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Abstract

We describe advances in automating the 3D modeling
pipeline to create rich 3D textured models. Our work is
aimed at large scale site modeling, where much manual ef-
fort is often needed to create complete models. We present
i) an automatic 2D-3D registration method for texture using
cast shadows as a cue to refine the registration parameters,
ii) methods for change detection in an acquired model, and
iii) a new mobile robot that can be used to automatically
acquire data for modeling.

1. Introduction

At the Columbia Robotics Laboratory, we have been in-
volved in a number of 3D modeling projects including re-
verse engineering of industrial objects [15], urban site mod-
eling [18, 19], modeling of endangered Gothic Cathedrals
[4], and reconstruction of archaeolgical sites [2]. Our expe-
rience has taught us the importance of automating as much
of the modeling process as possible. Building 3D models
from range scans and images is time-consuming and dif-
ficult, usually involving much manual effort. In a typical
3D modeling pipeline, geometry is acquired in the form of
range scans that need to be registered together in a com-
mon coordinate system. Additionally, images provide tex-
ture information. To build a texture-mapped model, the im-
ages and the geometry have to be registered (i.e., a mapping
from model space to image space has to computed). Part
of our research focuses on developing new methods for re-
ducing model-building time and improving accuracy [4]. In
particular, texture mapping can pose difficult problems in
providing complete and accurate coverage of a complicated
model. Our method uses knowledge of shadows and sun
position during the image acquisition process to correctly
register the imagery with the constructed 3D model.

Much of our work is involved in historic and archaeolog-
ical site modeling. Accordingly, we also want to record and
keep track of the changes to the site as the researchers ex-
cavate the site, documenting the process. This problem also
poses interesting technical challenges. Scanning the entire
site every day is not desirable or practical. Instead we would
like to acquire enough information to track changes, so as

to be able to build a 3D model that represents a snapshot of
the site at any given point in time.

Another way in which the pipeline can be automated is
in the data acquisition phase. Rather than manually move
sensors and plan viewpoints [16], we have built a mobile
robot base with a 2D and 3D sensor suite that can locate
and navigate itself to automatically acquire scans.

2. Previous Work

Over the past few years, a number of research teams
have been addressing the use of range scans and images
to develop 3D models for the virtual preservation of his-
toric sites. Some notable projects include the modeling
of Michelangelo’s David and other statues by Levoy et al.
[13], the IBM Pieta project of Bernardini et al. [6], the
Great Buddha project of Ikeuchi et al. [12], and the vir-
tualization of a Byzantine Crypt by Beraldin et al. [5]. Our
goals overlap with the work of these researchers, but also
differ in several ways. First, we are interested in record-
ing an archaeological excavation in progress. Second, we
want to keep track of changes as the excavation proceeds.
And finally, we require that our models serve as a com-
plement to the archaeologists’ documentation, which means
sharing the same reference coordinate system. The work of
Acevedo et al. [1] is similar to ours with respect to these
latter goals. However, they use photogrammetry, instead
of range data from laser scans, to create their 3D model;
hence, the technical challenges we each face are quite dif-
ferent. Image-based reconstruction for archaeology has also
been addressed by Pollefeys et al. [14].

3. The 3D Modeling Pipeline

In the following sections, we present the 3D modeling
pipeline and visualization facilities that we have developed.
We illustrate them with examples based on data that we ac-
quired on-site at the excavation of a 6th-4th century BC ar-
chaeological excavation at Monte Polizzo in western Sicily
[2].

Geometry, in the form of point clouds, is acquired by a
laser range finder, and texture, in the form of photographs,
is obtained with a digital camera. Details for each stage are



Figure 1. Our 3D modeling and visualization pipeline. We start by building a textured 3D model using range scans and images,
which we enhance with contextual information in the form of panoramic images, video, and GIS data. This context-rich model is
then used as input to our multimodal augmented reality application.

given below. A video of our model can be downloaded from
www.cs.columbia.edu/∼allen/sicily.avi.

