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1. INTRODUCTION

General equilibrium theory [Debreu 1959; Ellickson 1994] is regarded by many as the
crown jewel of Mathematical Economics. It studies the interactions of price, demand,
and supply and is established on the demand-equal-supply principle of Walras [1874].
A remarkable market model central to this field is the one of Arrow and Debreu [1954],
which has laid the foundation for competitive pricing mechanisms [Arrow and Debreu
1954; Scarf 1973].

In this model, traders exchange goods at a marketplace to maximize their utilities.
(The model of Arrow and Debreu also considers firms with production plans. Here, we
focus on the setting of exchange only.) Formally, an Arrow-Debreu market M consists of
a set of traders and a set of goods, denoted by {G1, . . . , Gm} for some m ≥ 1. Each trader
has an initial endowment w ∈ Rm

+, where w j denotes the amount of Gj she brings to the
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market. Each trader also has a real-valued utility function u. Given a bundle x ∈ Rm
+

of goods, u(x) is her utility if she obtains x after the exchange.
Now let p ∈ Rm

+ denote a price vector, where we use π j to denote the price of Gj . Each
trader first sells her endowment w at p to obtain a budget of w · p. She then spends it
to purchase a bundle of goods x from the market to maximize her utility. We say p is a
market equilibrium of M if we can assign each trader an optimal bundle with respect
to p such that the total demand equals the total supply and the market clears.

The celebrated theorem of Arrow and Debreu [1954] provides a set of mild conditions1

that guarantee the existence of an equilibrium for every market that satisfies them.
Their proof, however, is based on Kakutani’s fixed point theorem [Kakutani 1941] and is
highly non-constructive and non-algorithmic, given that no efficient general fixed-point
algorithm is known so far. Although the problem of computing a market equilibrium
has been studied extensively and several general schemes have been proposed that
converge to an equilibrium, there is currently no efficient general algorithm that finds
an equilibrium whenever suitable sufficient conditions of existence hold.2 The difficulty
of the problem is also evidenced by exponential lower bounds on the query complexity
of the discrete Brouwer fixed-point problem obtained in Hirsch et al. [1989], Chen and
Deng [2008], Chen and Teng [2007], and Chen et al. [2008] and on the complexity of gen-
eral price adjustment schemes for market equilibria [Papadimitriou and Yannakakis
2010].

The problem of finding a market equilibrium was first studied in the pioneering
work of Scarf [1973]. During the past decade, starting with the work of Deng et al.
[2003], the computation and approximation of equilibria have been studied intensively
under various market models, and much progress has been made. This includes efficient
algorithms for the market equilibrium problem [Jain et al. 2003; Devanur and Vazirani
2003; Chen et al. 2004; Devanur and Vazirani 2004; Garg and Kapoor 2004; Garg et al.
2004; Codenotti et al. 2005a, 2005b, 2005c; Jain et al. 2005; Jain and Mahdian 2005;
Jain and Varadarajan 2006; Chen et al. 2006; Jain 2007; Ye 2007; Devanur and Kannan
2008; Devanur et al. 2008; Ye 2008; Vazirani 2010], many of which are based on the
convex-programming approach of Eisenberg and Gale [1959] and Nenakov and Primak
[1983]. Several complexity-theoretic results have also been obtained for various market
models [Codenotti et al. 2006; Huang and Teng 2007; Deng and Du 2008; Chen et al.
2009a; Vazirani and Yannakakis 2011; Etessami and Yannakakis 2010; Papadimitriou
and Wilkens 2011; Chen and Teng 2009, 2011; Garg et al. 2014].

Markets with CES Utilities

We study the complexity of approximating market equilibria in Arrow-Debreu markets
with CES (constant elasticity of substitution) utilities [Mas-Colell et al. 1995]. A CES
utility function takes the following form:

u(x1, . . . , xm) =
⎛
⎝ m∑

j=1

α j · xρ

j

⎞
⎠

1/ρ

,

where α j ≥ 0 for all j ∈ [m]; and the parameter ρ < 1 and ρ �= 0. The family of CES
utility functions was first introduced in Solow [1956] and Dickinson [1954]. It was then
used in Arrow et al. [1961] to model production functions and predict economic growth.
It has been one of the most widely used families of utility functions in economics

1These are mild but quite technical conditions on utility functions of traders so we skip them here. In this
article, we will use a cleaner set of sufficient conditions by Maxfield [1997] (see Theorem 2.5) and study the
equilibrium computation problem over markets that satisfy this set of conditions.
2If nothing is assumed about the market, then the problem of deciding whether a market equilibrium exists
or not is known to be NP-hard [Codenotti et al. 2006] even for the family of Leontief utilities.
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literature [Shoven and Whalley 1992; de La Grandville 2009], due to their versatility
and flexibility in economic modeling. For example, the popular modeling language
MPSGE [Rutherford 1999] for equilibrium analysis uses CES functions (and their
generalization to nested CES functions) to model consumption and production. The
parameter ρ of a CES utility function is related to the elasticity of substitution σ ,
a measure on how easy it is to substitute different goods or resources [Hicks 1932;
Robinson 1933] (namely, ρ = (σ − 1)/σ ). Selecting specific values for ρ between 1 and
−∞ yields various basic utility functions and models different points in the substitutes-
complements spectrum. This ranges from the perfect substitutes case when ρ = 1,
which corresponds to linear utilities, to the intermediate case when ρ → 0, which
corresponds to the Cobb-Douglas utilities, to the perfect complements case when ρ →
−∞, which corresponds to Leontief utilities.

Nenakov and Primak [1983] gave a convex program that characterizes the set of
equilibria when ρ = 1, that is, all utilities are linear. Jain [2007] discovered the same
convex program independently and used the ellipsoid algorithm to give a polynomial-
time exact algorithm. It turns out that this convex program can also be applied to
characterize the set of equilibria in CES markets with ρ > 0 [Codenotti et al. 2005c].
Codenotti et al. [2005b] gave a different convex formulation for the set of equilibria in
CES markets with ρ : −1 ≤ ρ < 0. The range of ρ < −1, however, has remained an
intriguing open problem. For this range, it is known that the set of equilibria can be
disconnected, and thus one cannot hope for a direct convex formulation. An example
can be found in Gjerstad [1996] with three isolated market equilibria.

