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Abstract—Likely invariants model properties that hold in operating conditions of a computing system. Dynamic mining of invariants
aims at extracting logic formulas representing such properties from the system execution traces, and it is widely used for verification
of intellectual property (IP) blocks. Although the extracted formulas represent likely invariants that hold in the considered traces,
there is no guarantee that they are true in general for the system under verification. As a consequence, to increase the probability that
the mined invariants are true in general, dynamic mining has to be performed to large sets of representative execution traces. This
makes the execution-based mining process of actual IP blocks very time-consuming due to the trace lengths and to the large sets of
monitored signals. This article presents Mangrove, an efficient implementation of a dynamic invariant mining algorithm for GPU
architectures. Mangrove exploits inference rules, which are applied at run time to filter invariants from the execution traces and, thus,
to sensibly reduce the problem complexity. Mangrove allows users to define invariant templates and, from these templates, it
automatically generates kernels for parallel and efficient mining on GPU architectures. The article presents the tool, the analysis of its
performance, and its comparison with the best sequential and parallel implementations at the state of the art.
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1 Introduction

Invariants model stable conditions and behaviours of a com-
puting system. They are represented through logic formulas
over variables on observation points (e.g., interface or internal
signals of an IP model), and hold along the system execution.
Such a formal representation of the system behaviour is widely
used in the verification phase of both SW and HW IP models
at different abstraction levels. Some examples are the analysis
of dynamic memory consumption [1], identification of memory
access violations [2], static checking [3], [4], detection of race
conditions [5], mining of temporal assertions [6], [7], control-
flow error detection [8], test generation [9], and bug catching
in general [10].

The extrapolation of invariants (called invariant mining)
of an IP model is performed statically or dynamically. Static
invariant mining exhaustively provides solutions by exploring
the state space of the IP model [11]. Nevertheless, it requires
the IP model source code and, suffering from the state explo-
sion problem, it can be applied to small systems [12].

Dynamic invariant mining is the solution when the source
code is not available or when the IP model size is realistically
large [10], [13], [14], [15]. Dynamic mining starts from a set of
candidate invariants and checks them on the model execution
traces. An execution trace describes the values assumed by
observed variables along every instant of the model simulation
(see Figure 1 for an example with five variables over ten sim-
ulation instants). Dynamic invariant miners, generally, work
by analysing a set of execution traces of the DUV searching
for counterexamples of the logic formulas that represent the
desired invariant candidates. A formula holding till the end
of the simulated execution traces is collected, while in case

v0 10 9 8 7 6 5 4 3 2 1

v1 1 2 3 4 5 6 7 8 9 10

v2 8 3 8 1 3 2 8 0 1 2

v3 5 2 2 9 2 3 8 4 7 1

v4 true true true true true true true true true true

time 0 1 2 3 4 5 6 7 8 9

v4 ==	truev1 ≥	11	- v0

numeric variables	N={v0,	v1,	v2,	v3} boolean variables	B={v4}

Fig. 1. Example of execution trace and two likely invariants.

it fails in at least one simulation instant, it is discarded. At
the end, survived candidates represent the final set of likely
invariants (e.g., v1 ≥ 11−v0 and v4 == true, in the example),
i.e., formulas that are true throughout the analysed execution
traces, and then, that are statistically true on the design under
verification (DUV). However, it can happen that a collected
likely invariant does not always hold on the DUV. If the set
of analysed traces is incomplete, the miner can ignore the
presence of a trace where the mined invariant fails. Thus, the
quality of the mined invariant depends on the quality of the
analysed execution traces. Higher is the number of behaviour
exported by the analysed traces, higher is the probability that
the likely invariant always hold on the DUV.

Consequently, to extrapolate robust likely invariants of an
IP model and thus maximizing the probability that they are
always true for the DUV, even for not analysed execution
traces, dynamic mining has to be performed on large and
representative sets of execution traces. In real case studies,
this means running the process on thousands of execution
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traces, including millions of clock cycles, and over hundreds
of variables, which can lead to prohibitive execution times.
However, existing dynamic miners are effective in the analyses
of short sequences of events, restricted to specific parts of the
design, rather than a large set of very long execution traces,
since they suffer from scalability issues when applied to large
data. Unfortunately, in many scenarios, especially for the HW
domain from the RTL level and below, many verification pro-
cedures require the analysis of long and extensive simulation
runs, searching for formulas that always hold.

Motivated by the previous considerations, this article
presents Mangrove, a tool for flexible and dynamic mining
of likely invariants, which outperforms, in terms of execution
times and scalability, existing miners by exploiting parallel
programming and effective inference rules to search for invari-
ants in execution traces of large designs lasting millions of
simulation cycles. In particular, it relies on three key points:
(i) it allows users to define customized templates for gener-
ating candidate invariants thus making the approach flexible
and portable to different IP characteristics; (ii) it implements
inference rules to get rid of redundant invariants thus sensibly
reducing the mining effort; (iii) it has been implemented for
parallel and efficient execution on GPU architectures.

To show the effectiveness and efficiency of Mangrove, the
article presents the experimental results obtained by applying
the proposed solution to a set of IP models, and a comparison
with the most representative sequential and parallel tools
for dynamic invariant mining at the state of the art [13],
[16]. Beside being more flexible and portable in supporting
invariants, Mangrove allows reducing the mining time up to
one order of magnitude with respect to the best parallel
solution for GPUs [16] and up to two orders of magnitude with
respect to the best sequential solution [13] at the state of the
art. Such a significant reduction in the execution time allows
Mangrove to solve scalability issues of previous approaches
and manage invariant mining for large designs in the context
of extensive simulation runs.

Mangrove, which is now available on github
(https://github.com/mangrove-univr/Mangrove), is the
complete and extended implementation of the work
preliminary presented in [17]. With respect to [17], this
article presents the following novel contributions:
• A complete framework that, starting from invariant tem-

plates defined by the user, automatically generates op-
timized kernels for execution on GPU devices. The new
approach relies on advanced techniques to better exploit
the GPU massive parallelism, such as efficient parallel
data reading from memory, control-flow organization and
coordination of GPU threads, and GPU kernel auto-
tuning.

• A technique to deal with the large sizes of execution
traces, which implements data parsing from the GPU
device.

• A technique that implements a sophisticated inference-
based invariant miner to exploit input data character-
istics, statistics, and inference rules with the aim of
efficiently dealing with very large execution traces while
sensibly reducing the mining effort.

The article is organized as follows. Section 2 gives some
background and definitions on invariant mining. Section 3
presents and accurate analysis of the related work. Section 4

presents an overview of Mangrove. Section 5 presents the
details about the GPU kernel generation, while Section 6
describes an optimization for reading massive data on the
GPU device. Section 7 presents the inference rules. Section 8
presents the experimental results, while Section 9 is devoted
to the concluding remarks.

2 Background
In the context of dynamic mining of likely invariants (in-
variants in the rest of the paper) we consider the following
definitions:

Definition 2.1. Given a model M working on a set of vari-
ables V = {v0, v1, .., vn} and a finite sequence of simulation
instants T = 〈t0, ..., tm〉, an execution trace ofM is a finite
sequence of pairs E = 〈(v0, t0), (v0, t1), .., (vn, tm)〉 generated
by simulatingM, where (vi, tj) is the evaluation of variable vi

at the simulation instant tj .

More informally, an execution trace describes the values
assumed by each variable in V along every instants of the
simulation time T . Figure 1 shows an example of execution
trace E, in which V = 〈v0, v1, v2, v3, v4〉 and T = 〈t0, ..., t9〉.

In this work, we assume that each variable in V is either
a boolean, or a numeric variable1. We refer to B as the set of
boolean variables, and N as the set of numeric variables.

Definition 2.2. Given an execution trace E and the corre-
sponding set of variables V, an invariant is a formula over V
that always holds along the whole execution trace.

In Fig. 1, the formulas v1 ≥ 11 − v0 and v4 == true are
examples of invariants for the considered execution trace E.

Definition 2.3. Given the set of variables V
of an execution trace E and the set of all
possible permutations of k variables Pk (e.g.,
P2 = {(v0, v1), (v0, v2), .., (v1, v0), (v1, v2), .., (v4, v3)}, a
dictionary is a set of entries Dk = {dk

1 , ..., dk
n}, where

Dk ⊆ Pk.