Scan acquisition. To model the acropolis at Monte
Polizzo we used a time-of-flight laser scanner (Cyrax 2500)
to measure the distance to points on the site. Data from the
scanner comprises point clouds, with each point consisting
of three coordinates (x,y,z) and a value representing the am-
plitude of the laser light reflected back to the scanner.

Scan registration. Multiple scans are required to com-
pletely acquire a site such as the Monte Polizzo acropolis.
The resulting point clouds need to be registered together.
Typically, the coordinate system of one of the point clouds
is chosen as the coordinate system for the model. In ar-
chaeology, however, a global site coordinate system is set
up from GPS data. A set of control points are accurately
measured using (preferably differential) GPS, and are then
used to initialize a total station (e.g., a Leica TCR 705 total
station. A total station is a theodolite with an electronic dis-
tance meter that is used to measure points of interest, such
as the location of findings, rocks, or the terrain contour. To
register each point cloud with respect to the site’s coordi-
nate system. we use a set of targets that the scanner can
automatically recognize, shown in Figure 2. Before taking
a scan, we place the targets on the area we plan to cover, and
use the total station to measure their positions in the site’s
coordinate system. Afterwards, we scan the scene at a low
resolution to identify and acquire the targets’ positions in
the scanner’s coordinate system, and so solve the 3D-to-3D

registration problem. The targets are then removed and a
full-resolution scan is acquired.

This technique allowed us to accurately register each
individual point cloud with the site’s coordinate system.
For our purposes, it proved advantageous over pairwise or
multi-scan registration using the iterative closest point al-
gorithm (ICP) for several reasons. First of all, it required
no scan overlap. This allowed us to take fewer scans, with
greater freedom to choose the scanner position by elimi-
nating the traditional overlap requirement of ICP. We did,
however, acquire overlapping scans to minimize unseen re-
gions (holes). In addition, as soon as we finished a scanning
day, our model was completely registered. And finally, it al-
lowed us to record changes easily by scanning only the af-
fected areas. We would not have been able to track changes
robustly if we had relied on ICP for scan registration, be-
cause ICP relies on point-to-point correspondences over an
overlapping set of point clouds. If the point clouds repre-
sent different states of the site, these correspondences may
not exist.

Surface generation. From sets of registered point
clouds that represent the state of the site at the same point
in time, we generated a triangular-mesh surface, using the
VripPack software developed by Curless and Levoy [9].
VripPack outputs the best mesh that fits the point cloud data,
smoothed to account for registration errors.



Figure 2. Modeling the acropolis at Monte Polizzo. Top:
Targets have been placed in the area to be scanned. Bottom:
Final textured model with panoramic image as background
and GIS data.

3.1. Texture mapping

Texture acquisition. In addition to the scanner, we used
a Nikon D100 digital camera, mounted on the scanner’s
case, to acquire texture information. For each scan we ac-
quired, we took a photograph.

Local texture registration. Prior to our trip, we per-
formed a simple calibration to estimate the camera’s exter-
nal and internal parameters. We determined the camera cal-
ibration by scanning a flat wall with the room lights off and
the camera’s shutter open for the eight-second duration of
the scan. This provided us with an image of the grid pat-
tern described by the laser as it sampled the wall and the 3D
coordinates of each sample. We scanned again from a dif-
ferent distance and angle to acquire more samples. We then
segmented the images to obtain the centroid of each grid
point, and solved the calibration problem using the 2D-to-
3D correspondences just obtained.