The failure of the convex-programming approach seems to suggest that the problem
might be hard. In fact, when ρ → −∞, CES utilities converge to Leontief utilities for
which finding an approximate equilibrium is known to be PPAD-complete [Codenotti
et al. 2006] and computing an actual equilibrium (to desired precision) is FIXP-complete
[Garg et al. 2014]. This argument, however, is less compelling due to the fact that a
market with CES utilities converging to a Leontief market, as ρ → −∞, does not mean
that the equilibria of the CES markets converge to an equilibrium of the Leontief
market at the limit. Actually, it is easy to find examples where this is not the case,
and in fact it is possible that the CES markets have equilibria that converge but the
Leontief market at the limit does not even have any (approximate) equilibrium.

Moreover, with respect to the problem of determining whether a market equilibrium
exists, CES utilities do not behave like the Leontief limit but rather like those tractable
utilities. Typically, the tractability of the equilibrium existence problem conforms with
that of the equilibrium computation problem (under standard sufficient conditions
for existence). For example, the existence problem for linear utilities can be solved in
polynomial time [Gale 1976] (as does the computation problem [Jain 2007]), and the
same holds for Cobb-Douglas utilities [Eaves 1985], whereas the existence problem is
NP-hard for Leontief utilities [Codenotti et al. 2006] and for separable piecewise-linear
utilities [Vazirani and Yannakakis 2011] (and their equilibrium computation problem
under standard sufficient conditions for existence is PPAD-hard or FIXP-hard [Code-
notti et al. 2006; Chen et al. 2009a; Vazirani and Yannakakis 2011; Garg et al. 2014]).
However, it is known that the existence problem for CES functions is polynomial-time
solvable for all (finite) values of ρ [Codenotti et al. 2005b]. This suggests that the
equilibrium computation problem for CES utilities might be also tractable.

The difficulty in resolving the complexity of the equilibrium computation problem
for CES markets with a constant ρ < −1 is mainly due to the continuous nature of the
problem. Most, if not all, of the problems shown to be PPAD-hard have a rich underlying
combinatorial structure, whether it is to find an approximate Nash equilibrium in
a normal-form game [Daskalakis et al. 2009; Chen et al. 2009b] or to compute an
approximate equilibrium in a market with Leontief utilities [Codenotti et al. 2006]
or with additively separable and concave piecewise-linear utilities [Chen et al. 2009a;
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Vazirani and Yannakakis 2011]. In contrast, given a price vector p, the optimal bundle
x of a CES trader is a continuous function over p, with an explicit algebraic form (see
Equation (1) in Section 2). The problem of finding a market equilibrium now boils down
to solving a system of polynomial equations over variables p, and it is not clear how to
extract a useful combinatorial structure from it.

We settle the complexity of finding approximate equilibria in CES markets for all
values of ρ < −1:

THEOREM 1.1. For any fixed rational number ρ < −1, the problem of finding an
approximate market equilibrium in a CES market of parameter ρ is PPAD-complete.

It is worth pointing out that the notion of approximate market equilibria used in
Theorem 1.1 is one-sided, that is, p is an ε-approximate market equilibrium if the
excess demand of each good is bounded from above by an ε-fraction of the total supply.
While the two-sided notion of approximate equilibria is more commonly used in the
literature (which we will refer to as ε-tight approximate market equilibria), that is, the
absolute value of excess demand is bounded, we present an unexpected CES market
with ρ < 0 in Section 2.2 and prove that any of its (1/2)-tight approximate equilibria
requires exponentially many bits to represent. By contrast, we show that for the one-
sided notion there is always an ε-approximate equilibrium with a polynomial number
of bits and, furthermore, its computation is in PPAD; this holds even if the traders
have CES utility functions with different parameters ρ, which are not fixed, but are
given in unary. We show also that the problem of computing an actual equilibrium (to
any desired precision) is in FIXP.

PPAD-Hardness for Non-Monotone Families of Utilities

The resolution of the complexity of CES markets with ρ < −1 inspired us to ask the
following question:

Can we prove a complexity dichotomy for any given family of utility functions?

Formulating it more precisely, we let U denote a generic family of utility functions that
satisfy certain mild conditions (e.g., they should be continuous, quasi-concave). The
question now becomes the following:

Does there exist a mathematically well-defined property on families of functions
such that: For any U satisfying this property, the equilibrium problem it defines is
in polynomial time; For any U that violates this property, the problem is hard, for
example, PPAD-hard or even FIXP-hard.

For the algorithmic part of this question, a property that has played a critical role in
the approximation of market equilibria is Weak Gross Substitutability (WGS). A family
U of utilities satisfies WGS if for any market consisting of traders with utilities from
U , increasing the price of one good while keeping all other prices fixed cannot cause a
decrease in the demand of any other good. WGS implies that the set of equilibria form
a convex set. Arrow et al. [1959] showed that, given any market satisfying WGS, the
continuous tatonnement process [Walras 1874; Samuelson 1947] converges. Recently,
Codenotti et al. [2005a] showed that a discrete tatonnement algorithm converges to
an approximate equilibrium in polynomial time, if equipped with an excess demand
oracle. Another general property that implies convexity of the set of equilibria is Weak
Axiom of Revealed Preference (WARP; see Mas-Colell et al. [1995] for its definition and
background). While many families of utilities satisfy WGS or WARP, they do not seem
to cover all the efficiently solvable market problems, for example, the family of CES
utilities with parameter −1 ≤ ρ < 0 does not satisfy WGS or WARP but has a convex
formulation [Codenotti et al. 2005b].
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For the hardness part of this question, our knowledge is much more limited. Only
for a few specific and isolated families of utilities mentioned earlier, the problem of
finding an approximate equilibrium is shown to be hard. And the reduction techniques
developed in these proofs are all different, each fine tuned for the family of utilities
being considered.