Figure 2(a) shows some examples of dictionary (D1,D2,
and D3) considering the numeric variables of Figure 1.

Definition 2.4. Given a data type (i.e., boolean or numeric),
a template variable is a place holder in a formula that can
be substituted with any variable of the same type.

Figure 2(b) shows some examples, in which bV ar is a
template variable for the boolean type and nV ar0, nV ar1, and
nV ar2 are template variables for the numeric type.

Definition 2.5. An invariant template (template in the
follows) is a formula composed of arithmetic/logic operators,
constants, and template variables having the same type.

Figure 2(b) shows three examples of invariant templates,
which involve one boolean variable template (bVar), three
numeric variable templates (nVar0, nVar1, and nVar2),
the numeric constant 11, the boolean constant true, and
the arithmetic/logic operators “-”, “+”, and “==”. In the
rest of the paper, we refer to k-arity invariant template as
a template involving k different template variables. The

1. For the sake of clarity and without loss of generality, we consider
a numeric variable as a floating-point data type
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Dictionary:

nVar0 ≥	11	– nVar1
nVar0 ==	nVar1	+nVar2
bVar ==	true

D2	=	{	(	v0,	v1),	 (v1,	v2),	…	}	

Invariant		templates:

D1	=	{	v4	}

D3	=	{	(	v0,	v1,	v2),(v1,	 v2,	v3),…	 }

(a)

(b)

Fig. 2. Examples of dictionary (a) and invariant templates (b).

Mining
Tool

Application
Domain

Data Types Main Features

Boolean Numeric Code Indep. Custom Templates Parallel

Daikon [13] SW 3 3 3 limited 7

Agitator [15] SW 3 3 3 limited 7

DIDUCE [10] SW 3 3 7 limited 7

IODINE [14] HW 3 7 7 limited 7

Turbo [16] SW/HW 3 3 3 7 3

Mangrove SW/HW 3 3 3 3 3

TABLE 1
Classification of the state-of-the-art approaches (3 fully supported - 7 not

supported)

invariant templates in Figure 2(b) are examples of 2-arity,
3-arity, and 1-arity templates, respectively.

Definition 2.6. According to the above definitions, we define
the instantiation of a k-arity invariant template with an
entry d ∈ Dk as a procedure that replaces the i-th template
variable in the template with an actual variable of d, for each
i (0 < i < k).

Considering for example the invariant template nVar0 =
11 − nVar1 and the entry d2

0 : (v0, v1) ∈ D2 in Figure 2(b)
and Figure 2(a), respectively, the instantiation of the template
with d2

0 results in the invariant v0 = 11− v1.

3 Related work
Several approaches for mining invariants have been pro-
posed in the last years. The most efficient and widepread is
Daikon [13]. Such a dynamic tool analyses execution traces
of a software application through an inference engine that
incrementally detects invariants. Through a configuration file,
the user specifies which invariant templates, from a pool of
predefined templates, have to be enabled during the mining
phase. Daikon collects invariants from execution traces by (i)
instrumenting the software application, through a language-
specific instrumenter, to trace the variables of interest, (ii)
executing the instrumented code with a set of test cases,
and (iii) checking the invariants over the values computed by
the Software under evaluation. To extract invariants, Daikon
applies an incremental approach, which relies on an invariant-
specific optimization that reduces the number of expressions
to be verified. Daikon computes also the invariant probability,
that is, the probability for an invariant to appear in a random
trace. An invariant is reported if the computed probability is
lower than a user-defined threshold.

Alternatives to Daikon have been reviewed in [18]. The
most efficient include Agitator [15], which is a commercial

tool that includes a dynamic invariant engine and other
mechanisms to test software. The types of extracted invariants
are similar to the Daikon ones, yet the approach is based on
some heuristics. The miner filters the hypothetical relations
and, through an agitation phase, it discards the invariants
that do not hold always. DIDUCE [10] is a tool that aims at
finding complex errors in Java programs. Like Daikon, it tries
to extract invariants dynamically from execution traces, but
unlike Daikon, it continually checks the program’s behavior
and reports all detected violations. When a dynamic invariant
violation is detected, the invariant is relaxed to represent
a new behavior. Another alternative is represented by IO-
DINE [14], which allows automatically extracting hardware
invariants from design simulations. IODINE performs a multi-
pass analysis on the execution traces by running a set of ana-
lyzers, which are invoked at user-specified trigger events. Each
analyser saves the inferred invariants in a database, assigning
them a confidence level by using an invariant-specific policy
similarly to Daikon.

The first attempt that tries to exploit GPU architectures
for invariant mining is Turbo [16], which extracts the invari-
ants by offloading the verification of each invariant template
to a different GPU thread. It outperforms Daikon from the
performance point of view, but it supports a very restricted
set of invariant templates.

Table 1 summarizes the main characteristics of all these
existing mining tools, and it compares them to the solution
proposed in this work (Mangrove). The table reports the
application domains, the supported data types, and the main
important features of the tools. The features include the
independence from the source code of the software program
or hardware design (Code Indep.), the possibility to extract
custom invariant templates (Custom Templates), and the
possibility to exploit the intrinsic parallelism of the mining
algorithm (Parallelism). As evidenced by the table, while most
of the approaches support both boolean and numeric types,
none of them has a full support for custom templates. Most
approaches allow for the extraction of custom invariants, al-
though they require a manual implementation of the invariant
and they allows using a limited number of variables. Only
Turbo exploits parallelism, but it only supports a subset of in-
variant templates. In contrast, Mangrove implements all these
important features, as explained in the following sections.

4 Mangrove overview
Mangrove implements the invariant mining algorithm shown
in Algorithm 1. Starting from an execution trace E and a set
of invariant templates I, it first generates a dictionary (Dk)
and, then, it combines each entry d ∈ Dk with each invariant
template it ∈ I (lines 4-5). In particular, for each d and for
each it, it instantiates a dictionary entry with it by replacing
the variable templates in it with a variable of E belonging to
d. This results in a set of candidate invariants (inv in line 7).
It evaluates every candidate invariants along the simulation
instants t ∈ T and it discards any candidate as soon as such
a candidate does not hold. The result, after |T | simulation
instants, is the set of invariants L for E.

The base algorithm has a worst-case time complexity equal
to O

(
(|V|!/|V − k|!) · |I| · |T |

)
, where |V| is the number of

variables in E, k is the number of variables in each entry of D,
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Algorithm 1 Invariant mining algorithm
Input: execution trace E,

set of invariant templates I
Output: set of invariants L

1: L = ∅
2: for each k do
3: Generate dictionary Dk

4: for each d ∈ Dk do
5: for each it ∈ I do
6: flag = true
7: inv = instantiation of it with d
8: for each instant t ∈ E do
9: flag = flag and eval (inv, E, t)
10: end for
11: if flag == true then
12: L = L ∪ inv
13: end for
14: end for
15: end for

Execution
trace	(E)	

-text	file	on	disk-

Invariant
Templates	(I	)

Kernel
generation

1 Mining GPU
Kernels (K	)

2 Trace	
parsing

Invariant	
mining

3

MANGROVE

Inference	
rules

Execution
trace	(E)	

-binary repr.	on	
GPU	memory-

Invariants	
(L)

Fig. 3. Overview of Mangrove.

|I| is the number of invariant templates in I, and |T | is the
number of simulation instants of E. Given the complexity of
the problem, Mangrove implements Algorithm 1 for parallel
execution on GPU architectures. Such a parallel invariant
mining consists of three main phases (see Fig. 3):

1) Kernel generation: For each user-defined invariant
template, Mangrove automatically generates a checker
that evaluates the template satisfiability. The checkers
are defined as code lines and integrated in a main GPU
kernel. Mangrove generates one kernel per dictionary, as
explained in Section 5.

2) Trace parsing: Since an execution trace in real applica-
tions may reach important sizes, the input parsing phase
may strongly influence the total mining time. Mangrove
implements an optimized trace parsing to read the trace
file from the disk and to convert it in a binary represen-
tation on the GPU memory as explained in Section 6.

3) Invariant mining: In the third and last step, Mangrove
executes the generated kernels on the GPU. The tool
exploits inference rules, which are applied at run time to
filter the invariants from the execution trace and, thus,
to improve the tool efficiency as explained in Section 7.