Global texture registration. While the local texture
calibration procedure provided us with a good estimate of

the camera’s parameters, we found that our images were
slightly misaligned with respect to the complete model. One
reason for this is that our calibration was local to the scan-
ner’s coordinate system. To texture-map the final model,
this local registration had to be transformed to the site’s
coordinates. Hence, any errors in scan-to-scan registration
will also affect the texture registration. In addition, our ini-
tial calibration was accurate at the depths at which calibra-
tion points had been measured, but not as accurate at other
ranges. To solve these misalignments, we developed a new
method based on the shadows cast by the sun. Our method
performs a global texture registration; it registers the texture
with respect to the model’s coordinate system, as opposed to
the scanner’s coordinate system. Since we have the latitude
and longitude of the site and the time at which each pho-
tograph was taken, we can compute the location of the sun
and find portions of the 3D model that should be in shadow.
By matching these with the shadows in the image we solve
the 2D to 3D registration problem.

Assuming the internal parameters of a camera are
known, we find the camera positionc with respect to the 3D
model: c = (φx, φy, φz, tx, ty, tz). This is a six-parameter
rigid body transform that maps a pointXw in world coor-
dinates into its corresponding pointXc in the camera ref-
erence frame. The first three parameters (Euler angles)
represent the angles of rotation about each of the coordi-
nate axes and form a rotation matrix,R(φx, φy, φz) =
Rx(φx)Ry(φy)Rz(φz). The remaining three parameters
are the components of a translation vectort. Together, they
satisfy the following relationship:

Xc = R(φx, φy, φz)Xw + t.

If we knew the correct set of external camera parameters
(φxf

, φyf
, φzf

, txf
, tyf

, tzf
), then an orthographic view of

a textured version of the model with the eye looking in the
direction of the sun’s rays should show no texture represent-
ing shadows. However, if the texture is misaligned, such
a rendering will exhibit a number of shadow pixels. Our
method exploits this idea by searching the parameter space
for a point that minimizes the number of pixels representing
shadows in the rendered image of the model.

The problem is properly stated as follows. If we letI
denote the image to be registered andM the model, thenf ,
our cost function, is defined as

f(Ir) =
∑

x,y∈Ir

shadow(Ir, x, y),

whereIr stands for a rendered image ofM as seen from the
direction of the sun and textured withI using a texture cam-
era with external parameters set toc, andshadow(Ir, x, y)
is 1 if pixel(x,y) of Ir is in shadow, otherwise 0.

Given the initial estimate of the camera positionc0 that
we obtained off-line with our pre-calibration, the problem



Figure 3. Incremental changes in the model are detected
by casting a ray from the scanner position to the model
through pointpi, and finding its intersection pointmi.

is to find a pointcf that minimizesf .

The complete shadow registration process consists of
two stages: a preprocessing stage and a minimization stage.
In the preprocessing stage, the shadows in the image are
found using thresholding, and masked out with a given
color. In the minimization stage, simulated annealing is
used to search for a global minimum off , starting from
the initial estimate. We applied the algorithm to ten of the
texture images we used to create our model. Figure 7 shows
screenshots of the final textured model. A detailed analysis
and quantitative results can be found in [20].

Texture-map generation. To create the final texture-
mapped model, we assigned each mesh triangle one of the
available textures. For each vertexv, we first find its valid
image setIv. An imageik belongs to the valid image set of
a vertex if the following three conditions are met: first, the
projection ofv must be within the boundaries ofik; second,
the normalnv of v must be pointing towards the camera of
ik (i.e., the angle between the optical axis of of the camera
andnv must be less tanπ/2); and, finally, there must be no
other point in the meshM in the line connecting the pro-
jection ofv in ik andv (these conditions are mentioned in
[17]). We perform the last test using a ray-tracing opera-
tion accelerated with an octree. We then compute for every
trianglet its valid image setIt. An imageik is in It if it
belongs to the valid image set of each of the triangle’s ver-
tices. Finally, from the valid image set of each triangle, we
choose the imageik with the best pixel/area resolution. The
final textured model is rendered using hardware-supported
projective texture mapping.