Our second contribution is a PPAD-hardness result that is widely applicable to any
generic family U of utility functions, as long as it satisfies the following condition:

[Informal]: There exists a market M with utilities from U , a special good G in M,
and a price vector p > 0 such that at p, the excess demand of G is nonnegative and
raising the price of G, while keeping all other prices the same, strictly increases the
demand of G.

We call M a non-monotone market. We also call U a non-monotone family if such a
market M exists.

Examples of simple non-monotone markets, constructed from various families of
utilities, can be found in Section 2.3. All the families for which we have hardness
results for the (approximate) equilibrium problem are non-monotone. This includes in
particular the family of separable piecewise-linear functions, the family of Leontief
functions, and the family of CES functions for any value of the parameter ρ < −1 (as
well as the family of all CES functions). Of course, if a family U is non-monotone, then
so is any superset of U . We show that the existence of a non-monotone market implies
the following hardness result:

THEOREM 1.2 (INFORMAL). If U is non-monotone, then the following problem is PPAD-
hard: Given a market in which the utility of each trader is either linear or from U , find
an approximate market equilibrium.

The theorem implies in particular the known PPAD-hardness of the (approximate)
equilibrium problem for Arrow-Debreu markets with separable piecewise-linear utility
functions [Chen et al. 2009a], and in fact the proof shows that the problem is hard even
in the special case where the utility function of every trader for each good is either linear
or linear with a threshold at which it gets saturated and stops increasing. The theorem
in itself, however, does not imply the hardness result for CES markets (Theorem 1.1)
or for Leontief markets [Codenotti et al. 2006] (even though these families are non-
monotone), because of the use of linear functions.

Comparing on the other side with the major known positive case of WGS, it is easy
to see that if a market satisfies WGS, then it cannot be non-monotone: raising the price
of a good G causes the demands for the other goods to increase or stay the same (by
WGS), and hence by Walras’ law, the demand for G cannot also increase. There remains
a gap, however, between WGS and the complement of non-monotonicity mainly for two
reasons: (1) in the definition of non-monotone markets, the excess demand of G is
required to be nonnegative at p but WGS does not make such an assumption, and
(2) the definition of non-monotonicity constrains the change in the demand of the good
G whose price is increased, whereas WGS constrains the change in the demand of the
other goods; if there are only two goods, then the two constraints are related both ways
(by Walras’ law), but if there are more than two goods, then the implication is only in
one direction. It remains an open problem as whether we can further reduce the gap,
and whether we can remove the use of linear functions from the theorem.

The reductions for both of our main results are quite involved, and start from the
problem of computing a well-supported approximate equilibrium for a polymatrix game
with two strategies per player, which we show is PPAD-hard (the problem of finding
an exact equilibrium was shown previously to be hard in Daskalakis et al. [2009]).
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The rest of the article is organized as follows. In Section 2, we give basic definitions
and state formally our main results. We provide also a very brief outline of the proofs.
Section 3 contains the PPAD-hardness proof for general non-monotone utilities (Theo-
rem 2), and Section 4 contains the PPAD-hardness proof for CES utilities (Theorem 1).
Section 5 shows that the problem of computing an equilibrium for CES markets is in
FIXP, and Section 6 shows that computing an approximate equilibrium is in PPAD.
Section 7 contains the hardness proof of the polymatrix problem that serves as the
starting point in our reductions. Finally, we conclude in Section 8.

2. PRELIMINARIES AND MAIN RESULTS

Notation. We use R+ to denote the set of nonnegative real numbers and Q+ to denote
the set of nonnegative rational numbers. Given a positive integer n, we use [n] to denote
the set {1, . . . , n}. Given two integers mand n, where m ≤ n, we use [m : n] to denote the
set {m, m+ 1, . . . , n}. Given a vector y ∈ Rm, we use B(y, c) to denote the set of x with
‖x − y‖∞ ≤ c.

2.1. Arrow-Debreu Markets and Market Equilibria

An Arrow-Debreu exchange market M consists of a finite set of traders, denoted by
{T1, . . . , Tn} for some n ≥ 1, and a finite set of goods, denoted by {G1, . . . , Gm} for
some m ≥ 1. Each trader Ti owns an initial endowment wi ∈ Rm

+, where wi, j denotes
the amount of good Gj she initially owns. Each trader Ti also has a utility function
ui : Rm

+ → R+, where ui(xi,1, . . . , xi,m) represents the utility she derives if the amount of
Gj she obtains by the end is xi, j for each j ∈ [m]. In the rest of the article, we will refer
to an Arrow-Debreu exchange market simply as a market for convenience.

Now, let p = (π1, . . . , πm) �= 0 denote a nonnegative price vector, with π j ≥ 0 being
the price per unit of Gj . Each trader Ti sells her initial endowment wi at prices p and
obtains a budget

∑
j∈[m] wi, j · π j . She then spends it to buy a bundle of goods xi ∈ Rm

+
from the market to maximize her utility. We say p is a market equilibrium of M if we
can assign each trader an optimal bundle with respect to p such that the total demand
equals the total supply and the market clears. Formally, given p, we let OPTi(p) denote
the set of optimal bundles of Ti with respect to p: x ∈ Rm

+ is in OPTi(p) if∑
j∈[m]

xj · π j ≤
∑
j∈[m]

wi, j · π j,

and ui(x) ≥ ui(x′) for any x′ ∈ Rm
+ that satisfies the budget constraint above. Next, we

define the (aggregate) excess demand of a good with respect to a given price vector p:

Definition 2.1 (Excess Demand). Given p, the excess demand Z(p) consists of all
vectors z of the form z = x1 + · · · + xm − (w1 + · · · + wm), where xi is an optimal bundle
in OPTi(p) for each i ∈ [n]. For each good Gj , we also use Zj(p) to denote the projection
of Z(p) on the jth coordinate.

