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We discuss a novel system architecture for quadricopter control, the Robocopter
platform, in which the quadricopter can behave near-autonomously and processing
is handled by an Android device on the quadricopter. The Android device commu-
nicates with a laptop, receiving commands from the host and sending imagery and
sensor data back. We also discuss the results of a series of tests of our platform
on our first hardware iteration, named Jabberwock.
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1. Motivation

1.1. Objectives

We approached this project with three goals in mind: stable flight, telepresence with an Android
device, and simple blob tracking for the helicopter. For stable flight control, we wanted a system
that could maintain a hovering state within a narrow radius of a given point (our target radius
was ten feet), and could respond to commands sent from a host computer. For telepresence,
we wanted to be able to visualize the Android device’s location, orientation, acceleration, and
velocity in real-time, as well as receive a video stream that compensated for network latency
and low bandwidth. Finally, we wanted a system that would be able to grossly track objects on
the ground to follow them using a naive color-matching algorithm implemented on the Android
device.

1.2. Potential Applications

The applications for this platform are numerous; for example, the Robocopter platform could be
invaluable as a remote surveillance tool. One application for which autonomous quadricopters
are already being used is disaster relief: the EU is currently funding the AWARE project [Erman
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et al., 2007], whose goal is to create cooperative quadricopters to survey disaster sites and
bring in light loads, such as dried food or medicine. The Robocopter platform is capable of
doing much of what the AWARE quadricopters can do, but at much lower cost; since the
platform requires only an Android device and about four hundred dollars of hardware, they can
be manufactured extremely cheaply.

1.3. Progress

At the time of writing, we have attempted stable flight but have ultimately failed. We performed
multiple outdoor tests, but have yet to see any sort of stability. We discuss why we think this
is the case in Section 7.2.2. In one of the tests, the Jabberwock completely lost control and,
instead of flying, attempted to dig a hole. In this test, the chassis was severely damaged. The
electronics, thankfully, escaped unscathed. This fall, we plan on rebuilding the chassis and
returning to our tests. We will implement the platform changes discussed in Section 7.2.2 to
prevent the catastrophic failure we experienced with the platform, as outlined in this paper.

1.4. Future Goals

We have discussed various uses of the Robocopter platform. Currently, we would like to im-
plement a more robust blob tracking to allow the helicopter to track objects as they move.
Currently, since the blob tracking is performed via color matching, changes in lighting or ori-
entation of the tracked object can result in a lost lock. Tracking based on something more
robust, such as SIFT features, would make our blob tracking perform much better. We would
also like to implement dynamic panorama creation, in which the helicopter performs a series of
predefined acrobatics to take photos which cover a solid angle of 180 degrees. From this, we
can create a panorama from the helicopter’s current location; such birds-eye panoramas would
be unusual, if not unique, and would be both creatively and technically interesting to generate.

2. Pilot Android Application

The Pilot program has two core functionalities. The first is the actual robotic control of the
quadrocopter itself; the second is communication with the control server. The parallel processing
required in these distinct tasks is complicated by the performance requirements of the program.
Flight control processing must take place in real time – or an extremely close approximation.
Communication with the control server, on the other hand, yields priority to flight control.
Consequently, a great deal of effort went into prioritizing inter-thread communications and
access of shared data. For flight control algorithms, blocking on locked data is unacceptable,
since timely performance is essential; instead of blocking, they will use the most recent, locally
stored version of the data requested. For communication algorithms, accessing flawed data is
unacceptable; the control server must not receive out-of-date information portrayed as current.
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2.1. Flight Control

Flight control itself is divided into two main components: navigation and guidance.

2.1.1. Navigation

Navigation determines a desired velocity vector for the quadrocopter. In manual mode, it simply
accepts this vector from the control server. In autopilot mode, or when the connection is lost,
autopilot subroutines determine the desired velocity vector. It’s determination is based on two
factors. The first is its current location. The second is either previously transmitted autopilot
instructions, or pre-programmed safeties (for low power, bad network, etc.).

2.1.2. Guidance

Guidance takes the desired velocity from Navigation, and uses PID loops to adjust individual
motor speeds to achieve and maintain that vector. To improve the performance of the PID
loop, the system is transformed into an approximately linear one. The transformation accounts
both for the quadratic relationship between motor speed and thrust, and for changing effects
of motor thrust as its orientation changes.

