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Abstract— We have demonstrated that a properly-
equipped mobile robot can easily construct a detailed map
of the wireless coverage of an urban environment. The Au-
tonomous Vehicle for Exploration and Navigation of Urban
Environments (AVENUE) mobile robot was successfully used
to generate such maps in both manual and autonomous
modes of operation. The resulting database contained a
wealth of information for many different positions in the
region, with a list of all access points viewable from each
location together with a quality measure (the signal-to-noise
ratio) of every detected signal. At a later time, the AVENUE
system effectively used the data in this map to determine the
approximate position of the robot as it traveled through the
urban area.�

I. I NTRODUCTION

In the process of exploring urban environments, a mo-
bile robot passes through areas rich in wireless networks.
Signals from the networks’ access points can be collected
and analyzed by the robot, with the acquired information
incorporated into the robot’s navigational system. During
an initial exploratory phase, the robot can construct a
detailed signal map of the geographical region. At a later
time, the robot can use this map to assist in localization
and navigation. The map can also identify deficiencies in
the signal coverage of the area and help in the design of
a better network infrastructure. The Autonomous Vehicle
for Exploration and Navigation of Urban Environments,
AVENUE[6], has been adapted to perform these wireless
mapping tasks.

AVENUE is a mobile robot (see Fig. 1) whose overall
goal is to automate the site modeling process which
includes building geometrically accurate and photomet-
rically correct models of complex outdoor urban envi-
ronments. In particular, the AVENUE system can au-
tonomously model a targeted building. The system plans
a path to a desired viewpoint, navigates the mobile robot
to that viewpoint, acquires images and three-dimensional
range scans of the building, and then plans for the next
viewpoint. The system then fuses all of the collected data
into an accurate, texture-mapped, three-dimensional model
of the targeted building.

In this paper, we describe how the AVENUE system has
been extended so that it can autonomously map an outdoor

�This work was supported in part by NSF grant ANI-00-99184.

region by utilizing signals from a wireless network. With
the addition of new software modules to monitor and an-
alyze wireless transmissions used in conjunction with the
existing path planning and navigation software, AVENUE
has been able to map the coverage of the numerous access
points installed on the Columbia University campus. It has
then been able to use this map for subsequent localiza-
tion and navigation purposes, which is especially useful
at times when GPS and odometry are not available or
reliable.

Our paper is organized as follows. In the next section,
we indicate previous work that is related to our project.
We then describe in section III our equipment and the
environment in which we worked. In section IV, we
detail the process of building the wireless-signal maps of
the northern part of Columbia’s campus and we present
a representative map of the locations at which wireless
signals were measured. Some statistics associated with the
viewable access points are also given. We then present
and discuss in section V the implementation of one of the
uses of the signal map, localization of the mobile robot. In
the concluding remarks of section VI, we summarize our
results and discuss additional possible uses of the signal
map for the AVENUE and other projects.

II. RELATED WORK

The work presented in this paper is part of the AVENUE
project for automated modeling of an outdoor urban
environment by a mobile robot ([1], [6]).

The use of existing 802.11b wireless network signals
as a means of locating a user was originally presented in
Microsoft Research’s RADAR project [2]. The Microsoft
group collected the signal data manually in an indoor
environment and then used this information for estimating
the position of a user at a later time. Other groups have
also made use of manually-obtained 802.11b signals for
indoor localization [8]. We have extended the work of
these groups by having our mobile robot autonomously
construct the database, while covering a much larger
outdoor urban environment.

There have also been a number of systems [9] based
on the characteristics of cellular signals and designed for
geolocating cellular telephone users in outdoor environ-
ments. In addition, there have been attempts to use RF



based networks, as in the Daedalus project [7], to localize
a user in an outdoor area.

III. T HE PLATFORM AND THE ENVIRONMENT

Our mobile robot, AVENUE, has as its base unit the
ATRV-2 model manufactured by Real World Interfaces,
now part of iRobot, (see Fig. 1). The base unit has an
onboard computer, odometry from wheel encoders, and
a set of sonar units located around the perimeter of the
robot. In addition to these base features, we have added
additional sensors including a differential GPS unit, a
laser range scanner, a camera mounted on a pan-tilt unit,
an omnidirectional camera, a digital compass, and two
802.11b wireless network cards.

Communication with the networks’ base stations is
accomplished through an omnidirectional antenna which
is mounted on the highest point of the robot and which
is connected to the pcmcia wireless network card in
the onboard computer. Software located on the robot’s
computer polls this wireless card and returns a list of
access points that are in range together with a quality
measure of the signals received from each base station.
We use signal-to-noise ratios as our quality indicators. At
the same time a wireless measurement is taken, we take
readings from the robot’s GPS receiver and odometry in
order to tag the measurement with an accurate location.
All of this information is then stored in a database and,
at the same time, transmitted to the robot’s operator.