In general, Z(p) is a set and Z is a correspondence. We usually refer to a subset of
traders in a market as a submarket, and sometimes we are interested in the excess
demand of a submarket, for which the sums of xi ’s and wi ’s are only taken over traders
in the subset. Finally, we define market equilibria:

Definition 2.2 (Market Equilibria). We say p is a market equilibrium of M if Z(p)
contains a vector z such that zj ≤ 0 for all j ∈ [m] and zj < 0 implies that π j = 0.

Notice that if zj > 0, then the traders request more than the total available amount
of Gj and if zj ≤ 0, then they request at most as much amount of it as is available in
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the market. As OPTi(p) is invariant under scaling of p (by a positive factor), it is easy
to see that the set of market equilibria is closed under scaling.

In general, a market equilibrium may not exist. The pioneering existence theorem of
Arrow and Debreu [1954] states that if all the utility functions are quasi-concave, then
under certain mild conditions a market always has an equilibrium. In this article, we
use the weaker sufficient condition of Maxfield [1997].

Definition 2.3 (Local Non-Satiation). We say a utility function u : Rm
+ → R+ is locally

non-satiated if for any x ∈ Rm
+ and any ε > 0, there exists a y ∈ B(x, ε) ∩ Rm

+ such that
u(y) > u(x). We say u is non-satiated with respect to the kth good, if for any x ∈ Rm

+,
there exists a y ∈ Rm

+ such that u(y) > u(x) and yj = xj for all j �= k.

If the utility of a trader is locally non-satiated, then her optimal bundle must exhaust
her budget. Therefore, if every trader in M has a non-satiated utility, then Walras’ law
holds: z · p = 0 for all z ∈ Z(p).

Definition 2.4 (Economy Graphs). Given a market M, we define a directed graph as
follows. Each vertex of the graph corresponds to a good Gj in M. For two goods Gi and
Gj in M, we add an edge from Gi to Gj if there is a trader Tk such that wk,i > 0 and
uk is non-satiated with respect to Gj , that is, Tk owns a positive amount of Gi and is
interested in Gj . We call this graph the economy graph of M [Maxfield 1997].3

We then say a market M is strongly connected if its economy graph is strongly
connected. Here is a simplified version of the existence theorem from Maxfield [1997]:

THEOREM 2.5 (MAXFIELD [1997]). If the following two conditions hold, then M has a
market equilibrium: (1) Every utility function is continuous, quasi-concave, and locally
non-satiated; and (2) M is strongly connected. Moreover, the price of every good is positive
in a market equilibrium.

Given the second part of Theorem 2.5, when the market satisfies the conditions of
Theorem 2.5, p is an equilibrium if and only if 0 ∈ Z(p). In this article, we are interested
in the problem of finding an approximate equilibrium in a market that satisfies the
conditions of Theorem 2.5. For this we define two notions of approximate equilibria:

Definition 2.6 (ε-Approximate Market Equilibria). We call p an ε-approximate market
equilibrium of M for some ε > 0 if there exists a vector z ∈ Z(p) such that zj ≤
ε
∑

i∈[n] wi, j for all j ∈ [m].

Definition 2.7 (ε-Tight Approximate Market Equilibria). We say p is an ε-tight
approximate market equilibrium of M for some ε > 0 if there exists z ∈ Z(p) such that
|zj | ≤ ε

∑
i∈[n] wi, j for all j ∈ [m].

Both notions of approximate equilibria have been used in the literature. Although
the two-sided notion of tight approximate market equilibria is more commonly used,

3Maxfield defines this as a graph between the traders instead of the goods, but the sufficient condition of
strong connectivity is equivalent between the two versions, as long as each trader owns some good and is
non-satiated with respect to some good, and each good is owned by some trader and desired by some trader.
Codenotti et al. [2005b] use in their analysis of CES markets the trader-based version, which they decompose
into strongly connected components (scc’s), but it is not hard to show that there is a correspondence between
the nontrivial scc’s of the two graphs. For example, assume that the good-based economy graph is not strongly
connected. Then there exists a partition (J, J′) of the goods [m], such that no edge goes from j′ ∈ J′ to j ∈ J.
Let T ′ denote the set of traders that own some good in J′. Since each good in J′ is owned by some trader, we
have T ′ �= ∅, and since each good in J is desired by some trader and there is no edge from J′ to J, we have
T ′ �= [n]. One can then use the partition (T ′, [n] \ T ′) to show that the trader-based graph is not strongly
connected. The other direction can be proved similarly.
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we present an unexpected CES market in Section 2.2 (for any ρ < 0), and prove that
any (1/2)-tight approximate market equilibrium p for it must have one of the entries
being doubly exponentially small when

∑
j π j = 1.

2.2. CES Utility Functions

In this article, we focus on the family of Constant Elasticity of Substitution (CES)
utility functions:

Definition 2.8. We call u : Rm
+ → R+ a CES function with parameter ρ < 1, ρ �= 0, if

it is of the form

u(x1, . . . , xm) =
⎛
⎝ ∑

j∈[m]

α j · xρ

j

⎞
⎠

1
ρ

where the coefficients α1, . . . , αm ∈ R+.

Let T be a trader with a CES utility function u in which α j > 0 iff j ∈ S ⊆ [m]. Let
w denote the initial endowment of T and let p denote a price vector with π j > 0 for all
j ∈ [m]. Then, using the KKT conditions (on the optimization problem of maximizing
T ’s utility subject to the budget constraint), we have the following folklore formula for
the unique optimal bundle of T : For each j ∈ S, we have

xj =
(

α j

π j

)1/(1−ρ)

× w · p∑
k∈S α

1/(1−ρ)
k · π

−ρ/(1−ρ)
k

. (1)

It is also clear that if π j = 0 for some j ∈ S, then T would demand an infinite amount
of Gj . This implies that when a CES market is strongly connected, π j must be positive
for all j ∈ [m] in any (exact or approximate) market equilibrium of M.

When ρ → 1, a CES function becomes a linear function,

u(x1, . . . , xm) =
∑
j∈[m]

α j x j .