3. Server Software

Figure 1: A screen capture of the chopper control software.
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The software is designed for two purposes: control and telepresence. We have implemented
a system which allows us to monitor acceleration, orientation, temperature, location, and even
magnetic flux. We also are streaming video from the helicopter to the server software, which is
displayed in the UI. We have a control subsystem that allows us to control the helicopter from
a mouse-based system, a keyboard-based system, or a Microsoft XBOX controller.

The architecture of the system is shown in Figure 2.

3.1. Message Handling

Sensor readings from the phone are transmitted to the server using very simple strings, as is
described in Section 4.3. These are received and placed into a message queue which handles all
subsequent processing. The various components of the UI and backend are all programmed as
plugins to this message queue handler. Each plugin registers a list of prefixes with the message
queue – these define the messages that that plugin is capable of processing. For example, the
orientation component handles only messages with the prefix “ORIENT”, while the PID tuning
component handles anything that starts with “GUID” or “NAV” (for guidance and navigation,
respectively). The appropriate messages then get passed onto these components who handle
the messages themselves.

The message handler receives a huge firehose of information, and only about 10% of the
plugins need to respond to any given message. In early implementations, every plugin received
every message, which meant that about 90% of the work on each message was useless. In
instrumenting early builds using VisualVM, we found that about 60% of the processing done
by the sever was trying to handle each of the messages, and often the queue would fill faster
than it was emptying. Two fixes improved this: the prefix-based handling (which cut down on
processor usage) and multithreaded plugins. Some of the plugins were blocking the processing
of later messages because the plugins were given new messages synchronously – switching to an
asynchonous update mechanism for some of the heavier plugins allowed us to decrease latency
in sensor readings and other easier-to-process messages.

3.2. Telepresence

The main thing we tried to accomplish in designing the UI was to make it as easy to understand
what the helicopter was doing as possible, and be able to access all of the data the Android
platform was capable of giving us. We also wanted it to be easy to detect error conditions at
a glance for faster operator response to emergencies.

We eventually decided that, for many sensors, graphing them was the most intuitive way
to do this. To graph them, we rolled our own graphing package (which was later released
as SimpleGraph, a standalone Java line graph library). For three, however, there were more
intuitive ways of displaying our data.

For orientation, we used a 3D representation of the helicopter that accurately mirrors the
orientation of the actual phone, which is easier to read than trying to apply three rotations in
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your head. We used the Java3D1 game library for this, because it was the most resource-efficient
in our testing.

For location, we chose to mimic the Google Earth interface and used NASA’s World Wind2

mapping software. This is an extraordinarily powerful library, and the only one we could find
of its kind. Though poorly documented, it is open source and very easy to use. Consequently,
we dropped it into our UI quickly and seamlessly.

The last visualization we used was a very simple top-down view of the helicopter for the
motor speeds, in which each “motor” is given a color from red to green, denoting the current
speed of the motor.

4. Communication

Communication is composed of two main components: telemetry and commands/data. Each
is relayed on separate ports, since commands must be relayed as synchronously as possible and
telemetry will be asynchronous.

4.1. Telemetry

The telemetry modules continuously run the Android’s preview functionality, at 5fps. Each
frame is saved to a buffer as it is available, overwriting the previous frame. When the Android
has finished sending one frame to the control server, it immediately copies the buffer and starts
sending the frame. The result is real time telepresence, at approximately two to four fps and a
lag of less than one second.

4.2. Commands and Data

Commands and data are relayed in the form of strings over standard Java sockets. When the
connection is lost, the Android device immediately tries to reconnect, continuing to do so
indefinitely. While the connection is lost, autopilot is enabled and the “communication lost”
pre-programmed instruction set is engaged.

4.3. Message Formats

Messages between the Android and the control server are sent as strings, delimited by colons.
The strings from the control server – commands – contain the instruction itself, prefixed by
a sequence of meta-data describing the instruction. Similarly, data from the Android device
contain not just the data, but also a prefix tag describing the data. This enables somewhat
efficient analysis on each end: messages can be routed only to those components that are
registered to process a given prefix tag. Messages are not transmitted directly between the
Android device and the control server. Instead, they are routed through a separate, dedicated

1https://java3d.dev.java.net/
2http://worldwind.arc.nasa.gov/java/
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broker server. This enables the control server itself to operate easily from different IP addresses,
and hence from various locations. It also allows for easy logging and playback of sessions – the
broker server logs all data and commands, and can replay a session later for analysis.

