a counter example is found within

196

Algorithm 1 invariant checker - Sequential Algorithm

1: function invariant checker(T, l, V)
2: for all u ∈ V do
3: if getType(u) == BOOL then
4: print(getBoolInv(T, l, u));
5: end if
6: if getType(u) == NUMERIC then
7: for all v ∈ V ∧ u �= v do
8: if getType(v) == NUMERIC then
9: print(getNumInv(T, l, u, v));
10: end if
11: end for
12: end if
13: end for
14: end function
15:
16: function getBoolInv(T, l, u)
17: inv result[2] = {0} ;
18: for t = 0; t <getSize(T)−l + 1; t = t+ 1 do
19: local res[2] = {1};
20: for s = 0; s < l; s = s+ 1 do
21: u val=getValue(T , t+ s, u);
22: local res[0]=local res[0]∧(u val==false);
23: local res[1]=local res[1]∧(u val==true);
24: if allZero(local res) then //optimization 1
25: break;
26: end if
27: end for
28: inv result = inv result ∨ local res;
29: if allOne(inv result) then //optimization 2
30: break;
31: end if
32: end for
33: return inv result;
34: end function
35:
36: function getNumInv(T, l, u, v)
37: inv result [6] = {0} ;
38: for t = 0; t <getSize(T)−l + 1; t = t+ 1 do
39: local res [6] = {1};
40: for s = 0; s < l; s = s+ 1 do
41: u val=getValue(T , t+ s, u);
42: v val=getValue(T , t+ s, v);
43: for i = 0; i <getSize(INum); i = i+ 1 do
44: local res[i]=local res[i]∧check(inv i, u, v);
45: end for
46: if allZero(local res) then //optimization 1
47: break;
48: end if
49: end for
50: inv result = inv result ∨ local res
51: if allOne(inv result) then //optimization 2
52: break;
53: end if
54: end for
55: return inv result;
56: end function

the time window for invariant invi (lines 22-23 and
43-45).

3. At the end of the time window analysis, inv result is

updated according to the value of local result (lines
28 and 50). If local result is 1 then also inv result
becomes 1 to store that the algorithm found a time
windows where invi holds.

The number of checks performed by the algorithm (i.e., lines
22 and 23 for the Boolean variables, and line 44 for the
numeric variables), in the worst case, depends on:

• the number of variables’ pairs to be checked (i.e., |V |2,
for the 2-ary invariants considered in the paper);

• the length of the time-window (i.e., l), and conse-
quently the number of time windows in the execution
trace (i.e., (length(T)− l + 1)); and

• the total length of the execution trace (e.g., length(T)).

Thus, according with the previous considerations, the al-
gorithm scales best in |T | for very small time windows or
those close to |T |. To reduce the overall execution time,
we have introduced two optimizations. The first concerns
the checking of invariants within a single time window TW .
The iteration on all the simulation instants of TW exits
as soon as a counter example for each invariant has been
found (lines 24-25 and 46-47). This optimization generally
reduces execution time in case of very long time windows
that expose very few invariants. The second optimization
concerns the checking of invariants by considering all time
windows of the same execution trace T . The iteration on all
the time windows of T exits as soon as all invariants have
been verified on at least one time window (lines 29-30 and
51-52). This optimization reduces execution time in case of
very long execution traces with several time windows and
high probability of finding time windows where the candi-
date invariants hold.

4.2 Parallel algorithm
According to the considerations reported at the end of the
previous section, the sequential algorithm is efficient when
the length of the execution trace T is low and the corre-
sponding time windows are either short or almost as long as
T . On the contrary, the worst cases occur for a very long
execution trace T with time windows whose length is near
to the half of the length of T . To preserve efficiency even
in cases where invariant mining becomes unmanageable by
using the sequential algorithm, we defined also a parallel
version that can be executed by a GPU.