3.2. Model change detection

We have also developed a method to track changes to
the excavation site. Because of the large size of the Monte
Polizzo site, we limited ourselves to a single structure, ap-
proximately 10 by 10 meters in area. We first acquired the
scans necessary to build a full initial model of the struc-
ture. The archaeologists then proceeded to remove some
stones and we acquired new scans. We did not scan the
entire structure again; instead we scanned only those areas
where stones had been removed. Using our change track-
ing method, we can recreate the site with and without the
removed stones, simulating the archaeological process it-
self. Figure 4 shows renderings of the site model at differ-
ent stages, where the numbers labels the stones that were
removed. The first image shows the site in its initial state,
the middle one shows the site after the stones were removed,
and the right image shows the detected changes in gray.

During post-processing, we created an initial modelM0

of the structure by registering and merging the initial point
clouds together. We then incrementally incorporated the
changes to the model. From the initial modelM0 and a
point cloudP that was acquired after the stones were re-
moved, we detect the geometry corresponding to the re-
moved stones, delete it, and add the geometry correspond-
ing to the newly exposed surfaces to obtain a new instance
M1 of the model, in the following manner:

1. Let Xp be the position of the scanner whenP was
taken.

2. For every pointpi in P do

(a) Trace a rayR from Xp throughpi (see Figure 3).

(b) Find the triangleti of M0 thatR intersects.

(c) Findmi, the intersection point ofR andti.

(d) Compute the distancedi betweenpi andmi.

(e) If di is greater than a given threshold, andR
passes first throughmi and then throughpi, re-
move all edges of triangleti from M0.

3. Remove all non-connected vertices fromM0. Call this
the intermediate modelMim.

4. Create a meshMp from P and use a package such as
VripPack to mergeMim with Mp to obtainM1.

These steps are repeated for all point clouds acquired af-
ter the stones were removed. The result is a new model that
represents the updated state of the site.

3.3. Adding context information

3D modeling from range scans is a powerful tool, but a
3D model by itself lacks important context information. We



Figure 4. Tracking changes. Left: Initial model. The stones to be removed are numbered. Middle: Model after stones have been
removed. Right: Detected changes, in light gray and numbered. The careful observer will notice some small gray patches that do
not represent removed stones. These are due to small misalignments and smoothing errors.

can obtain this context by combining data from different
sensors. In our pipeline, we combine our 3D model with
surveying data, panoramic images, and digital video.

In current archaeological recording methods, a total sta-
tion is used to lay out a site grid and record the 3D position
of finds. The logged data is then used to make a site plan,
typically using GIS software. We can incorporate this data
in our modeling pipeline to add important and meaningful
information. For example, by displaying the site grid, ar-
chaeologists that were not at the site can relate written re-
ports to the 3D model. The GIS data and the 3D model are,
by design, in the same coordinate system and no special
registration is required.

Additional context information is provided by panoramic
images. In the field, we acquired a complete panorama from
a set of thirty eight images using a Kaiden QuickPan III
spherical panoramic head. The final cylindrical panorama
was created with PhotoStitch, a photo-stitching package.
For registration purposes, we recorded the position of the
camera using the total station. (We did not record the cam-
era’s orientation, which we had to find manually.) Since the
camera was leveled, finding the correct rotation is a one–
degree-of-freedom search (rotation about the camera’sy
axis), which we performed manually by rotating a textured-
mapped cylinder around the model.

Finally, we used a color digital video camera to capture
moving imagery of the excavation in progress, recording the
position of the video camera with the total station.

4. Mobile Site Modeling Robot

Our goal is to eventually automate the entire modeling
process, including the data acquisition. To address this is-
sue, we have designed a mobile robot platform and a soft-
ware system architecture that controls the robot to perform
human-assisted or fully autonomous data acquisition tasks.
The AVENUE (Autonomous Vehicle for Exploration and

Navigation of Urban Environments) system plans a path to a
desired viewpoint, navigates the mobile robot to that view-
point, acquires images and three-dimensional range scans
of the building(s), and then plans for the next viewpoint.