5. Jabberwock

A list of parts used is supplied in Appendix A.

5.1. Design of the Chassis

The chassis design has fluctuated the most over the process. While the software stack was fairly
well thought out early on, we wrote it to be hardware-independent. At first, the plan was to
use a kit chassis and buy our own components, as this would mean that all of the components
would be guaranteed to work together. However, as time went on, we realized that the added
cost of a robust chassis was higher than the value we would get out of it, and we decided to
build our own.

Using a 3D printer, we were able to print whatever plastic parts we desired out of ABS
plastic. ABS is a rigid and strong plastic – it is best known for being the raw form of a Lego
brick – and is very cheap to buy in large quantities. Jabberwock was printed on a Makerbot
that is capable of printing objects up to 10cm by 10cm by 13cm: it wasn’t large enough to
build the entire helicopter in one go. Our design, therefore, had to account for the fact that
no individual custom-made part could exceed these dimensions.

We opted for a design that is slightly different from most commercially-available quadricopter
designs, for both pragmatism and strength. Our design features a large block in the middle
made of sandwiched layers, each of which holds a narrow-gauge brass pipe in place. A rendering
of this component can be seen in Figure 3. These brass pipes extend 25 cm out either side of
this center block. On the end of each pipe is a motor unit, consisting of two sandwiched ABS
pieces that attach the motor to the pipe. This can be seen in Figure 4.

The first and last layer of the center block each have eight mounting holes with a captive nut
locked in between the outer layer and next layer. This allows us complete modularity in terms
of hardware attachments without ever having to reprint – all we must do is make sure new
components are compatible with the mounting screws already built in, and we can hotswap our
hardware easily.

5.2. Electronics Design

In designing the electronics, we went for as much redundancy as possible, and only used parts
that had ratings at least 50% over our estimated needs. We estimated that the helicopter would
have a weight of approximately 1 kg (actual weight was slightly higher) so each motor-propeller
pair needed to be rated to carry at minimum 500 grams. In addition, we wanted to be able to
put different payloads on the helicopter in the future (if we wanted to mount a video camera,
for example) so we ended up using motor-propeller pairs that are capable of a very large range
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Figure 3: The center assembly upon which the electronics and Android device are mounted.

of possible thrusts, from around 50 grams to about 1.5 kg per motor. In later testing, we
learned that the helicopter was neutrally buoyant when all motors were set to about 30%.

For our control hardware, we chose to use an Arduino because we had experience coding for
the Arduino platform, and because it provides many libraries that are helpful for motor control
and sensor readings. While the sensor reading libraries were not used for Jabberwock, in later
iterations we plan may use rangefinding sensors for landing and three-dimensional map creation,
so we wanted to ensure we had the capability to hook that in to the existing system.

We chose our other parts based on online reviews and price. One of our goals was to keep
this project as cheap as possible for two reasons. Firstly, we wanted to be able to pay for the
thing, and secondly, we were interested in seeing just how cheaply this could be done. In the
end, we managed to keep the cost low – $440 after tax and shipping.

We did make one fairly nonconventional decision in terms of electronics design. While many
designs use only one battery to power the entire system, we chose instead to have four batteries
– one for each motor. This has the disadvantage that we have to monitor four battery charges
instead of one, the wiring is slightly more complex, and the batteries can discharge at different
rates. However, having the four batteries has one distinct advantage: increased longetivity.
Having all four batteries means we can stay flying for longer, which is a clear advantage.
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Figure 4: A motor mount on the end of a pipe.

6. Blob Tracking

We would like the Robocopter platform to be able to track gross objects based on color. To that
end, this semester, we implemented a blob tracking algorithm that can run on both Android
and a standard JVM. The algorithm is capable of image segmentation, labelling and object
motion tracking. The architecture of this algorithm is outlined in Figure 5.