The parallel algorithm works on a mining matrix M of
|V |∗|V | unsigned integers. The set of variables V of a model
is partitioned in two subsets VBool and VNum that contain,
respectively, Boolean and numeric variables. The binary
representation of the unsigned integer stored in each element
M [i][j], with i �= j, corresponds to the invariant vector of
the pair (vi, vj) ∈ VNum×VNum. Each element on the diago-
nal M [k][k] corresponds to the invariant vector of a Boolean
variable vk ∈ VBool. Elements M [i][i] with vi ∈ VNum and
M [i][j] with either vi ∈ VBool or vj ∈ VBool are not used.
Elements M [j][i] below the diagonal are not used too, since
they would contain the dual of the invariant vector stored in
M [i][j]. In summary,

(|VBool|+ (|VNum| ∗ (|VNum| − 1)) /2
)

197

Figure 4: A relation dictionary and the corresponding min-
ing matrix. Shaded elements are not used. The diagonal is
used for Boolean variables.

elements of M are active during the execution of the algo-
rithm. A list of the variable pairs corresponding to the active
elements of the mining matrix is stored in a relation dictio-
nary. Figure 4 shows an example of a relation dictionary
and the corresponding mining matrix.

The mining matrix can be generalized to an n-dimensional
array to mine logic relations with arity till n. For exam-
ple, to mine unary, binary and ternary templates, a three-
dimensional array (a cube) should be used to represent all
the possible combination of three variables. In this case,
unary relations will be stored in the element M [i][i][i] (diag-
onal of the cube), binary relations will use only the faces of
the cube, and ternary relations also internal elements. For
simplicity and without loss of generality, in the following
we consider only unary relations on Boolean variables and
binary relations on numeric variables.

The execution flow of the parallel approach can be summa-
rized in three steps:

1. create and copy the mining matrix and the relation
dictionary into the global memory of the GPU;

2. run a parallel kernel in the GPU to extract invariant;

3. read the mining matrix from the global memory and
print the results.

In order to achieve a better performance we defined two
different kernel implementations for step 2: one for mining
T-invariant (check T-invariants) according to conditions C3
and C4 defined at the beginning of this section, and one for
mining TW-invariants (check TW-invariants) according to
conditions C1 and C2.

4.2.1 Mining of T-invariants
The check T − invariant kernel searches for invariants that
are true in every simulation instant of an execution trace.
The kernel takes advantage of the efficient allocation of threads
in the GPU. The idea behind the approach is:

• to instantiate in the GPU as many thread blocks as
the number of entries of the relation dictionary (i.e.,

each block works on a different entry of the relation
dictionary), and

• to instantiate for each block the maximum number of
available threads (e.g., 1024 threads in case of the GPU
we used for experimental results).

Every thread of a block checks in parallel to the other threads
of the same block if each of the considered invariant tem-
plates is true for the target entry of the relation dictio-
nary in a precise simulation instant t of the execution trace
(i.e., each thread works in parallel on different simulation
instants). The approach to verify if an invariant template
holds on a pair of variables is exactly the same implemented
in functions getBoolInv and getNumInv (see Section 4.1).
After checking, each thread updates the corresponding in-
variant vector into the mining matrix (the elements of the
matrix are at the beginning initialized with 1). In particu-
lar, the thread that works on pair (vi, vj) for a simulation
instant t stores the result in element M [i][j] by means of an
AtomicAnd operation, which is executed sequentially with
respect to other AtomicAnd performed by different threads
that work on the same pair (vi, vj) but on different simu-
lation instants. In this way, when all threads complete the
kernel execution, the number stored in M [i][j] represents
the final invariant vector of (vi, vj) over the execution trace.
The same considerations apply for elements of kind M [k][k]
related to each Boolean variable vk.

Moreover, to increase the efficiency of the parallel approach,
the following optimizations have been implemented:

• The execution trace is partitioned in slices which are
asynchronously loaded into the GPU global memory.
To achieve better performance we used different streams
(i.e., cudaStream) to asynchronously load and elabo-
rate different slices of the execution trace.

• If the threads of a block falsify all invariant templates
for an entry of the relation dictionary in one slice of the
execution trace, they do not check the same invariant
templates in the subsequent slices of the same execu-
tion trace. This does not create divergence on threads
because all the threads of a block deal with the same
entry of the relation dictionary.