Given an execution trace and a set of invariant templates
provided as inputs, Mangrove performs the previous phase in
a fully automatic way. The user is only required to provide the
tool with a set of invariant templates. No other manual steps
are required.

5 Kernel generation
Given a set of invariant templates I, the kernel generator
automatically synthesizes a Mining GPU kernel K, which
implements a checker for each invariant template it ∈ I.

5.1 Invariant template grammar
We define the invariant template grammar to formally specify
which kinds of invariants Mangrove can mine from an execu-
tion trace E, as follows:

1: templates := template | templates template
2: template := bInvariant | nInvariant
3:
4: bInvariant := bVar == true | bVar == false
5: | bVar == bFunction
6: bFunction := bTerm bOperator bFunction | bTerm
7: bOperator := ∧ | ∨ | ⊕
8: bTerm := bVar | ¬bVar
9:
10: nInvariant := nVar nRelation rExpr
11: nRelation := ≤ | < | 6= | ==
12: rExpr := nTerm | uFunc(nVar)
13: | nFunc(nVar, rExpr)
14: nTerm := nVar | nConst
15:
16: uFunc := <unary user-defined function>
17: nFunc := <binary user-defined function>

A boolean invariant template (bInvariant, line 4) al-
ways starts with a bVar and the equality operator (==).
Then, bInvariant includes either a boolean constant, or a
bFunction (line 6). A bFunction always starts with a bTerm
(line 8), which can be either a boolean variable or the comple-
ment of a boolean variable. bFunction ends with a bOperator
followed by a bFunction. A bOperator (line 7) can be one of
the following operators: ∧, ∨, ⊕.

Similarly, a numeric invariant template (nInvariant,
line 10), always starts with a nVar. nInvariant includes
a nRelation (line 11), which can be one of the following
operators: <, ≤, >, ≥, 6=, ==. Finally, nInvariant ends
with a rExpr (line 12), which can be either a terminal symbol
nTerm, or a user-defined numeric constant nConst.

Mangrove allows introducing a unary function (line 16),
and a binary function (line 17). A unary function (uFunc)
can be any user-defined function taking one input argument,
and returning a numeric value as a result. A binary function
(nFunc) can be any user-defined function taking two numeric
values as input and returning a numeric value as a result.

This invariant template grammar allows Mangrove’s users
to define a richer set of invariants with respect to state-of-
the art mining tools. For example, Turbo, the only existing
parallel invariant miner, supports a limited set of templates,
which is not directly modifiable by the user. In particular, it
supports only the following set of templates: {u op v, u =
F , u = T}, where op can be any among {=, 6=, <, >,≤,≥}.
Alternatively, Daikon is more flexible compared to Turbo, but
the extension of its pre-defined set of template requires users
to define new templates in Java by means of custom Java
classes. Then, coding is necessary as opposed to Mangrove,
where the users define templates through the simple grammar
previously described. For example, this allows Mangrove to
easily extract relationships, like, x = y ∗ z + c, where x, y and
z are integer variables and c is a constant, by specifying the
rule: nvar == +(∗(nV ar, nV ar), nConst). The same is not
natively possible with Daikon.
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Fig. 4. Workload and execution trace partitioning among blocks and
threads of GPU.

5.2 Structure of the mining kernels
Algorithm 2 shows the pseudo-code of a standard GPU mining
kernel K. Considering the structure of the problem, in which
the number of execution instants |T | is much greater than
the number of variables |V|, Mangrove implements a workload
partitioning with granularity at dictionary entry-level, namely
one thread block per entry ofDk (line 1). This allows all blocks
to execute independently, and the threads to independently
evaluate the invariant checkers associated to their block over
different time instants. The full utilization of the GPU device
is guarantee as the number of dictionary entries running in
parallel is much greater than the number of thread blocks
that can run concurrently on the GPU.

Figure 4 depicts an example of workload partitioning and,
in particular, how entries d0 and d1 of dictionaryD3 have been
mapped to the thread blocks Block0 and Block1, respectively.
For the sake of clarity, each illustrated block consists of four
threads, which are individually indexed with the identifier
thread0, thread1, thread2, and thread3.

For each entry di, the shared memory variable
blockResult (line 2 of Algorithm 2) and the local variable
threadResult (line 3) are initialized to I. According to
Algorithm 1 (line 6), it is initially assumed that each single
candidate invariant holds in the whole execution trace E.
Afterwards, each thread loads a chunk of the execution trace
E into its local variable LocalTrace through the function
LoadTraceChunk. Given in input the execution trace E,
a simulation instant t ∈ T , and an entry di of Dk, function
LoadTraceChunk copies a L SIZE fixed-length sequence
of values of each variable in di from the execution trace
E into LocalTrace. Mangrove exploits coalesced memory
accesses during this loading procedure, namely block threads
read contiguous values of a same variable from E. After
this loading phase, each thread evaluates which invariants
in threadResult hold in localTrace through the function
templatesEval〈I〉 2 (line 7). For each invariant template it
∈ I (line 1), Mangrove checks whether it ∈ threadResult
(line 18). If the check succeeds, the tool evaluates it in

2. Mangrove deeply exploits C++11 variadic templates and tem-
plate meta-programming to fully generate and automatically embed
invariant checkers at compile-time. The subscripts 〈I〉 and 〈it〉 repre-
sent template functions generated by the compiler.

Algorithm 2 Pseudocode of the mining kernel K
GPU Mining Kernel( E, Dk, I)

Input: E execution trace
Dk dictionary with k-length entries
I invariant templates

Output: L verified invariant
BLOCK SIZE : thread block size
L SIZE : thread space for storing trace chunk
BLOCK CHUNK : BLOCK SIZE * L SIZE
threadId : thread id
blockId : thread block id
gridDim : number of thread blocks

1: for ( i = blockId; i < |Dk|; i += gridDim) do
2: blockResult = I // shared memory variable
3: threadResult = I // Alg. 1, line 4
4: Barrier
5: for ( t = 0; t < |E|; t += BLOCK CHUNK ) do // Alg. 1, line 5
6: LocalTrace[k][L SIZE]← LoadTraceChunk(E, t, di)
7: templatesEval〈I〉(LocalTrace, threadResult)
8: Barrier
9: threadResult = blockResult

10: if threadResult = ∅ then // if all invariants are falsified
11: break // go to the next dictionary entry
12: Barrier
13: end for
14: if threadId = 0 then
15: L[ blockId ] = threadResult
16: end for

templatesEval〈I〉( LocalTrace[k][L SIZE], threadResult)

17: for each it ∈ I do
18: if it ∈ threadResult then
19: EvalResults[L SIZE] = templateEval〈it〉(LocalTrace)
20: R = ThreadReduce( EvalResults )
21: if warp any(R) == false then
22: threadResult = threadResult \ it
23: Update shared value blockResult with threadResult
24: end if
25: end if
26: end for

templateEval〈it〉(LocalTrace[k][L SIZE])

27: EvalResults[L SIZE]
28: for each instant t ∈ [0, L SIZE ] do
29: EvalResults[t] = evalit(LocalTrace, t)
30: end for
31: return EvalResults

eval〈it〉( LocalTrace[k][L SIZE], t )

32: eval〈it−left〉( LocalTrace[][t], eval〈it−right〉(LocalTrace) )

LocalTrace through the function templateEval〈it〉 (line 19).
In particular, for each simulation instant t ∈ LocalTrace (line
28), Mangrove evaluates it through the function eval〈it〉 (line
29), which embeds the invariant checker for the corresponding
user-defined invariant templates it.