At the other end, Leontief utility functions can be seen as limits of CES functions as
ρ → −∞. A Leontief utility function is a function of the form

u(x1, . . . , xm) = min
j∈S

{xj/c j},

for some subset S ⊆ [m] of goods and positive constants c j > 0 for all j ∈ S. This repre-
sents the utility of a trader who wants to acquire goods in S in quantities proportional
to the c j . This function is the limit of the functions (

∑
j∈S(xj/c j)ρ)1/ρ as ρ → −∞; that

is, the Leontief function is the limit of CES functions with coefficients α j = 1/cρ

j for
j ∈ S and α j = 0 for j /∈ S. We remark, however, that the fact that a sequence of CES
markets converges to a Leontief market does not mean necessarily that the equilibria
of the CES markets, if they exist, converge to an equilibrium of the Leontief market;
in fact, the Leontief market may not even have an equilibrium.

Example 2.9. Consider the following collection Mρ of CES markets with parameters
ρ < 0, with four traders T1, T2, T3, T4, and three goods G1, G2, G3. In all markets in
the collection, trader T1 has 1 unit of G1, T2 has 1 unit of G2, T3 has 1 unit of G3, and
T4 has 1 unit of each of the three goods. The utility functions of the traders in Mρ are

u1(x) = (xρ

1 )1/ρ = x1, u2(x) = (
xρ

1 + xρ

2

)1/ρ
,

u3(x) = (
2−ρxρ

2 + xρ

3

)1/ρ
, and u4(x) = (

xρ

1 + xρ

2 + xρ

3

)1/ρ
.
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The economy graph of every market Mρ in the collection is strongly connected, hence
they all have equilibria. For ρ → −∞, market Mρ becomes a Leontief market ML,
where the traders have again the same endowments but now their utility functions
are

v1(x) = x1, v2(x) = min(x1, x2), v3(x) = min(x2/2, x3), and v4(x) = min(x1, x2, x3).

This is a variant of an example market in Codenotti et al. [2006], and it is easy to see
that it does not have any equilibrium. For this, suppose that ML has an equilibrium
p. Clearly, T4 will buy back her endowment, because to maximize her utility she must
buy equal amounts of G1, G2, and G3. If π1 = 0, then T1 would get an unlimited amount
of G1; hence, we must have π1 > 0. Since T1 gains utility only from G1 (the good that
she brings to the market), T1 will buy back her endowment, and there is no amount of
G1 left. If π2 > 0, then T2 would buy some positive amount of G1; hence, we must have
π2 = 0. Trader T3 will buy back her unit of G3 and 2 units of G2, but there is only 1 unit
of G2 left. Therefore, the limit Leontief market ML does not have an equilibrium.

The problem of whether there exists an equilibrium in a CES market can be solved
in polynomial time: a simple necessary and sufficient condition for the existence of
an equilibrium in a CES market was shown in Codenotti et al. [2005b] based on the
decomposition of the economy graph into strongly connected components. They also
proved that the computation of an equilibrium for the whole market (if the condition
is satisfied) amounts to the computation of equilibria for the submarkets induced by
the strongly connected components. Hence, we will focus on markets with a strongly
connected economy graph.

We are interested in the problem of computing an equilibrium in a market with CES
utilities. As such, a market may not have a rational equilibrium in general, even when
ρ and all the coefficients are rational, we study the approximation of market equilibria.
For this purpose, we define the following three problems:

(1) CES: The input of the problem is a pair (k, M), where k is a positive integer encoded
in unary (k represents the desired number of bits of precision), and M is a strongly
connected market in which all utilities are CES, with the parameter ρi < 1 of each
trader Ti being rational and given in unary (because ρ appears in the exponent in
the utility and demand functions). The parameters ρi ’s for different traders may
be the same or different, and there may be a mixture of positive and negative
parameters. The endowments wi, j and coefficients αi, j are rational and encoded in
binary. The goal is to find a price vector p that is within 1/2k of some equilibrium
in every coordinate, that is, such that there exists an (exact) equilibrium p∗ of M
with ‖p − p∗‖∞ ≤ 1/2k.

(2) CES-APPROX: The input of the problem is the same as CES. The goal is to find an
ε-approximate market equilibrium of M, where ε = 1/2k.

(3) Our hardness result actually holds even when all traders share the same parameter
ρ, and this holds for every fixed value of ρ < −1. For this, we define the following
problem ρ-CES-APPROX for any fixed rational number ρ < −1: The input is the same
as CES, except that the utilities of all the traders have the same fixed parameter
ρ, which is considered as a constant, not part of the input. The goal is to find an
ε-approximate market equilibrium of M, where ε = 1/k.

The output of the first problem CES is usually referred to in the literature as a strongly
approximate equilibrium. Besides, we can also define CES under a model of real com-
putation and ask for an exact equilibrium.
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Finally, we present the following example to justify the use of ε-approximate market
equilibria, instead of ε-tight approximate market equilibria, in both CES-APPROX and
ρ-CES-APPROX.

Example 2.10. Fix any ρ < 0, and let r = |ρ| > 0. Let M denote the following CES
market with parameter ρ. Here, M has n goods G1, . . . , Gn and n traders T1, . . . , Tn.
Each Ti, i ∈ [n], has 2i(n+1) units of good Gi at the beginning. Each Ti, i ∈ [n − 1], is
equally interested in G1 and Gi+1. So, in particular, T1 is interested in only G1 and G2.
Tn is only interested in G1. The economy graph of M is strongly connected, since for Gi
and Gj , there is a path GiGi+1 · · · Gj from Gi to Gj if i < j, and GiG1 · · · Gj if i > j.

We prove the following lemma, which implies that we need an exponential number
of bits to represent any (1/2)-tight approximate equilibrium of this market.

LEMMA 2.11. If p is a (1/2)-tight approximate market equilibrium of M, then
max j π j

min j π j
> 2n(1+r)n−2

PROOF. For each i ∈ [n − 1], since Ti is the only trader interested in Gi+1 and p is a
(1/2)-tight approximate market equilibrium, Ti must buy at least 2(i+1)(n+1)−1 units of
Gi+1. As Ti is equally interested in G1, Gi+1 (α1 = αi+1 = 1 in Equation (1)), we have
from Equation (1),

the demand of Gi+1 from Ti = 2i(n+1) · πi

π
1/(1+r)
i+1

(
π

r/(1+r)
i+1 + π

r/(1+r)
1

) ≥ 2(i+1)(n+1)−1.