Figure 5 graphically shows how the threads of different blocks
can work in parallel, on different entries of the relation dic-
tionary and different time intervals, to speed-up the invari-
ant checking. For example, block(0,0) works on simulation
instants belonging to the interval [0, 1023] for the entry
(u, v), while block (0,1) works on the same interval but for
the entry (u, z), and block(1,0) works on the same entry
(u, v) of block (0,1) but on the interval [1024, 2047].

4.2.2 Mining of TW-invariants
The check TW − invariant kernel searches for invariants
that are true in at least one time window of an execution
trace. The idea behind the approach is basically the same as
for the check T − invaraint kernel, i.e., to assign an entry
of the relation dictionary to every block of threads. How-
ever, two aspects differentiate check TW − invariant from
check T − invariant:

198

Figure 5: Allocation of thread blocks. Block(i, j) works on
dictionary entry j by analysing slice i of the execution trace.

• each thread of the same block checks if invariant tem-
plates are true on a different time window of the same
execution trace (not on a different time instant);

• the thread that works on the entry (vi, vj) of the re-
lation dictionary for a given time window stores the
result in element M [i][j] of the mining matrix (the el-
ements of the matrix are at the beginning initialized
with 0) by means of an AtomicOr operation. This
guarantees that at the end of the procedure, each el-
ement of the invariant vector stored in M [i][j] is set
to 1 if the corresponding invariant template has been
satisfied by at least one time window.

Furthermore, to increase the efficiency of the parallel ap-
proach, the following optimizations have been implemented:

• Since all threads of the same block analyse the same
entry of the relation dictionary on overlapping time
windows, the currently-analysed slice of the execution
trace is copied in the GPU shared memory. This greatly
reduces the time required for retrieving the value of
analysed variables, since the latency of the shared mem-
ory is really lower than the latency of the GPU global
memory. For example, Fig. 6 shows how a block of
1024 threads works to check invariant templates for
the dictionary entry (u, v). First, values assumed by u
and v on a slice of the execution trace (e.g., simulation
instants in the interval [0, 2047]) are copied into the
shared memory. Then, all threads of the block check
the invariant templates on different time windows with
the same length. Each time window starts one simula-
tion instant later than the precedent time window. If
a time window exceeds the slice, new data are shifted
from the execution trace into the shared memory and
the verification process is resumed. When all time win-
dows have been analysed, every thread stores its local
result into the mining matrix through an AtomicOr.

• In case the currently-analysed time window exceeds
the slice of the execution trace loaded in the shared
memory, as soon as all invariant templates have been

Figure 6: Use of the shared memory to speed up mining of
TW-invariants.

falsified, the block of threads stops to check the same
invariant templates on the following slices. This does
not create divergence on threads because all the threads
of a block deal with the same entry of the relation dic-
tionary.

5. EXPERIMENTAL RESULTS
The sequential and the parallel approaches have been eval-
uated in comparison with Daikon version 5.2.0. For a fair
comparison, Daikon has been configured such that it searched
only for the same invariant templates implemented in our al-
gorithms. This restriction does not affect the fairness of the
comparison. In fact, the inclusion of a larger set of invariant
templates would have the same effect on our algorithms as
well as on Daikon, i.e., the verification time would increase
proportionally with the number of invariant templates to be
checked. The extension to the full set of Daikon’s template
is an ongoing activity.

For all experiments, our approaches and Daikon extracted
the same set of invariants. Thus, from the accuracy point of
view they are equivalent, while they differ from the execu-
tion time point of view. Performances have been evaluated
on execution traces with different characteristics by running
experiments on an AMD Phenom II X6 1055T (3GHz) host
processor equipped with 8.0GB of RAM, running Linux OS,
and connected to an NVIDIA GEFORCE GTX 780 with
CUDA Toolkit 5.0. Results are reported for mining both
T-invariants, covering conditions C3 and C4 of Section 4, as
well as TW-invariants, covering conditions C1 and C2.