For the sake of clarity, we describe, through the step-by-
step example reported in Figure 5, how Mangrove recursively
generates an invariant checker from an invariant template.
Considering, as an example, the invariant template:

it: nVar0 == nVar1 + nVar2

the tool applies the invariant template grammar introduced
in Section 5.1 to identify each term. it is an instance
of an nInvariant (line 10 of the grammar), since nVar0
is an instance of nVar, == is an instance of nRelation,
and nVar1 + nVar2 is an instance of rExpr. Recursively,



6

LocalTrace[0][t] == LocalTRace[1][t] + LocalTRace[2][t]

eval < nVar0 == nVar1 + nVar2 > (LocalTrace, t)

Invariant template 
unrolling

eval < nVar0 > (LocalTrace, t) eval < nVar1 + nVar2 > (LocalTrace, t)

eval < nVar1 > (LocalTrace, t)

Generated
Invariant checker 

eval < == > (LocalTrace, t)

eval < nVar2 > (LocalTrace, t)

Fig. 5. Generation procedure of an invariant checker given a user-defined
invariant template.

we note that nVar0 is a leaf of it. In particular, nVar0
represents an access to the values at the row 0 of the
LocalTrace (i.e. LocalTrace[0][t]). The template nVar1
+ nVar2 is a nFunc implementing the arithmetic operation
addition between nVar1 and nVar2. nVar1 and nVar2 are
leaves of it as well, and they represent the access to the
corresponding values in LocalTrace (i.e. LocalTrace[1][t]
and LocalTrace[2][t]). In the last step (Fig. 5, bottom-
side), the generated expression represents the implementation
of the invariant checker for the given invariant template.

After the full evaluation of an invariant template, the pred-
icates for each time instant in the local trace are merged with
a sequential thread reduction (line 20). As soon as a thread
invalidates a specific invariant, the thread communicates such
result to all block threads in two hierarchical steps. First at
warp-level with a voting instructions (lines 21, 22), and then
at block-level by using a shared memory variable (line 23, 9).

The computation of a given dictionary entry ends when
either all template invariants are invalidated (line 10), or a set
of invariants have been verified over the whole trace. In the
second case, the result is added to the final set of invariants L
(line 15).

It is important to note that the application characteri-
zation (memory-bound vs. compute-bound) depends on the
user-defined invariant templates. For instance, a binary in-
variant template involving two variables (e.g., u == v) is
memory bound (8 bytes loaded and one operation). More
complex templates (e.g., a == ((b * 3 ) + 2) * c) lead to
a compute-bound characterization. More in general, the ap-
plication characterization depends on the number of variables
and the operations on them involved in each invariant.

5.3 Optimizing the mining kernel for GPUs
The parallel mining process implemented in Mangrove aims at
reaching high performance and efficiency through three main
optimizations:

• Efficient trace data reading by parallel threads in the
GPU main memory by means of double memory padding,
vectorized memory access, and cache interleaving data
access (see Section 5.3.1);

• Control-flow organization and thread coordination to min-
imize synchronization overhead and instruction depen-
dencies (see Section 5.3.2);

• GPU kernel auto-tuning to identify the best trade-off
among device occupancy, synchronization overhead, and
thread-level parallelism by considering the characteristics
of the target GPU device (Section 5.3.3).

5.3.1 Trace loading optimizations
Invariant mining is a memory-bound application as the input
trace involves millions of simulation instances and hundreds
of variables. This makes, from the performance point of view,
data-loading from the GPU main memory to the thread
local registers one of the most important aspect of the whole
mining procedure. Mangrove provides high throughput in the
data loading phase by combining three different strategies:
double memory padding, vectorized memory accesses combined
with high thread-level data-parallelism, and cache interleaving
data access.

The double memory padding strategy aims at efficiently
organizing the input data into the GPU main memory in
order to enable memory coalescing. The maximum memory
coalescing is achieved when all threads of a warp access to
continuous and aligned data in the device memory and, in
particular, when data is aligned to the memory banks (of size
32 bytes for DRAM).

Mangrove organizes the input trace with a special function
(cudaMallocPitch), which guarantees that all data elements
of the input trace are aligned to the memory banks by adding
padding at the end of each row of the trace. The data structure
is also padded with an extra space in order to set the total
number of columns as a multiple of the data loaded by a
single step of a thread block. Such ghost columns and the
corresponding speculative computation allow avoiding control
flow statements to handle the mining of partial data at the
trace borders.

Differently from the mining implementations at the state
of the art, in which each thread loads a single trace value
for each access until the whole trace is processed, Mangrove
applies vectorized memory accesses to increase the size of the
trace loaded by threads. GPU architectures support vector-
ized accesses to simplify load/store operations on aggregated
built-in types (e.g., four integers, two chars, etc.). The same
instructions (enabled via type-casting) allow accessing multi-
ple data in a single memory access. This technique reduces the
number of memory instructions four times for the most used
data types (int, unsigned, and float).

The memory access bandwidth is further improved
through thread-level data parallelism. It consists of performing
many vectorized data loads per thread, while maintaining the
correct stride among warp threads to preserve full memory
coalescing. Mangrove implements such a feature through a
local trace size (L SIZE), which is set as a multiple of the vec-
torized access size and by unrolling the loops involved in the
data loading. Loop unrolling allows avoiding the computation
of loop conditions and loop iteration dependencies3.

Finally, to reduce the massive use of the load/store units
(LD/ST) in each SM, which may act as bottleneck of the
entire application, Mangrove implements cache interleaving.
Such a data-loading strategy exploits the read-only memory,

3. Loop unrolling is forced through the #PRAGMA UNROLL directive on
the data load loops. Such a directive can be applied since the number
of loop iterations is known at compile-time (see Section 5.3.3)
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Fig. 6. Example of AND computation through the standard sequential
approach (a) and through the tree-based reduction implemented in
Mangrove (b).

which is provided by the most recent GPU architectures as
a small cache for each SM. It implements a separate memory
access pipeline and it is optimized for data that will not change
during the kernel execution (e.g., the execution trace). The
technique takes advantage of separate data-loading pipelines,
by alternating standard memory accesses and read-only cache
data-loading through CUDA ldg instructions.

5.3.2 Control-flow organization and thread coordination
Mangrove has been implemented to optimize the kernel in-
struction execution through instruction-level parallelism and
through atomic operations during invariant checking. It en-
sures static indexing of registers by using unroll directive
and C++ template parameters. This allows avoiding variable
spilling in caches, reducing conditional statements, and break-
ing instruction dependencies.

One of the most time consuming tasks of the invariant
checking is the computation of the final result by each thread
(templatesEval, line 7 of Algorithm 2), which involves a
heavy instruction serialization. It consists of performing the
logic AND operation between an array element and its suc-
cessor. Differently from the mining techniques at the state
of the art that sequentially process each element, Mangrove
implements a tree-based reduction to minimize the instruction
dependencies and to maximize the instruction-level paral-
lelism (ILP). Figures 6 shows an example of the standard
sequential approach (a) and the optimized tree-based version
implemented in Mangrove (b) (the representation of the se-
quential and parallel processes of the array in the left-most
side, the corresponding low-level PTX instruction generated
by the compiler in the right-most side). The instruction depen-
dencies are highlighted in red. In the sequential process each
instruction depends on the previous one, while in the tree-
based reduction there are no dependencies among instructions
of the same group.

The parallel implementation of a class of inference proce-
dures (i.e., computing numeric ranges, as explained in Section
7.2) requires a wide use of atomic operations on floating-
point data types. Even though GPU architectures support
very efficient, yet hardware-implemented atomic operations
on integer data types, they do not support atomic operations

on floating-point data types. Mangrove implements a SW
emulation of atomic operations on floating point through a
mechanism based on an iterative compare-and-swap proce-
dure. It relies on the standard IEEE754, which ensures that
all float numbers are ordered lexicographically (i.e., given two
positive numbers x and y with x < y, the bit represen-
tation of x is always smaller than y (opposite behaviour if
negative numbers). This allows Mangrove to perform atomic
comparisons between floating-point values by reinterpreting
such values at bit-level as integers.

5.3.3 GPU kernel auto-tuning
The kernel implementation for GPUs relies on templates (one
per arity), whose parameters allow tuning:
• The size of thread blocks;
• The number of vectorized data load per thread (L SIZE).
The right setting of these parameters allows achieving the

best trade-off between (i) the maximum number of indepen-
dent blocks, (ii) the minimum overhead for thread coordina-
tion, and (iii) the maximum device utilization.

The number of threads in a block mainly affects the
synchronization overhead, the block scheduling efficiency, and
the device occupancy. In general, smaller block sizes allow for
a lightweight synchronization process, but they increase the
number of blocks to be scheduled. On the other hand, larger
blocks require a more expensive synchronization and they
involve less overhead for the block scheduling. The minimum
block size corresponds to the number of warp threads (i.e.,
32 for CUDA), which allows completely avoiding intra-block
synchronizations by adding conditional statements in the
code (evaluated at compile-time) before the synchronization
barriers. It enables the synchronization primitives only with
block sizes greater than 32 threads.