We denote (πi/π1)1/(1+r) by ti for each i ∈ [n]. Using πi+1 > 0, we have

2n <
πi

π
1/(1+r)
i+1 · π

r/(1+r)
1

=
(

πi

πi+1

)1/(1+r) (
πi

π1

)r/(1+r)

⇒ ti+1 < 2−n · (ti)1+r.

As t1 = 1 and t2 < 2−n, we can inductively show that ti < 2−n(1+r)i−2
for i ∈ [2 : n].

We are now ready to state our main results for CES markets. First, in Sections 5
and 6, we prove the membership of CES in FIXP [Etessami and Yannakakis 2010] and
membership of CES-APPROX in PPAD [Papadimitriou 1994], respectively:

THEOREM 2.12. CES is in FIXP.

THEOREM 2.13. CES-APPROX is in PPAD.

We show in Section 4 that CES markets are PPAD-hard to solve when ρ < −1:

THEOREM 2.14. For any rational number ρ < −1, the problem ρ-CES-APPROX is
PPAD-hard.

Combining Theorem 2.13 and Theorem 2.14, we have

COROLLARY 2.15. For any rational number ρ < −1, the problem ρ-CES-APPROX is
PPAD-complete.

In the proof of Theorem 2.14 in Section 4, we present a polynomial-time reduction
from a PPAD-hard problem (see Section 2.4) to ρ-CES-APPROX. The hard instances we
construct are in fact very restricted in the sense that each trader is interested in one
or two goods and applies one of the following utility functions:

u(x) = x, u(x1, x2) = (
xρ

1 + xρ

2

)1/ρ or u(x1, x2) = (
α · xρ

1 + xρ

2

)1/ρ
, (2)

where α is a positive rational constant that depends on ρ only.
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2.3. Non-Monotone Markets and Families of Utilities

We use U to denote a generic family of continuous, quasi-concave, and locally non-
satiated functions, for example, linear functions, piecewise-linear functions (see Exam-
ple 2.21), CES functions for a specific parameter of ρ, for example, ρ = −3, or even
the finite set of three functions given in Equation (2). Ideas behind the proof of Theo-
rem 2.14 allow us to prove a PPAD-hardness result for the problem of computing an
approximate equilibrium of a market in which the utility function of each trader is
either linear or from U , when the latter is “non-monotone” (to be defined shortly). For
this purpose, we formally set up the problem as follows.

First, we assume that U is countable, and each function g ∈ U corresponds to a
unique binary string so a trader can specify a function g ∈ U using a binary string. In a
market with m goods, we say a trader “applies” a function g ∈ U if her utility function
u is of the form

u(x1, . . . , xm) = g
(

x�1

b1
, . . . ,

x�k

bk

)
,

where g ∈ U has k ≤ m variables; �1, . . . , �k ∈ [m] are distinct indices; and b1, . . . , bk are
positive rational numbers. In this way, each trader can be described by a finite binary
string. We now use MU to denote the set of all markets in which every trader has a
rational initial endowment and applies a utility function from U . We also use M∗

U to
denote the set of markets in which every trader has a rational initial endowment and
applies either a utility function from U or a linear utility with rational coefficients.

Second, we assume that there exists a univariate function g∗ ∈ U that is strictly
monotone.

Remark. We always make these two assumptions on a family of utilities U throughout
this article. Both of them seem to be natural, and we only need them for technical
reasons that will become clear later. When a trader applies a function from U , she
can always change units by scaling. The second assumption basically allows us to add
single-minded traders who spend all their budget on one specific good.

We next define non-monotone markets as well as non-monotone families of utilities:

Definition 2.16 (Non-monotone Markets and Families of Utilities). Let M be a market
with k ≥ 2 goods. We say M is non-monotone at a price vector p if the following
conditions hold: π j > 0 for all j ∈ [k] and

For some c > 0, the excess demand Z1(y1, . . . , yk) of G1 is a continuous function
(instead of a correspondence) over y ∈ B(p, c), with Z1(p) ≥ 0. The partial derivative
of Z1 with respect to y1 exists over B(p, c), is continuous over B(p, c), and is (strictly)
positive at p.

We call M a non-monotone market if there exists such a price vector p. We also call U
a non-monotone family of utilities if there exists a non-monotone market in MU .

Remark. By the definition, M being non-monotone at p means that, raising the price of
G1 while keeping the prices of all other goods the same would actually increase the total
demand of G1. Also note that using the continuity of Z1 as well as its partial derivative
with respect to y1, we can indeed require, without loss of generality, the price vector p to
be rational in Definition 2.16: if M is a non-monotone market at p but p is not rational,
then a rational vector p∗ close enough to p would have the same property. Therefore,
whenever U is non-monotone, there is a market M ∈ MU that is non-monotone at a
rational price vector p. We would like to mention that M is not necessarily strongly
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connected; the excess demand Z1(p) of G1 and the partial derivative of Z1 with respect
to y1 at p do not have to be rational.

Now, we state our PPAD-hardness result for a non-monotone family U of functions.
We use U-MARKET to denote the following problem: the input is a pair (k, M), where k
is a positive integer in unary and M is a strongly connected market from M∗

U encoded
in binary. The goal is to output an ε-approximate equilibrium of M with ε = 1/k.
While our hardness result essentially states that U-MARKET is PPAD-hard when U is
non-monotone, we need the following definition to make a formal statement:

Definition 2.17. We say a real number β is moderately computable if there is an
algorithm that, given γ > 0, outputs a γ -rational approximation β ′ of β: |β ′ − β | ≤ γ ,
in time polynomial in 1/γ .