4.1. Platform Hardware

Our mobile robot, AVENUE [3, 11], has its base unit the
ATRV-2 model (see Fig. 5). The base unit has an on-board
computer, odometry from wheel encoders, and a set of sonar
units located around the perimeter of the robot. In addition
to these base features, we have added additional sensors in-
cluding a differential GPS unit, a laser range scanner, a cam-
era mounted on a pan-tilt unit, an omnidirectional camera,
a digital compass, and two 802.11b wireless network cards.
Figure 5 also shows a sample laser scan taken with this sys-
tem on the Columbia University campus.

4.1.1. Localization and Navigation

The navigation portion of the AVENUE system [10] cur-
rently localizes the robot through a combination of three
different sensor inputs. It makes use of the robot’s built-in
odometry, a differential GPS system, and a vision system.
Odometry and GPS are the primary localization tools. The
vision input is a useful supplement for localization when
some preliminary data are available about the region and
its structures. The vision system matches edges on nearby
buildings with a stored model of those buildings in order to
compute the robot’s exact location. Initially the model is
rough and approximate. It becomes more refined and pre-
cise as the actual model construction process progresses.
However, to pick the correct building model for compar-
ison, the robot needs to know its approximate location.
Odometry can be problematic because of slippage. In ur-
ban environments with tall buildings, GPS performance can
fail when not enough satellites can be seen. To alleviate
these problems, we use our two-level, coarse-to-fine vision
scheme that can supplement GPS and odometry for robot



Figure 5. The ATRV-2 Based AVENUE Mobile Robot (left). A sample laser scan taken with the AVENUE system on
the Columbia University campus (right). The hole at the center of the scan is where the scanner was positioned.

localization. First we topologically locate the robot [7] with
a coarse position estimate and then we use this estimate as
the initial approximation for the precise localization which
matches building edges and models.

Our coarse localization method involves building up a
database of reference omnidirectional images (such as Fig.
6) taken throughout the various known regions that the robot
will be exploring at a later time. Each reference image is
then reduced to three histograms, using the Red, Green, and
Blue color bands. Omnidirectional images are used because
they are rotation invariant in histogram space. When the
robot is exploring those same regions at a later time; it will
take an image, convert that to a set of three histograms,
and attempt to match the histograms against the existing
database. The database itself is divided into a set of charac-
teristic regions. The goal is to determine in which specific
physical region the robot is currently located. This method
was improved by looking at the histograms of each image at
multiple resolutions rather than just at the image’s original
resolution.

This method still suffers somewhat from sensitivity to
outdoor lighting changes. It also can have some difficulty
distinguishing between very similar looking topological re-
gions. Therefore, we have developed an additional system
[8] to be used as a secondary discriminator. We have cho-
sen to utilize information from wireless ethernet networks,
which are becoming very common in urban environments.

A profile of the signal strengths of nearby access points is
constructed and then used for matching with an existing
database.

The combination of these two systems allows us to topo-
logically localize the robot with good accuracy. To test the
system, we took readings in 13 different regions throughout
the northern half of the Columbia Campus and used each
localization method alone and then the combination of both
methods. On average, the correct region was identified by
our combined method 89% of the time.

5. Summary and Conclusions

We have described an integrated 3D modeling and visu-
alization pipeline for archaeology, which we have applied
to digitally recording an excavation in progress at Monte
Polizzo, Sicily. The area of 3D modeling for cultural her-
itage preservation is evolving rapidly and we believe that
new tools such as these will be an important resource for fu-
ture archaeological research. Our work is unique in a num-
ber of ways, because it 1) integrates a variety of different
data sources: range scans, images, GIS data, and video, 2)
develops a new technique for image–to–model-base regis-
tration based on the shadows cast by the sun, 3) includes
a temporal change racking component, and 4) presents a
novel mobile robot to help automate the data acquisition
phase of site modeling.



Figure 7. Screenshots of our 3D model with the panorama in the background.

Figure 6. Our robot’s omnicamera (left) and a typical
image from that camera (right).
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