The second parameter is the number of vectorized data-
load per thread (L SIZE / vector access size). Executing
more than one independent data-load per thread improves
the access concurrency and allows for a high instruction-level
parallelism (ILP) in the subsequent computing phase. GPU
threads are able to fully exploit all SM computation units
(cores) and to achieve the full memory bandwidth by taking
advantage of data-load and instruction-level parallelism. On
the other hand, the number of vectorized data-load per thread
heavily impacts on the number of registers used to store
the thread local trace, which may compromise the device
occupancy and, on border cases, it may reduce the application
performance even with a high thread-level parallelism.

The parameter setting is architecture-dependent since it
relies on the number of SMs, control logic, and memory char-
acteristics of the GPU device. It is data-independent as, dur-
ing the mining process, the number of variables and candidate
invariants is static. For this reason, Mangrove implements an
auto-tuning mechanism that executes the generated kernels
over a small trace of random values (generated at run-time) on
the target GPU device, and it sets the two kernel parameters
for the complete mining phase.

In particular, the auto-tuning phase consists of executing
a kernel with all the possible configurations of the kernel
parameters in terms of thread block size (32, 64, 128, 256, 512,
1024, up to the maximum given by the device architecture)
and thread level parallelism (ILP + vectrorized data load,
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Fig. 7. Overview of host (i.e., standard approaches in literature) and
device (i.e., implemented in Mangrove) trace parsing techniques.

ranging among 1, 2, 4, 8, 16)4. In our experimental results
we obtained 30 different configurations. In general, all these
values are stored in an internal configuration file, and the
compiler uses such values to generate all the different kernels
for a given GPU architecture. The tests are run on the user
templates over a chunk of data trace. We claim (and we have
been confirmed by the experimental results) that larger sizes
of this chunk do not affect the best configuration choice.

6 Parsing execution traces from disk to GPU
memory
The GPU kernel synthesized by Mangrove reduces the mining
time from days/hours to few seconds in the worst case.
This moves the bottleneck of the mining application from
computation to the trace loading from disk. In the existing
approaches, the input trace is read value by value using the
standard API of C/C++ language (e.g., scanf or iostream),
which can require several minutes to parse large input files
(e.g., execution traces involving millions of time instants and
hundreds of variables).

Differently from all the approaches in literature, Mangrove
takes advantage of the massive parallelism of GPU devices to
significantly reduce the time spent in the trace file reading. To
the best of our knowledge, the proposed solution is the first
that implements the input data parsing directly by the GPU
device rather than by the CPU. The basic idea consists of
copying the raw trace directly from the disk to the GPU mem-
ory (see Figure 7) by using the standard function cudaMemcpy
combined with an invocation of specific kernels (see Sections
6.1 for boolean and 6.2 for numeric traces). After the parsing
procedure, the execution trace is ready in the device memory
for the mining process.

6.1 Parsing boolean traces
A boolean trace consists of a sequence of '0' or '1' charac-
ters (1-byte), each one followed by a single space. Different
sequences of values associated to variables are organized in
separated rows.

Following the same scheme of the mining process, Man-
grove implements a GPU kernel to read boolean traces. It
maps each block to a different row of the trace, thus guarantee-
ing independent thread execution. The starting row address is

4. We set 16 as the maximum since it is generally the maximum
value by considering the available registers. It can be easily increased.

directly computed by multiplying the row id by two (a single
boolean value requires exactly two bytes). In each block, the
threads point to column indexes with a stride of 16 characters
(8 boolean values) which correspond to the maximum size
that can be loaded with a single instruction. The data is then
converted into a bitmask of 1-byte.

The last step stores the parsed values into the GPU global
memory. Instead of directly writing the bitmask values into
the device memory, which can result in low memory through-
put, the data is first copied into the shared memory. After the
shared memory is completely filled, the data is organized into
the device memory as explained in Section 5.3.1.

6.2 Numeric trace parsing
The raw numeric trace follows the structure of the boolean
trace. Numeric values are separated by a whitespace and
organized into rows, as shown in the example of Figure 8.

Parsing numeric traces has more issues than parsing
boolean traces due to the irregular computation deriving from
variable lengths of numeric values. For this reason, it is not
possible to predict the starting position of each row and to di-
rectly map thread blocks to the corresponding addresses. The
numeric parsing strategy consists of dividing the raw trace
among GPU threads equally, and to deal with variable-length
values by overlapping the loading of small memory chunks
among adjacent thread blocks. Figure 9 shows an example of
the whole parsing process, by considering two threads and five
numeric values. The parsing procedure performs the following
steps:

1) The starting memory address of a block is obtained by
multiplying the block id by a fixed constant. Such value
is computed as the amount of available shared memory
per block minus the number of characters required to
represent the longest numeric value (overlapped memory
chunk).

2) Each block loads a contiguous sequence of trace char-
acters into the shared memory. The number of loaded
characters is equal to the available shared memory of a
thread block.

3) The local trace stored in the shared memory is uniformly
partitioned among block threads. Each thread sequen-
tially reads its shared memory segment and converts the
numeric values found. If a numeric value starts in a thread
space and terminates in the next thread segment, the
computation continues until the first whitespace is found.
A numeric value is converted only if there is a whitespace
before such number or by the first thread of a block.

The parsing algorithm extensively exploits the shared
memory to avoid scattered device memory accesses and, con-
sequently, poor performance. The small overlapped memory
space loaded by adjacency blocks is essential to perform the
computation in the shared memory even for halo elements
among blocks.

At the end of the computation, each thread maintains its
own converted values into local registers. At this step, the
GPU threads cannot directly store such data into the device
memory because each of them holds a different number of
elements. Mangrove efficiently computes the thread output
offsets without terminating the actual kernel by using an on-
line prefix-sum procedure [19].
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Fig. 9. GPU numeric trace parsing procedure.
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Fig. 10. Invariant miner of Mangrove.

The GPU trace parsing technique can be applied if the
whole trace can be stored in the GPU memory. If this is not
possible, Mangrove applies the standard technique based on
reading and parsing through CPU. Switching from GPU to
CPU parsing is statically set by considering the available GPU
memory and the trace size (trace size = # of variables×
# of instants × 4). In our tests, we successfully run the
GPU parsing technique with traces with up to 5 millions of
instants, 200 4-Bytes variables on a GPU device equipped
with 3 GB. More recent GPU devices are generally equipped
with more than 3 GB of memory. Considering that assertion
mining on real problems is run after data filtering through
logic cones analysis rather than on raw data, we claim that
the proposed GPU-based parsing technique can be applied for
mining real complex problems. In any case, for the mining of
raw and very large traces, the framework can be switched on
the CPU parsing modality.

7 Inference-based invariant mining
Figure 10 shows a more detailed overview of the invariant
mining phase implemented in Mangrove (see Fig. 3). It starts
from an execution trace E and generates a set of invariants L.

The invariant miner generates one dictionary Di for each
Mining GPU kernel Ki (D1, D2, Dn in the example of Figure
10), where Di collects all the possible permutations of i
variables. Each generated dictionary Di and the simulation
trace E are then provided to the Mining GPU kernel Ki,
which extracts invariants to form L. This formulation of the
invariant mining algorithm presents two major problems: scal-
ability, and redundancy of the extracted invariants. In detail,
generating each possible permutation of i variables is infeasi-
ble for execution traces having hundreds of variables since the
number of entries of Di polynomially increases according to
the formula

∏i−1
k=0(n − k), where n is the number of variables

and i is the maximum arity. Furthermore, the generation of
each possible permutation of i variables can lead to redundant
invariants. For instance, let L = {v1 = false; v2 == v3},
then the invariant v1 == v2 ⊕ v3 is redundant as it does
not provide any unknown relation among the three boolean
variables v1, v2 and v3. Indeed, it can be automatically
inferred without using any Mining GPU kernel as v2 ⊕ v3 is
always false given v2 == v3. Consequently, the permutation
(v1, v2, v3) can be omitted from D3 for the invariant template
bV ar1 == bV ar2 ⊕ bV ar3. Similarly, given the smallest vm

i

and the largest vM
i value of a numeric variable vi in E, the

invariant vi < vj with i 6= j and vM
i < vm

j is redundant as it
does not provide any unknown relation between the numeric
variables vi and vj . Therefore, all entries (vi, vj) having i 6= j
and vM

i < vm
j can be omitted from D2 for the invariant

template nV ar1 < nV ar2.
With the aim of efficiently dealing with execution traces

having hundreds of variables and reducing the number of
extracted redundant invariants, Mangrove encodes some infer-
ence rules. Such rules, separately defined for boolean (Section
7.1) and numeric (Section 7.2) data types, are applied during
the generation of the dictionary Di. The inference rules rely
on input data characteristics that can be inferred from E,
such as: the largest value of a numeric variable, the number
of simulation instants of E in which a candidate invariant
holds, etc. It is worth noting that all Mining GPU kernels K
can only be applied to mine invariants from E. Consequently,
some Inference Rule GPU kernels (IRK) are also encoded in
Mangrove to provide the introduced inference rules with the
required statistics.