The environment in which we conducted the exper-
iments for our project was the Morningside Heights
Campus of Columbia University (see Fig. 1). There are
numerous wireless base stations installed throughout the
campus for general use by the university community. This
extensive wireless network provided an excellent setting
in which to test our mapping system.

IV. CONSTRUCTING THEMAP

A. Building the Detailed Wireless Network Map

As the AVENUE robot travels through the campus
environment, a program running on the onboard computer
accesses the robot’s primary wireless Ethernet card and
returns a vector of information. That information includes
a list of all access points from which the robot is receiving
any kind of signal. Each of these access points has an
identifying hardware address which we use as a key into
the data. We also tag each access point with the signal-
to-noise ratio which represents the quality of the signal
from that particular base station. (The base station with
the best signal-to-noise ratio is generally chosen by the
hardware’s drivers as the one with which to communicate.)
We also record which wireless access point is dominant
(with the largest signal-to-noise ratio) for a particular
location. Later, we reorganize all of our data into a set
of arrays in which each array represents measurements

for which a single access point is dominant. This helps to
prune subsequent searches of the data.

Once the robot has recorded the information about
the access points currently in sight, it proceeds to tag
them with the robot’s exact position at which these read-
ings were taken. This is done by querying the onboard
navigation software, which fuses together a number of
inputs in order to determine as accurately as possible a
location for the robot within the coordinate frame of the
campus. The coordinates can be easily transformed into
latitude and longitude; however, it is more convenient to
use local coordinates. The inputs include those from an
onboard GPS receiver, which is augmented by a differ-
ential receiver mounted on one of the tallest buildings
on campus. Under perfect conditions, differential GPS
will provide centimeter accuracy. However, under actual
operating conditions, GPS can be much less accurate,
depending on such conditions as the number of buildings
in the way, satellite position, and time of day. The GPS
input is then fused with information from the robot’s
onboard odometry, which is based on wheel encoders
situated on each of the robot’s motors. Finally, a precise
location can also be calculated by matching a camera
image of buildings close to the robot with the images
in a previously collected database [5]. The combination
of these three localization inputs (GPS, odometry, and
fine-grained vision) provides a best estimate of the robot’s
position. This estimate, along with a time stamp, is used
to tag a single reading from the robot’s wireless card.
The vector of these data is then stored in an internal data
structure as an array.

The robot gathers and records all of the information
described above at a rate of 1 location’s set of readings
per second. As the robot drives through the region to
be measured, it automatically builds up the map. The
information is stored and can be transmitted back to the
operator’s laptop where it can be visually displayed and
then overlaid with a diagram of the region being explored.

B. Autonomous Navigation of the Robot

Our robot is currently equipped with a navigation sys-
tem that includes an existing two-dimensional precision
diagram of the operating environment. In our current
project, this is the northern part of the Columbia Univer-
sity campus. The diagram indicates all of the free space
in which the robot can safely operate. The robot also has
a built-in path planner for computing safe paths between
any two arbitrary points on the diagram. To collect data for
the signal map, the robot follows the following procedure.
First, it marks out a grid of points which are evenly
spaced every 5 feet throughout the free space in the
diagram. Then, from its starting point, it chooses the
nearest point on the grid and plans an optimal safe path
to it. Using the same localization software that was used



Fig. 1. The ATRV-2 Based AVENUE Mobile Robot (left), the outdoor campus environment as seen from above (center) and in outline form (right).

to tag the position of each wireless network reading, the
robot navigates itself to that point. All along the path,
measurements of the wireless network are continually
taken at the rate of one location’s readings per second.
After reaching the intended grid point, the robot then plans
a new path to the next closest grid point and executes that
path. In this manner, data is obtained from a relatively
dense set of points along the robot’s entire path connecting
all of the grid points in the region’s free space.

To determine paths along which the robot can safely
move through this environment, we use an approach
based on the generalized Voronoi diagram of the two-
dimensional diagram of buildings and obstacles in our
operating environment. Once this diagram has been con-
structed, we can search it to find paths that pass, with
maximal clearance, around the obstacles. The buildings
and obstacles in the map are polygonal. To find the gen-
eralized Voronoi diagram for this collection of polygons,
one can either compute the diagram exactly or use an
approximation based on the simpler problem of computing
the Voronoi diagram for a set of discrete points. We use the
latter method. First, we approximate the boundaries of the
polygonal obstacles with the large number of points that
result from subdividing each side of the original polygon
into small segments. Second, we compute the Voronoi
diagram for this collection of approximating points using
Fortune’s sweepline algorithm [4]. Once this complicated
Voronoi diagram is constructed, we then eliminate those
Voronoi edges which have one or both endpoints lying
inside any of the obstacles. The remaining Voronoi edges
form a good approximation of the generalized Voronoi
diagram for the original obstacles in the map. To navigate
the robot from one point to another, we take the starting
point and the destination point of the robot and compute
the closest vertices of the Voronoi diagram to each of