6.1. Algorithm

6.1.1. Image Segmentation

For image segmentation, we used an adaptive algorithm that segments an image based on a
color and a threshold. There is a matching phase, and then a learning phase. In the matching
phase, the segmenter takes an RGB image and outputs a binary image, representing color
matches. Treating color as a 3-vector, the output image is defined by 1, where O is the output
image, I is the input image, C is the target color and t is the threshold. After the output is
computed, it iteratively expands this field. Each iteration passes through the image, activating
any pixel that has a neighbor who is active. The number of expansion passes is configurable,
but we found the best results with a single expansion pass.
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Image Segmentation

Boolean Field

Image Labelling

Connected Component

Connected Component Analysis

New Mean ColorEstimated Object Location

Navigation Decision

Image Color

Figure 5: Architecture of the blob tracking system

O(x,y) =

{
1 : ||I(x,y) − C|| < t

0 : otherwise
(1)

The learning phase happens after labelling and connected component analysis. After con-
nected component analysis, the system has a best-guess for which blob in the segmented image
represents the object which we are tracking. We find the mean color within that blob, and
take the mean of that color and our current color. The resulting midpoint is set to be the new
target color. This adaptation ensures that moderately slow changes in lighting will not effect
the performance of object tracking.

6.1.2. Image Labelling

We used a standard two-pass algorithm to find the connected components in the result of
segmentation that uses 4-connectivity to define pixel adjacency. The first pass of this algorithm
labels each pixel based on whether its neighbors above and to the left are set. It also records

11



when there is a equivalence collision (i.e., when both the pixel above and to the left are labelled,
but they have different labels). In this case, it adopts the label of the lowest value (the parent
label) and records the two labels in an equivalence table. The second pass then iterates over
the image, replacing child labels with parent labels. The result is a list of Area objects, each
of which contains a centroid and size.

6.1.3. Connected Component Analysis

The result of segmentation and labelling usually returns multiple labelled areas. The analysis
step attempts to determine which of the areas is the one which we are tracking. Since we
were unsure of the rate at which the Android device would be capable of processing images,
we wanted to make this step independent of location. If the phone could only process a few
frames per second, it is possible that the tracked object could have moved significantly between
frames. We could not, therefore, make the assumption that the closest area to the area we
detected last was our target. Instead, we made the assumption that the size of the object in
the frame would be relatively invariant. Based on this assumption, we chose to take the blob
whose area was most similar to the previously detected area as our target.

6.1.4. Reaction and Tracking

Once we have the in-frame location, we translate this to coordinates centered on the origin.
For example, if the centroid of an area was detected to be in the center of the image, the
resulting coordinates would be (0, 0). We then translate this into a navigation 3-vector, in
which the Z-component is zero, and the X- and Y-component are the corresponding values in
these coordinates, multiplied by a scaling factor. This is then passed to Navigation.

6.2. Performance and Results

Since we were unable to maintain stable flight, we were unable to test the reaction and tracking
step. However, we found that the tracking worked well. In lighting-invariant conditions, it was
able to track an object as either the object or the camera was moved. To test it, we set up
the blob tracking to run on a laptop while receiving imagery from the Droid. The laptop was
able to segment these images faster than it received them from the Droid, which places a
lower bound of 5 Hertz on the frequency of which this algorithm is capable. Further testing is
needed before we can know how fast the algorithm is capable of running on an Android device,
especially while said device is running the rest of the Robocopter system.

7. Testing

7.1. Pilot Application Testing

For budget reasons, we did much of the initial Pilot development on the android emulator. As
one might imagine, this proved to be a poor platform for developing robotic control software.
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The emulator does not, in fact, actually emulate many hardware functions very well. The
camera functionality does not properly implement several guaranteed methods: for example, a
Camera.parameters object on which getSupportedPreviewSizes() is called returns null,
though the API specifies that a list is guaranteed. Less culpably, calling most bluetooth-related
methods will crash the program on the emulator.

A persistent developer can code around these drawbacks, testing other aspects of the program
on the emulator. More damaging is the speed at which the emulator runs: it is very, very slow.
This is hardly unexpected, but running moderately complex control algorithms at even 10 Hertz
quickly becomes untenable.

Another hazard we noticed was more subtle. On the emulator, many sensors are not imple-
mented, and those that are return constant values. The orientation sensor is an instance of
the former; the acceleration sensor one of the latter. On a real phone, this is obviously not the
case, and many bugs in the software only became apparent after migrating from the emulator
to the Droid. For instance, the emulator always read the azimuth value as zero: consequently,
it never actually executed a coordinate transformation of the velocity vector from the absolute
frame to the relative frame. On the emulator, the two were the same; on the Droid, they
literally never are. This is a crucial piece of code that was not properly tested for quite some
time.