THEOREM 2.18. Let U denote a non-monotone family of utility functions. If there exists
a market M ∈ MU such that M is non-monotone at a rational price vector p, such
that the excess demand Z1(p) of G1 at p is moderately computable, then the problem
U-MARKET is PPAD-hard.

Remark. From the definition, U being non-monotone implies the existence of M and p.
The other assumption made in Theorem 2.18 only requires that there exists one such
pair (M, p) for which Z1(p) as a specific positive number is moderately computable. We
also point out that when the assumptions of Theorem 2.18 hold such a pair M and p is
considered as a constant, which we later use in the proof of Theorem 2.18 as a gadget
to give a polynomial-time reduction from a PPAD-hard problem (see Section 2.4) to U-
MARKET. As a result, all components of M, including the number of goods and traders,
the endowments of traders, binary strings that specify their utility functions from U ,
are all considered as constants and encoded by binary strings of constant length. This
also includes the positive rational vector p.

Now, we present three examples of non-monotone markets, one with CES utilities of
parameter ρ < −1, one with Leontief utilities, and one with additively separable and
piecewise-linear utilities:

Example 2.19 (A Non-Monotone Market with CES Utilities of ρ < −1). Consider the
following market M with two goods G1, G2 and two traders T1, T2. T1 has 1 unit of G1,
T2 has 1 unit of G2 and the utilities are

u1(x1, x2) = (
α · xρ

1 + xρ

2

)1/ρ and u2(x1, x2) = (
xρ

1 + α · xρ

2

)1/ρ
,

respectively. When ρ < −1 and α is large enough, [Gjerstad 1996] shows that M has
(1, 1) as an equilibrium and is non-monotone at (1, 1). This implies that M has multiple
isolated equilibria, and the set of equilibria of a CES market with ρ < −1 is not convex
(not even connected), in general. To see this, we let Z1(x) denote the excess demand func-
tion of G1, when the price of G1 is 1+ x and the price of G2 is 1− x. We plot Z1 in Figure
1. From the picture it is clear that the curve has three roots or equilibria. (When x goes
to 1, Z1(x) converges to 0 but is always negative.) We will formally prove properties of
this curve in Section 4.1, which play an important role in the proof of Theorem 2.14.

Example 2.20 (A Non-Monotone Market with Leontief Utilities). Let M denote the
Leontief market consisting of the following two traders T1 and T2. T1 has 1 unit of G1,
T2 has 1 unit of G2, and their utility functions are

u1(x1, x2) = min{x1/2, x2} and u2(x1, x2) = min{x1, x2/2},
respectively. It is easy to show that M is non-monotone at (1, 1).
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Fig. 1. The excess demand function Z1(x) of Example 2.19.

Example 2.21 (A Non-Monotone Market with Additively Separable and Piecewise-
Linear Utilities). We say u is additively separable and piecewise-linear if

u(x1, . . . , xk) = f1(x1) + · · · + fk(xk), (3)

where f1, . . . , fk are all piecewise-linear functions. Consider the following market M
with two goods G1, G2 and two traders T1, T2. T1 has 1 unit of G1, and T2 has 1 unit of
G2. Their utility functions are

u1(x1, x2) = x1 + f (x2) and u2(x1, x2) = f (x1) + x2, with f (x) =
{

2x if x ≤ 1/3,
2/3 if x > 1/3.

It can be shown that M has (1, 1) as an equilibrium and is non-monotone at (1, 1). Note
that, in general, the excess demand of a market with such utilities is a correspondence
instead of a map, and partial derivatives may not always exist. But in the definition
of non-monotone markets, we only need these properties in a local neighborhood of p,
like (1, 1) here.

Since linear functions are special cases of additively separable and piecewise-linear
functions, we get a corollary from Theorem 2.18 and Example 2.21, that finding an
approximate equilibrium in a market with additively separable and concave piecewise-
linear utilities is PPAD-hard, shown earlier in [Chen et al. 2009a]. Combining it with
the membership of PPAD proved in [Vazirani and Yannakakis 2011], we have

COROLLARY 2.22. The problem of computing an approximate market equilibrium
in a market with additively separable and concave piecewise-linear utilities is PPAD-
complete, even when each univariate function f j in (3) is either linear or has the form
of f in Example 2.21, that is, a linear function with a threshold.4

2.4. Polymatrix Games and Nash Equilibria

To prove Theorem 2.14 and 2.18, we give a polynomial-time reduction from the problem
of computing an approximate Nash equilibrium in a polymatrix game [Janovskaya
1968] with two pure strategies for each player. Such a game with n players can be
described by a 2n × 2n rational matrix P, with all entries between 0 and 1.5 An ε-

4The second part of the statement follows from the construction used in the proof of Theorem 2.18.
5Usually in a polymatrix game the 2 × 2 block diagonal matrices are set to 0, that is, P2i−1,2i−1 = P2i−1,2i =
P2i,2i−1 = P2i,2i = 0, for all i ∈ [n]. We do not impose such a requirement to simplify the reduction from
polymatrix games to markets later.
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well-supported Nash equilibrium is a vector x ∈ R2n
+ such that for all i ∈ [n], we have

x2i−1 + x2i = 1 and

xT · P2i−1 > xT · P2i + ε ⇒ x2i = 0,

xT · P2i > xT · P2i−1 + ε ⇒ x2i−1 = 0,

where P2i−1 and P2i denote the (2i − 1)th and (2i)th column vectors of P, respectively.
Let POLYMATRIX denote the following problem: given a polymatrix game P, find an

ε-well-supported Nash equilibrium with ε = 1/n.
It was shown in Daskalakis et al. [2009] that finding an exact Nash equilibrium of a

polymatrix game with two pure strategies for each player is PPAD-hard (it is not stated
explicitly there but follows from the proof of Lemma 6.3). We prove in Section 7 that
POLYMATRIX is PPAD-hard as well. The proof uses techniques developed in previous
work on Nash equilibria [Daskalakis et al. 2009; Chen et al. 2009b]. While its PPAD-
hardness is used here as a bridge to establish Theorem 2.14 and Theorem 2.18, we
think the result on POLYMATRIX is interesting for its own right.