them. We then use these vertices on the diagram itself
to search for a path using Dijkstra’s algorithm. The robot
then takes a straight line path from its starting point to
the closest vertex and then follows the path. Finally, it
takes a straight line path from the finishing vertex to the
actual destination. When doing this, we have to check
to be sure that the straight line path between the robot’s
actual location and the vertex on the Voronoi diagram does
not pass through any obstacles, and if it does, we use the
second closest vertex and so on until we find one with
an acceptable path. In most cases, the first vertex works
without any problem.

C. Experimental Results

We actually collected data for the network map in two
different experiments, one in simple manual mode and the
other in the autonomous mode described in the preceding
subsection. Both experiments were conducted in similar
environments and yielded detailed maps of the network’s
signals.

The first experiment was done in manual mode and did
not use any path planning software. Instead, the operator
used a joystick to dictate to the robot an appropriate
zig zag path throughout the northern half of campus.
As the robot traveled, its wireless monitoring system
recorded measurements once every second. The manually
constructed map covered most of the free space in which
the robot could operate and was based on approximately
one hour of data-taking from slightly more than 4,500
locations evenly distributed throughout the region. In Fig.
2, we depict a region of the entire map which has about
half of the total number of data point locations. For
reference purposes, we have divided the region into six
subregions, each of which is approximately 220 feet by 80
feet. Some statistics about the viewable access points for



Fig. 2. A map of the locations at which wireless signals were measured in a region of the Columbia campus. The subregions A, B, C, D, E, and F
extend in the north-south direction for approximately 220 feet and are each about 80 feet wide.

Subregion: A B C D E F
# of locations: 379 581 567 131 163 448
% of locations
with:

N= 1 96% 65% 15% 0% 3% 49%
N= 2 3% 25% 56% 3% 1% 48%
N= 3 1% 9% 25% 91% 64% 3%
N� 4 0% 0% 4% 6% 32% 0%

% of locations
with:

S= very high 0% 2% 66% 72% 82% 42%
S= high 3% 72% 25% 16% 13% 3%
S= medium 36% 16% 5% 8% 3% 10%
S= low 61% 10% 4% 4% 2% 46%

TABLE I

STATISTICS FOR EACH SUBREGION OF THE MAP INFIG. 2. THE

TABLE INDICATES THE NUMBER OF DATA POINT LOCATIONS IN EACH

SUBREGION, THE PERCENTAGE OF THESE LOCATIONS WITH

PRECISELYN VIEWABLE ACCESS POINTS, AND THE PERCENTAGE OF

THESE LOCATIONS FOR WHICH THE DOMINANT ACCESS POINT HAS

STRENGTHS. (THE FOUR DIFFERENT STRENGTH CATEGORIES REFER

TO THE SIGNAL-TO-NOISE RATIO OF WHICHEVER ACCESS POINT IS

DOMINANT.)

each of these subregions are given in table I. One should
note that subregions C, D, and E have many locations
for which the dominant access point has a very high
signal-to-noise ratio. One should also note that these same
three subregions have a large number of locations which
receive discernible signals simultaneously from three or
more access points. Determining the location of the robot
at later times from signal measurements alone proved to
be most successful in these three particular subregions.

The second experiment was done in autonomous mode

Fig. 3. The map shows the grid of 11 points that the robot used to survey
autonomously a small area of campus. The paths followed between these
points is also shown.

and made use of our path planning and navigation soft-
ware. We now chose to work in a small subregion of the
area explored in the first experiment. In constructing the
signal map of the second experiment, the robot chose a
grid of 11 points (see Fig. 3) which were evenly spaced
approximately every 5 feet throughout the free space. The
robot then planned its optimal safe path connecting these
points. These grid points were discerned in the resulting



map as regions with a higher density of readings, because
the robot slowed down as it approached each of its target
grid points. The actual paths followed by the robot may
not seem like the most obvious ones, because the robot is
traveling along the edges of the Voronoi diagram which
has been computed for the nearby obstacles. These paths
result from the robot’s attempt to stay as far away from
all obstacles as is possible.