7.2. System Testing

7.2.1. Systematic Delays

Initially, we encountered a substantial delay in sending motor speeds from the Pilot program
to the Arduino. After some testing, we determined that the source of the delay was not, in
fact, in our code, but rather in the android inter-application messaging system. The published
Amarino library runs a service – AmarinoService – to interface applications on the phone to
the Arduino over bluetooth. Applications send messages by broadcasting a system-wide Intent
object, which is sent to AmarinoService, processed, and transmitted over bluetooth. Since
our control loop runs at 10 Hertz and submits 4 motor values per loop, we were broadcasting
system-wide Intents at the rate of 40 Hertz. This proved to be too much for Android, which
could not process the Intents nearly fast enough.

A graph of desired versus actual motor speeds is shown in Figure 6. The red line indicates
desired motor speeds, as determined by the Guidance object, calculated in real time. The
green line indicates the time at which those commands were actually sent over bluetooth by
the AmarinoService. The above graph indicates not just a delay between the two, but an
increasing delay, suggesting an Android system queue to which elements were being added
faster than they were being removed.

We resolved this problem by bypassing the Intent-broadcast system entirely. In fact, we
spliced the entire Amarino application into our own. When all components were run in the
same JVM, we could easily access the AmarinoService explicitly from Pilot and process messages
directly, instead of waiting for Android to resolve the broadcasts. A similar graph to the one in
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Figure 6: Actual motor speeds vs. broadcasted motor speeds

Figure 6 is shown in Figure 7; Figure 7, though, shows the results of this modification.
While perhaps inelegant, this solution worked quite well. The convergence between Guidance

and AmarinoService is approximately perfect.

7.2.2. Control loop stability

After actual testing, it appears that the hardware limitations of the Droid may preclude stable
control of such a complex system. The orientation sensor on the Droid, even at its fastest
setting, only registers new values at ever 100ms or so (this delay is not consistent). Conse-
quently, there is no purpose in running the PID control loop at faster than 10hz. However, the
quadricopter loses stability in well under a second. The shift from “stable” to “irrecoverably
unstable” can occur in as few as 3 or 4 tenths of a second–and therefore only 3 or 4 iterations
of the PID loop. While precise tuning might make control possible, even perfect tuning is likely
to yield poor control at best. And obtaining even “acceptable” tuning at this point seems to
be a futile endeavor.

8. Future Improvements

Moving forward, we have a number of enhancements planned that we think will drastically
improve stability. Most importantly, we will be using a newer Android device to pilot the
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Figure 7: Actual motor speeds vs. broadcasted motor speeds, post-modification

quadricopter. This device–an HTC Evo 3D–possesses 4 times the processing power of the
Droid, and includes a gyroscope. Between the two, we expect both more accurate orientation
readings and a faster sample rate. We hope to run the control loop at 33hz, instead of the
current 10hz.

We will also implement changes to the control algorithms themselves. First, we will not
attempt to directly control the speed of the quadricopter. Instead, we will endeavor to control
its orientation directly, and control speed indirectly by altering target orientation. Second, as
discussed earlier, PID control works best on a linear system. Quadricopter mechanics, however,
are far from linear. Consequently, the transformation from linear control variables–on which
the PID loop operates directly–to the non-linear motor speeds is of the utmost importance.
Deeper analysis of the transformation we used on the Jabberwock platform showed it to be
quite flawed. We have developed a newer algorithm that we believe is far more accurate.

The chassis design will also undergo significant alteration, to improve stability. Each arm will
be comprised of three brass rods, instead of two. Additionally, we will move the batteries from
their current positions on the arms to a new position under quadricopter’s center of gravity.
Between these two changes–and the software changes mentioned above–we anticipate a hugely
improved quadricopter system.
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A. Parts and Prices

Item Supplier Quantity Price
Chassis Hardware McMaster-Carr N/A $32.60
Turnigy 2217 Brushless Motors HobbyKing 4 $14.04
Counterforce Propeller Pair NG Hobbies 5 $6.95
Arduino Microcontroller SparkFun 1 $29.95
Turnigy 15 Amp ESC Controller HobbyKing 4 $10.58
BlueSmirf Gold Bluetooth Modem SparkFun 1 $64.95
Turnigy 2200mAh 3S LiPoly Battery HobbyKing 5 $11.96
Arduino ProtoShield Layout PCB SparkFun 1 $16.95
HobbyKing Fast Battery Charger HobbyKing 1 $39.99

B. Code Repository

A single github repository is used for version control of the server, client and broker, as well as
this essay.

http://github.com/haldean/droidcopter
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