5.1 Execution time for mining T-invariants
The type of SUV (i.e., HW design or SW program), and the
complexity of the SUV (in terms, for example, of memory
elements, lines of code, cyclomatic complexity) are not par-
ticularly relevant to measure the performance of approaches
for dynamic invariant mining. The analysis of a long execu-
tion trace exposing several invariants among variables, even
if corresponding to a functionally simple SUV, may require

199

Trace Numeric Boolean Invariants Daikon Sequential Parallel
length variables variables number time (s.) time (s.) time (s.)

1000000 15 15 0 27.3 2.8 3.2
3000000 15 15 0 74.4 8.5 9.1
5000000 15 15 0 118.3 13.9 14.9
1000000 10 10 0 21.6 2.0 2.5
1000000 30 30 0 47.6 5.6 6.4
1000000 50 50 0 73.9 9.1 9.3

1000000 15 15 120 20.3 6.5 3.3
3000000 15 15 120 51.6 19.7 8.8
5000000 15 15 120 82.3 32.8 14.8
1000000 10 10 55 15.4 2.9 2.3
1000000 30 30 465 35.2 25.6 6.1
1000000 50 50 1275 58.5 80.7 10.5

Table 1: Execution time (in seconds) to mine T-invariants from execution traces with and without invariants at varying of
the trace length and the variable number.

Time window Numeric Boolean Invariants Daikon Sequential Parallel
length variables variables number time (s.) time (s.) time (s.)

100000 50 50 0 ≈141×105 2378.9 39.5
500000 50 50 0 ≈209×105 1324.8 26.1
900000 50 50 0 ≈69×105 272.1 12.9

5 50 50 1275 ≈42×105 128.4 10.9
25 50 50 1275 ≈43×105 312.2 11.1

100000 50 50 1275 ≈326×105 ≈147×104 2887.8
500000 50 50 1275 ≈778×105 ≈832×104 8075.7
900000 50 50 1275 ≈273×105 ≈333×104 2949.6

Table 2: Execution time (in seconds) to mine TW-invariants from an one-million-long execution trace (violet rows refer to
the best cases where time windows are short; the red row refers to the worst case where the length of the time windows is
half of the trace).

much more time than a shorter execution trace of a very
complex SUV. Indeed, execution time of invariant mining
depends on the number and length of the execution traces
to be analysed, the number of considered variables, and the
number of invariants actually present in the traces (due to
the effect of the two optimizations described at the end of
Section 4.1. Thus, experimental results have been conducted
on randomly generated execution traces with different val-
ues for such parameters by considering boolean and numeric
(integer and real) data-type variables.

Table 1 reports the time2 spent by the three approaches
(Daikon, sequential algorithm and parallel algorithm) to anal-
yse execution traces from which no invariant (above the cen-
tral double line) and several invariants (below the central
double line) can be mined (see Column Invs). For traces
without invariants (but we observed the same behaviour in
case of very few invariants), our sequential and parallel ap-
proaches present similar execution times, which are one or-
der of magnitude lower than Daikon’s time. The speed-up
achieved by the parallel algorithm thanks to the use of the
GPU, is compensated in the sequential algorithm by opti-
mization 1 (lines 26 and 46 of Algorithm 1), which allows the
sequential algorithm to discard the entire execution trace as
soon as all invariant templates have been falsified.The paral-

2Reported execution times include also the time required to
read the execution trace and print the list of mined invari-
ants. This time is not negligible and it is practically the same
for the three approaches. Its removal would further amplify
the difference among the scalability of the approaches.

lel algorithm, on the other hand, partially benefits from this
optimization, since it must elaborate at least an entire slice
of the execution trace. When the number of invariants that
can be mined in the trace increases, the effect of optimiza-
tion 1 decreases, thus the parallel algorithm becomes the
most efficient solution thanks to its capability of analysing
in parallel several instants of the execution trace.

5.2 Execution time for mining TW-invariants
The second experiment shows the performance of the two
proposed approaches compared to Daikon for mining TW-
invariants on at least one time window of an execution
trace. This analysis is more time consuming than mining
T-invariants on the whole execution trace, since a huge num-
ber of partially overlapping time windows must be iteratively
analysed. This is necessary, for example, for temporal asser-
tion miners, where invariants extracted from different time
windows are composed of means of temporal operators to
create temporal assertions that hold on the whole execution
trace [6].