7.1 Boolean inference
For boolean data type, the inference rules applied during the
generation of a dictionary Di rely on the occurrence of an
invariant instantiation. Let inv be the instantiation of an in-
variant template, the occurrence of inv (|inv|) is the number
of simulation instants of E in which inv holds. In order to
compute the occurrence of an inv, the Inference Rule GPU
kernels, IRK1 and IRK2, were encoded in Mangrove. Given
a dictionary D1, the kernel IRK1 computes each occurrence
of vi == true where vi is an entry of D1. Similarly, given a
dictionary D2, the kernel IRK2 computes each occurrence of
vi == vj where (vi, vj) is an entry of D2.

The execution flow of the invariant miner consists of the
following three sequential steps:

(1) The invariant miner extracts the invariants involving only
a boolean variable, namely all the boolean variables holding
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the same value in all instants T of the trace E. The invariant
miner generates the dictionary D1 = {vi|vi ∈ B}. Then, the
Inference Rule GPU kernel IRK1 is run. Finally, Mangrove
extracts the invariant vi == true if |vi == true| is equal to
|E|, namely the number of simulation instants in E. Similarly,
it extracts vi == false if |vi == true| is equal to zero.

(2) The invariant miner extracts all the invariants involving
two boolean variables. According to the invariant template
grammar introduced in Section 5.1, only the invariant tem-
plates bTerm == bTerm and bTerm ==!bTerm can be de-
fined. Therefore, the invariant miner generates the dictionary
D2 = {(vi, vj)|vi, vj ∈ B; i < j; 0 < |vi| < |E|; 0 < |vj | < |E|}.
The constraint i < j prevents both the permutations (vi, vj)
and (vj , vi) from being added in D2. 0 < |vi| < |E| and
0 < |vj | < |E| prevent the invariant miner from generating
a permutation involving variables always holding the same
value since the equality and inequality relation between
constants is redundant. Then, the Inference Rule GPU
kernel IRK2 is applied to get |vi == vj | for each entry of
D2. Finally, Mangrove extracts the invariant vi == vj if
|vi == vj | = |vi|, while it extracts vi =!vj if |vi == vj | is
equal to zero.

(3) as third and last step, the invariant miner extracts
the invariants involving three boolean variables. Accord-
ing to the invariant template grammar introduced in Sec-
tion 5.1, only the invariant templates meeting bTerm ==
bTerm bOperator bTerm can be defined. In this case,
the dictionary generator creates the dictionary D3 =
{(vi, vj , vk)|vi, vj , vk ∈ B; i 6= j 6= k; j < k; 0 < |vi| < |E|; 0 <
|vj | < |E|; 0 < |vk| < |E|; |vi| == |vj bOperator vk|}. In
detail, 0 < |vi| < |E|, 0 < |vj | < |E| and 0 < |vk| < |E|
prevent the invariant miner from generating a permutation
involving variables always holding the same value. The con-
straint j < k prevents both the permutations (vi, vj , vk) and
(vi, vk, vj) from being added in D3 as any bOperator has
the commutative property. Finally, |vi| == |vj bOperator vk|
introduces an existence constraint for any ternary invariant
template. Figure 11 shows the decomposition rules introduced
in Mangrove to apply the introduced existence constraint
with any user-defined invariant template. As an example,
consider the invariant instantiation vi == ¬vj ∨ vk. This
instantiation can exists in E as long as |vi| is equal to
|¬vj ∨ vk|. Through the decomposition rules, we can rewrite
this constraint as |vi| == |¬vj | + |vk| − |!vj ∧ vk|, and finally
as |vi| == |E| − 2 ∗ |vj |+ |vk|+ |vj ∧ vk|.

By exploiting the statistics generated in the first and
second step the defined existence constraint is successfully
applied to remove permutations of variables from D3 that
cannot satisfy any ternary invariant template.

7.2 Numeric inference
For numeric data type, the inference rules applied during the
generation of a dictionary Di rely on the smallest (vm

i ) and
largest (vM

i ) value of a numeric variable vi, and the mono-
tonic/commutative property of invariant templates. Given
an invariant template it : nV ar nRelation rExpr, it is
monotonic if rExpr is either monotonically increasing or
decreasing:

|¬vi|
|E| − |vi|

|vi ∨ vj |
|vi|+ |vj | − |vi ∧ vj |

|¬vi ∧ vj |
|vi| − |vi ∧ vj |

|vi ⊕ vj |
|¬vi ∧ vj |+ |vi ∧ ¬vj |

Fig. 11. Decomposition rules for boolean invariant templates.

• For each c, ∆ ∈ R with ∆ ≥ 0, a 3-arity invariant
template it is monotonically increasing if rExpr(c +
∆) − rExpr(c) ≥ 0. Similarly, rExpr is monotonically
decreasing if rExpr(c + ∆)− rExpr(c) ≤ 0.

• For each c1, c2, ∆ ∈ R with ∆ ≥ 0, a 3-arity invariant
template it is monotonically increasing if rExpr(c1 +
∆, c2) − rExpr(c1, c2) ≥ 0 and rExpr(c1, c2 + ∆) −
rExpr(c1, c2) ≥ 0. Similarly, rExpr is monotonically
decreasing if rExpr(c1 + ∆, c2) − rExpr(c1, c2) ≤ 0 and
rExpr(c1, c2 + ∆)− rExpr(c1, c2) ≤ 0.

For each c1, c2 ∈ R, a 3-arity invariant template it is commu-
tative, if rExpr(c1, c2)− rExpr(c2, c1) == 0.

The Inference Rule GPU kernel IRK1 allows computing
the smallest and largest value of a numeric variable vi. Given
a dictionary D1, the kernel IRK1 computes the smallest vm

i

and largest vM
i of each entry (vi) ∈ D1.

If we do not have all monotony and commutative
templates, Mangrove checks each single 2 and 3 variable
permutations with each user-defined template. Otherwise, the
execution flow of the dictionary generator for monotonic and
commutative invariant templates implements the following
three sequential steps:

(1) The invariant miner extracts the invariants involving only
a numeric variable, namely all the numeric variables always
holding the same value in the whole trace E. In detail, the
invariant miner generates the dictionary D1 = {vi|vi ∈ N}.
Afterwards, the Inference Rule GPU kernel IRK1 is applied.
Finally, Mangrove extracts the invariant vi == const with
const = vm

i if vm
i == vM

i .

(2) as second step, the invariant miner extracts all the
invariants involving two numeric variables. According to the
invariant template grammar introduced in Section 5.1, only
the invariant template nV ar1 nRelation rExpr(nV ar2)
can be defined. The invariant miner generates
the dictionary D2 = {(vi, vj)|vi, vj ∈ N ; i 6=
j; C

(
nRelation, rExpr, vm

i , vM
i , vm

j , vM
j

)
}. The constraint

C
(
nRelation, rExpr, vm

i , vM
i , vm

j , vM
j

)
prevents the

permutation (vi, vj) from being added in D2 according
to the nRelation operator. In detail, C is defined as follows:

C
(

nRelation, rExpr, vm
i , vM

i , vm
j , vM

j

)
=

vm
i == min

(
rExpr

(
vm

j

)
, rExpr

(
vM

j

))
and

vM
i == max

(
rExpr

(
vm

j

)
, rExpr

(
vM

j

)) if rRelation
is ==

vM
i > min

(
rExpr

(
vm

j

)
, rExpr

(
vM

j

))
or

vm
i < max

(
rExpr

(
vm

j

)
, rExpr

(
vM

j

)) if rRelation
is <, 6=

vM
i ≥ min

(
rExpr

(
vm

j

)
, rExpr

(
vM

j

))
or

vm
i ≤ max

(
rExpr

(
vm

j

)
, rExpr

(
vM

j

)) if rRelation
is ≤
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If nRelation is the equality operator, then vm
i and vM

i

have to respectively be equal to the smallest and largest value
computed by rExpr with vj as input parameter. Because of
the monotony property of rExpr, the smallest and largest
value are respectively min

(
rExpr(vm

j ), rExpr(vM
j )
)

and
max

(
rExpr(vm

j ), rExpr(vM
j )
)
. Similarly, when nRelation is

not the equality operator, a candidate invariant is eval-
uated on condition that at least a value of vi is in
[rExp(vm

j ), rExp(vM
j )].