V. L OCALIZATION

A. Localization Method

After a comprehensive signal map of a region has
been constructed, it can be used later to determine the
location of a mobile robot when GPS and odometry are
not available. In the mapping stage of our project, the
robot made a detailed set of measurements of the wireless
signal strengths at many different points throughout the
environment and stored all of these data. When the robot
is in this region at a later time, it can take readings of the
wireless signals available, compare these readings with
its stored database of signals, and thereby determine its
approximate location.

We have applied this localization method to the AV-
ENUE robot. To determine our robot’s unknown location
somewhere in the northern part of the Columbia campus,
we took a reading from the robot’s wireless card to obtain
a vector of visible access points and their corresponding
signal strengths. We then compared this vector to the vec-
tors in our large database and tried to find the best match.
To minimize the amount of search time, we made the
initial assumption that the current dominant access point
(the one with which the wireless card was communicating
at that moment) was the same as the dominant access point
of the most closely matching vector in the database. This
assumption substantially reduced the number of vectors
needed for comparison.

To compare vectors in a meaningful way and decide
which vector in the database was closest to the vector
from an unknown location, we needed to define a suitable
metric. In our work, we used a metric similar to the one
used in the Microsoft RADAR project. The metric distance
between two vectors was simply taken as the sum of the
absolute values of the differences between signal strengths
of corresponding access points. If there were access points
that appeared in one vector but not in the other, we
assumed that the other vector had that access point in
its list but with a strength of zero. We stepped through
each of the database vectors that had the same dominant
access point as the vector from the unknown location
and calculated the metric distance between each pair of
database-unknown vectors. We then found the minimum
distance and identified in this database subset the nearest
neighbor of the unknown. If this minimum distance was
within a certain specified range, we concluded that the

location of the nearest neighbor gave an estimate of the
robot’s position. If this minimum distance was outside the
specified range, we considered the similarity between this
nearest neighbor and the unknown not to be sufficiently
good. We then stepped through the entire database and
computed all metric differences in order to find the global
nearest neighbor and used that location as the estimate for
the robot’s position.

B. Results of Localization

To test our localization algorithm, we drove the robot
through the northern part of the campus manually for a
second time. Now, instead of building the signal map,
we took single samples from the wireless card at various
positions regarded as unknown. To check our final results,
we also recorded the robot’s actual location at each of
these positions. We then applied our localization algorithm
using the previously-constructed signal map to find the
best database matches for the single samples. The signal
map constructed in manual mode was actually used for this
test because it spanned a much larger region of campus
than did the autonomous-mode map.

Our resulting estimates for the robot’s location varied
in accuracy depending on the number of access points
that were visible in a given location. In regions with
three or more access points in view (such as subregions
C, D, and E in Fig. 2), the localization was generally
reliable enough to estimate the robot’s position to within
25 feet of its actual position. This position estimate was
necessarily a position at which we had previously recorded
a database vector; however, this was not a significant
drawback because of the high density of database loca-
tions. In regions with fewer than 3 access points visible,
localization was much less reliable and could only identify
the general region in which the robot was located by using
the database region with the same dominant access point.

VI. SUMMARY AND FUTURE WORK

We have demonstrated that a properly-equipped mobile
robot can easily construct a detailed map of the wireless
coverage of an urban environment. The AVENUE mobile
robot has successfully been used to generate such maps
in both manual and autonomous modes of operation. The
resulting database contains a wealth of information for
many different positions in the region, with a list of all
access points viewable from each location together with a
quality measure of every detected signal.

This signal map was subsequently used by the AV-
ENUE robot to determine its location at later times. This
method of localization had reasonable accuracy only when
many access points were viewable from a given location.
However, even in areas in which only one or two wireless
access points were visible, we were still able to give a
coarse estimate of the robot’s position by using knowledge



of the dominant access point. We are planning to combine
these signal map estimates with vision techniques in the
AVENUE robot ([3], [5]) in order to obtain an integrated
system for precise localization.

We are also planning to incorporate these wireless
signal maps into the path planning software of the AV-
ENUE system. Because the mobile robot often needs
to communicate with distant computers situated in the
laboratory or in the field, it is important to maximize
the wireless coverage throughout the robot’s entire path.
We will therefore augment our Voronoi path optimization
algorithm to take into account available network service
as well as the previously-used clearance around obstacles
and minimal path length.

The signal maps obtained by an autonomous robot could
also be very useful in the design and construction of large
area wireless networks. With an initial arrangement of trial
base stations, the robot could quickly map the wireless
coverage of the area and determine those regions which
had inadequate signal quality. This immediate feedback
would allow designers to reposition and adjust the trans-
mitters appropriately for maximal coverage.

We have shown that wireless signal maps are easy to
construct and have a variety of useful applications. These
maps should therefore become an important component of
all future mobile robot systems.
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