Table 2 shows the results at varying time window lengths,
by considering an execution trace with one million instants.
When the length of time windows is low (violet rows), the
sequential and the parallel algorithms require, respectively,
few minutes and few seconds to complete the analysis, while
Daikon is up to five orders of magnitude slower. For long
time windows (hundreds of thousand of simulation instants),
the parallel approach is two orders of magnitude faster than

200

the sequential algorithm and three than Daikon. The worst
case, as expected, occurs when the length of the time win-
dows is half of the execution trace and the number of in-
variants is high (red row). It actually takes a couple of
hours with the parallel algorithm, while it would take about
3 months with the sequential algorithms and 6 months with
Daikon. Indeed, execution times reported for Daikon, and
part of those of the sequential algorithm (highlighted by
symbol ≈) have been estimated according to values achieved
on shorter execution traces, because it would be unmanage-
able to run real experiments. The parallel algorithm, on the
other hand, scales very efficiently also in these cases.

6. CONCLUDING REMARKS
An efficient approach for dynamically mining invariants from
execution traces has been proposed. The use of array-based
data structures for encoding mining information allowed us
to implement an efficient mining procedure that can be fur-
ther optimized to exploit parallel-programming paradigms
on a GPU. The approach outperforms a state-of-the-art tool
like Daikon by using both the sequential and the parallel
versions. In particular, the parallel algorithm allows to ef-
ficiently mine invariants by considering tens of variables on
millions of time windows composed of millions of simulation
instants. Future works will be devoted to further improve
the parallel approach by adopting optimized parallel pat-
terns (e.g., reduction procedures) [12], and to extend the set
of supported invariant templates by including generic n-ary
arithmetic logic relations.

7. REFERENCES
[1] http://docs.nvidia.com/cuda.

[2] http://plse.cs.washington.edu/daikon/pubs.

[3] http://www.khronos.org/opencl.

[4] V. Braberman, D. Garbervetsky, and S. Yovine. A
static analysis for synthesizing parametric
specifications of dynamic memory consumption. J. of
Object Technology, 5(5):31–58, 2006.

[5] C. Csallner and Y. Smaragdakis. Check ’n’ crash:
Combining static checking and testing. In Proc. of
ACM/IEEE ICSE, pages 422–431, 2005.

[6] A. Danese, T. Ghasempouri, and G. Pravadelli.
Automatic extraction of assertions from execution
traces of behavioural models. In Proc. of ACM/IEEE
DATE, pages 1–6, 2015.

[7] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1):35–45, 2007.

[8] C. Flanagan, R. Joshi, and K. R. M. Leino.
Annotation inference for modular checkers. Inf.
Process. Lett., 77(2-4):97–108, 2001.

[9] S. Hangal, S. Narayanan, N. Chandra, and
S. Chakravorty. IODINE: a tool to automatically infer
dynamic invariants for hardware designs. In Proc. of
ACM/IEEE DAC, pages 775–778, 2005.

[10] R. Hastings and B. Joyce. Joyce. purify: Fast
detection of memory leaks and access errors. In Proc.
of the Winter USENIX Conference, 1991.

[11] R. D. Marat Boshernitsan and A. Savoia. From daikon
to agitator: lessons and challenges in building a
commercial tool for developer testing. In Proc. of
ISSTA, pages 169–180, 2006.

[12] J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with CUDA. ACM
Queue, 6(2):40–53, 2008.

[13] J. W. Nimmer and M. D. Ernst. Invariant inference
for static checking: An empirical evaluation. In Proc.
of ACM FSE, pages 11–20, 2002.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. In ACM Trans. on
Computer Systems, pages 391–411, 1997.

[15] M. S. L. Sudheendra Hangal. Tracking down software
bugs using automatic anomaly detection. In Proc. of
ACM/IEEE ICSE, pages 291–301, 2002.

[16] N. Tillmann, F. Chen, and W. Schulte. Discovering
likely method specifications. In Z. Liu and J. He,
editors, Formal Methods and Software Engineering,
volume 4260 of LNCS, pages 717–736. Springer, 2006.

201

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