Figure 12 shows an example where the invariant v1 < v2+7
can directly be inferred without using any mining kernel. In
this example, the variable v1 has the smallest and largest
value respectively equals to 2 and 5. Meanwhile, the variable
v2 has the smallest and largest value respectively equals to 1
and 8. Because rExpr is monotonically increasing, rExpr(v2)
has to compute values within the interval [8, 15]. Since vM

1 is
smaller than min(rExpr(vm

2 ), rExpr(vM
2 )) (namely 5 < 8),

then no counter example can exist in E to falsify v1 < v2 + 7.
Consequently, the entry (v1, v2) can be omitted from D2.

(3) as third and last step, the invariant miner
extracts all the invariants involving three numeric
variables. According to the invariant template
grammar introduced in Section 5.1, only the invariant
template nV ar1 nRelation rExpr(nV ar2, nV ar3) can be
defined. The invariant miner generates the dictionary
D3 = {(vi, vj , vk)|vi, vj , vk ∈ N ; i 6= j 6= k; j <
k; C ′

(
nRelation, rExpr, vm

i , vM
i , vm

j , vM
j , vm

k , vM
k

)
}. The

constraint j < k prevents both the permutations
(vi, vj , vk) and (vi, vk, vj) from being added in D3 as
rExpr has the commutative property. The constraint
C ′
(
nRelation, rExpr, vm

i , vM
i , vm

j , vM
j , vm

k , vM
k

)
prevents the

permutation (vi, vj , vk) from being added in D3 according to
the nRelation operator. In detail, C ′ is defined as follow:

C′
(

nRelation, rExpr, vm
i , vM

i , vm
j , vM

j , vm
k , vM

k

)
=

vm
i == min

(
rExpr

(
vm

j , vm
k

)
, rExpr

(
vM

j , vM
k

))
and

vM
i == max

(
rExpr

(
vm

j , vm
k

)
, rExpr

(
vM

j , vM
k

)) if rRelation
is ==

vM
i > min

(
rExpr

(
vm

j , vm
k

)
, rExpr

(
vM

j , vM
k

))
or

vm
i < max

(
rExpr

(
vm

j , vm
k

)
, rExpr

(
vM

j , vM
k

)) if rRelation
is <, 6=

vM
i ≥ min

(
rExpr

(
vm

j , vm
k

)
, rExpr

(
vM

j , vM
k

))
or

vm
i ≤ max

(
rExpr

(
vm

j , vm
k

)
, rExpr

(
vM

j , vM
k

)) if rRelation
is ≤

As for the constraint C introduced in the second step,
C ′ relies on the monotony property of rExpr to evaluate a
candidate invariant. In detail, vm

i and vM
i have to match re-

spectively the smallest and largest value computed by rExpr
with vj for the equality operator. If nRelation is different from
the equality operator, then at least a value of vi has to be in
[rExp(vm

j , vM
k ), rExp(vM

j , vM
k )].

8 Experimental results
We evaluated the efficiency of Mangrove and of the mining
techniques presented in this article on a set of representa-
tive IP-core benchmarks from the OpenCores library [20].We
considered an implementation of the AMBA-BUS protocol
apb-bus [21], a floating-point adder fp-add, a floating-point
multiplier fp-mul, an asynchronous receiver/transmitter uart,

v2+ 7

v2

v1

0 1 8

Invariant template: nVar1 < nVar2 + 7
min(v1)= v1

m = 2   max(v1)= v1
M = 5

min(v2)= v2
m = 1   max(v2)= v2

M = 8

8 152 5

invariant: v1 < v2 + 7 

Fig. 12. A 2-arity invariant for the pair of numeric variables a and b

Boolean Numeric
u = v u = v
u = ¬v u 6= v
u = v ∧ w u < v
u = v ∨ w u ≤ v
u = v ⊕ w u = min(v, w)
u = v → w u = max(v, w)
u = v ← w u = v ∗ w
u = ¬(v ∧ w) u = v + w
u = ¬(v ∨ w)
u = ¬(v ⊕ w)
u = ¬(v → w)
u = ¬(v ← w)

TABLE 2
Set of invariant templates used in the experimental results.

and a jpeg image compression algorithm. For each of them,
we extracted an execution trace through simulation, either by
applying random stimuli or by generating interface-compliant
stimuli as proposed in [22]. We considered both internal and
interface signals. For the jpeg IP, we considered each sub-
component individually. We then split each execution trace in
two traces containing either the boolean or the numeric vari-
ables of the design, respectively. Sections 8.2 and 8.1 present
the analysis of the obtained results. We run the experiments
on an AMD Phenom II X6 1055T processor equipped with
8GB of memory, Ubuntu 14.04 OS, and connected to an
NVIDIA GeForce GTX 780 GPU consisting of 12 SMs with
2,304 CUDA cores, and CUDA Toolkit 9.0.

8.1 Mangrove analysis and comparison with the state of
the art approaches
We evaluated and compared Mangrove with Daikon [13] and
Turbo [16], which are respectively the most representative
sequential and parallel implementations at the state of the
art.

Daikon is one of the most flexible and effective sequen-
tial tool for invariant mining [18]. Turbo is, for the best
of our knowledge, the only existing parallel implementation
for GPUs. To perform a fair comparison, since Mangrove
supports a superset of templates with respect to Daikon and
Turbo, we defined a set of templates compatible with all
tools (Table 2)5. The templates include boolean and numeric
relations with different arity and functions to deeply stress the
inference algorithm and the mining procedure. We performed
the functional validation of the results by checking that the

5. It is important to note that the state of the art approaches either
do not provide support for custom templates (e.g., Turbo) or they
provide a limited support for some specific templates (e.g., Daikon).
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Fig. 13. Performance comparison of Mangrove with the most representative implementation at the state of the art for boolean traces (simulation
instances 20,000,000).
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Fig. 14. Performance comparison of Mangrove with the most representative implementation at the state of the art for numeric traces (simulation
instances 5,000,000).

three tools (Daikon, Turbo, and Mangrove) return exactly the
same set of invariants. This was expected, since there is no
difference among the three tools concerning their ability of
extracting the invariants, given the same set of templates. The
only difference, except the higher flexibility of Mangrove that
allows the users defining a larger set of customized templates,
is related to the efficiency of the mining, which is analysed in
the following paragraphs.

Figure 13 and 14 report the results in terms of execution
time (in ms, logarithmic scale) required by the tools to mine
invariants from boolean and numeric execution traces. respec-
tively. For Mangrove, the figures report the execution time
by disabling and enabling the inference support. The traces
consist of 20 and 5 millions of simulation instants, respec-
tively. The results show that Mangrove is up to five orders of
magnitude faster than Daikon and two orders of magnitude
faster with respect to Turbo. This is mainly do to the fact that
Mangrove efficiently exploits inference to reduce the problem
complexity (see Section 7). Mangrove outperforms the other
tools even when inference is not enabled and this is due to the
several optimizations implemented to fully exploit the GPU
architectural characteristics (see Section 5.3). Only in the case
of boolean traces with a very large number of invariants (e.g.,
uart), Turbo is faster than Mangrove when inference is not
enabled. This is due to the fact that Turbo implements basic
inference mechanisms, which help avoiding computation for
several redundant relations and which could not be disabled
for our comparison.

In general, the inference rules implemented in Mangrove
allow reducing the mining time up to two orders of magni-
tude. The number of dictionary entries removed through the
inference rules depends on the benchmark and on the type of
execution trace as explained in the next session.

We also found that CUDA multi-streams are unlikely to
improve the overall performance since: (1) the GPU is already
fully utilized during the mining phase. (2) Even splitting the

traces in chunks, the contribution of multi-streams to the
overall performance is limited as the time spent in memory
transfer is negligible compared to the kernel execution. (3)
Multi-streams and pipelining can be applied only if CPU the
trace parsing is performed with the CPU. Considering that
GPU trace parsing can lead up to 100x speedup and, for what
claimed before pipelining cannot provide such a speedup,
multi-stream+pipeling is worth to be applied only with CPU
parsing. In addition, as shown by the experimental results, the
benefits given by the intensive GPU register usage is strongly
related to thread/data parallelism. Finally, the auto-tuning
technique implemented in the framework aims at improving
the trade-off between register usage and Instruction-level
parallelism. Mangrove relies on the register usage to increase
the vectorized data-load per thread, while it does not exceed
their usage to compromise the maximum device occupancy
(as underlined in Section 5.3.3).

8.1.1 Inference Efficiency Analysis
Tables 3 and 4 show how Mangrove can reduce the problem
complexity through inference for the boolean and the numeric
traces, respectively. For each benchmark, the table report the
number of variables, the number of extracted invariants (L),
the dictionary size (D) by enabling or disabling the inference
rules, and the percentage of entries removed from the dictio-
nary through inference. In general, the results show that the
inference rules allow reducing the dictionary size up to 99.5%
and that they are more effective in case of boolean traces. This
is due to the fact that the number of value combinations in
boolean traces is limited compared to numeric traces and, as
a consequence, it is easier to discard relations that do not
satisfy the extracted values.

The inference rules significantly improve the overall per-
formance in two ways. First, they allow saving a considerable
amount of time as the complexity of the mining algorithm
strictly depends on the dictionary size. Such a relationship is
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Dictionary Size

Benchmark Vars Invariants No
inference

With
inference

Removed by
inference

apb-bus 24 1,150 6,348 199 96.9%

fp-add 60 68,440 104,430 1,056 99.0%

fp-mul 36 11,172 22,050 459 97.9%

uart 169 5,530,972 2,384,928 12,904 99.5%

jpeg-enc 44 14,264 40,678 9,227 77.3%

jpeg-dct 156 18,480 30,360 4,989 83.6%

jpeg-qnr 42 14,326 861 465 97.4%

jpeg-rle 78 35,301 231,231 23,366 89.9%

jpeg-zig 26 1,692 8,125 1,927 76.3%

TABLE 3
Boolean benchmark dataset. The table reports the benchmark

characteristics and the corresponding number of dictionary entries for
boolean traces with/without inference.

Dictionary Size

Benchmark Vars Invariants No
inference

With
inference

Removed by
inference

apb-bus 16 168 3,600 1,323 63.3%

fp-add 56 3,346 169,400 25,755 84.8%

fp-mul 30 1,304 25,230 3,842 84.8%

uart 30 349 14,400 3,640 74.7%

jpeg-enc 109 546 1,236,492 452,143 63.4%

jpeg-dct 40 2,924 3,747,900 343,048 90.7%

jpeg-qnr 76 1,923 188,442 56,938 69.8%

jpeg-rle 77 1,228 394,752 52,948 86.6%

jpeg-zig 204 1,569 8,283,212 391,528 95.3%

TABLE 4
Numeric benchmark dataset. The table reports the benchmark

characteristics and the corresponding number of dictionary entries for
numeric traces with/without inference.
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Execution Time (ms)

Unary Invariants Binary Invariants Ternary Invariants

Fig. 15. Workload breakdown for boolean mining. Benchmark jpeg-enc,
simulation instances 10,000,000.

better underlined in Figure 15, which reports, for one of the
considered benchmarks (jpeg−enc), the execution time spent
for mining unary, binary, and ternary entries of the dictionary.
Without inference, the ternary relations require much more
time due to the number of cases that have to be verified. With
inference, the execution time is drastically reduced. Second,
the inference rules allow the tool to avoid transferring most of
the dictionary entries from the disk to the GPU memory.
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Fig. 16. Mangrove performance for different tuning parameters (block
size and thread-level parallelism). Simulation instances 500,000, num-
ber of variables: 80, number of dictionary entries: 492,960, template:
numeric ternary.

8.1.2 Effectiveness of the tuning mechanism
The results discussed in the previous sections have been
obtained with the best tool configuration obtained with the
auto-tuning mechanism presented in Section 5.3.3. To show
the importance of such a mechanism, Figure 16 reports the
mining time obtained with different manual configurations,
each one set by varying the thread block size and the thread-
level parallelism. The configurations not reported can not be
compiled due to the limitation of the number of available
registers in the GPU device.

The fine tuning of Mangrove plays an essential role to
achieve the full mining efficiency, while a wrong configura-
tion can lead to poor performance. Small block sizes help
reducing the execution time thanks to the low synchronization
overhead, while the thread-level parallelism is effective when
the kernel configuration does not allow the full occupancy of
the device (i.e. block size of 32/64 threads). We observed a
significant performance decreasing for a value of thread-level
parallelism equal to 16 due to the high register spilling in
cache L1 required to maintain the local trace in the thread
memory space.

In general, such a auto-tuning mechanism represents an
important contribution to improve the overall approach scal-
ability and portability to different GPU architectures. In our
architecture, the speedup from the fastest configuration (block
size 32, thread-level parallelism 8) and the slowest one (block
size 256, thread-level parallelism 16) is 8.7x.

8.2 Trace parsing evaluation

Reading and parsing the execution traces play a key role in
the overall approach efficiency. While the GPU mining kernel
requires only few seconds to analyse traces with hundreds of
variables and millions of simulation instants (see Section 8.1),
loading and parsing such traces with standard approaches
may require much more effort. Table 5 illustrates a comparison
between the standard (CPU-based) technique and the pro-
posed GPU-based technique (see Section 6). The table reports
the trace type (boolean or numeric), the trace size (in MB),
the data parsing time, the data transfer time between host
and device, and the total time (i.e., the sum of parsing and
transfer time). The last column underlines the speed-up.
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Trace type Trace size CPU GPU Total speedup
Parsing (ms) Data Transfer to GPU (ms) Total (ms) Parsing (ms) Data Transfer to GPU (ms) Total (ms)

Boolean 1,052 MB 11,091.1 19.0 11,110.1 5.4 375.0 380.4 29.2x
Numeric 1,000 MB 42,241.0 142.0 42,383.0 21.8 355.8 377.6 112.2x

TABLE 5
Performance comparison between CPU and GPU data transfer and parsing techniques.

The results underline that the parsing data phase is the
bottleneck in the standard CPU-based approach, while the
data transfer time is negligible. They also confirm that, due
to their more complex representation, numeric traces require
more parsing time (four times) than boolean traces. On the
other hand, the data transfer time is much more time con-
suming in the proposed GPU-based approach. However, the
proposed kernel to parsing data on the GPU is up to 2,000×
faster than the standard CPU approach for both numeric and
boolean traces. This makes the proposed solution, in total,
29.2× faster for boolean traces and 112.2× faster for numeric
traces then the standard approach. We also observed that the
bitmask representation for the boolean trace translates into a
very fast data transfer for the CPU procedure, while it does
not affect the GPU solution due to the raw trace transfer (see
section 6.1 and 6.2).

The optimizations described in sections 5.3.1 and 5.3.2 are
embedded in the algorithm implemented by Mangrove and
cannot be selectively switched off. On the other hand, for the
optimizations evaluated in Sections 6.1 and 6.2, we compared
Mangrove and the other state-of-the-art approaches without
including the parsing time (see Fig. 14). Table 5 reports the
parsing time for host and GPU.

9 Conclusion and future work
This article presented Mangrove, an efficient implementa-
tion of the dynamic invariant mining algorithm for GPU
architectures. The proposed solution starts from user-defined
invariant templates and execution traces of a system under
verification, and it generates a library of likely invariants. The
tools exploits inference rules to sensibly reduce the mining
effort and has been implemented for the parallel execution on
GPU architectures. The article presented the analysis of the
tool performance on a set of widely-used IP models. Compared
to the representative solutions at the state of the art, the tool
allows sensibly reducing the execution time up to one and
two orders of magnitude with respect to the best parallel and
sequential solutions, respectively, at the state of the art.
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