THEOREM 2.23. POLYMATRIX. is PPAD-complete.6

2.5. Proof Sketch of the Hardness Reductions

We give a high-level overview of the constructions for the main results.
For Theorem 2.18, given any 2n× 2n polymatrix game P, we construct a market MP

in which the utility of each trader is either linear or from U . We then show that given
any ε-approximate equilibrium p of MP for some polynomially small ε, we can recover
a (1/n)-well-supported Nash equilibrium in polynomial time.

A building block of our construction is the linear price-regulating market [Chen
et al. 2009a; Vazirani and Yannakakis 2011]. We let τ and α denote two positive
parameters. Such a market consists of two traders T1, T2 and two goods G1, G2. Ti
owns τ units of Gi, i ∈ {1, 2}. The utility of T1 is (1+α)x1 + (1 − α)x2 and the utility of T2
is (1 − α)x1 + (1 + α)x2. Let πi denote the price of Gi, then we have the following useful
property: Even if we add more traders to the market, as long as their total endowment
of G1 and G2 is negligible compared to that of T1 and T2, the ratio of π1 and π2 must
lie between (1 − α)/(1 + α) and (1 + α)/(1 − α) at an approximate market equilibrium.

Our construction starts with the following blueprint for encoding a vector x of 2n
variables and the 2n linear forms xT · P j , j ∈ [2n], in MP. Let G1, . . . , G2n and H1, . . . ,
H2n denote 4n goods. Let τ denote a large enough polynomial in n. Let α and β denote
two polynomially small parameters with α � β. For each i ∈ [n], we first create a price-
regulating market over G2i−1 and G2i with parameters τ and α, and a price-regulating
market over H2i−1 and H2i with parameters τ and β. Then for each i ∈ [2n] and j ∈ [2n],
we add a trader, denoted by Ti, j , who owns Pi, j units of Hi and is only interested in Gj .

At this moment, the property of price-regulating markets mentioned above implies
that at any approximate equilibrium p, the ratio of π (H2i−1) and π (H2i) lies between
(1 − β)/(1 + β) and (1 + β)/(1 − β), and the ratio of π (G2i−1) and π (G2i) lies between
(1 − α)/(1 + α) and (1 + α)/(1 − α), where we use π (G) to denote the price of a good G in
p. Here is some wishful thinking: If for every i ∈ [n],

π (H2i−1) + π (H2i) = π (G2i−1) + π (G2i) = 2,

6Rubinstein [2015] has subsequently shown the PPAD-hardness of the ε-approximate equilibrium problem
for a polymatrix game even for some constant ε > 0. He uses then this result to show that computing an ε-
tight approximate market equilibrium for utility functions that either are linear or belong to a non-monotone
family U is PPAD-hard for some constant ε that depends on U .
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then we can extract a vector x from p as follows: For each i ∈ [2n], let

xi = π (Hi) − (1 − β)
2β

.

It is clear that x is nonnegative and x2i−1 + x2i = 1 for every i ∈ [n]. The linear forms
x · P j appear in the market MP as follows: The total money that traders Ti, j , i ∈ [2n],
spend on Gj is given by∑

i∈[2n]

Pi, j · π (Hi) =
∑

i∈[2n]

Pi, j · (2β xi + (1 − β)) = 2β · xT · P j + (1 − β)
∑

i∈[2n]

Pi, j .

Again with some wishful thinking, we assume that the sums
∑

i∈[2n] Pi, j are the same
over all j ∈ [2n]. Then an inequality such as

xT · P2 j−1 > xT · P2 j + 1/n (4)

would imply that the total money spent on G2 j−1 from traders Ti,2 j−1, i ∈ [2n], must be
strictly larger than the money spent on G2 j from traders Ti,2 j , i ∈ [2n]. From β � α,
this would in turn imply that the total demand for G2 j−1 from Ti,2 j−1 is strictly larger
than that for G2 j from Ti,2 j . (This is not trivial and needs a careful calculation, but
intuitively, β � α is crucial here, because the difference in the amount of money spent
on G2 j−1 and G2 j has a factor of β while the ratio of their prices π (G2 j−1) and π (G2 j)
is bounded using α given the price-regulating market over G2 j−1 and G2 j .) To achieve
an approximate market equilibrium, the price-regulating market over G2 j−1 and G2 j
must demand strictly more units of G2 j than G2 j−1, to balance the deficit. But this can
only happen when π (G2 j−1) and π (G2 j) are 1 + α and 1 − α, respectively.

However, this is not good enough and what we need to really finish the reduction is
to make sure that π (H2 j−1) = 1+β and π (H2 j−1) = 1−β whenever Equation (4) occurs,
so x2 j−1 = 1, x2 j = 0, and the Nash constraint is met (as x is defined using prices of Hj ’s
instead of Gj ’s). The missing piece of the puzzle is how to enforce at any approximate
market equilibrium the following ratio amplification:

π (G2 j−1)
π (G2 j)

= 1 + α

1 − α
⇒ π (H2 j−1)

π (H2 j)
= 1 + β

1 − β
.

It turns out that such a ratio amplification can be achieved by adding a long (O(log n))
chain of copies of a non-monotone market M as well as price-regulating markets and
traders who transfer money between them (like the Ti, j ’s above). For each j ∈ [n], we
add such a chain that starts from G2 j−1, G2 j and ends at H2 j−1, H2 j . The non-monotone
markets together with the price-regulating markets, can then step-by-step amplify the
ratio of two goods, either from (1 + α)/(1 − α) to (1 + β)/(1 − β) or from (1 − α)/(1 + α)
to (1 − β)/(1 + β), as desired.

The tricky part of the construction is that all the actions happen in the local neigh-
borhood of M, where the phenomenon of non-monotonicity appears. Once the chains
are added to MP, we show that the wishful thinking assumed earlier actually holds,
approximately though, and we get a polynomial-time reduction.

For Theorem 2.14 the major challenge is that we can no longer use the linear price-
regulating markets, but only CES utilities with a fixed ρ < −1. Note that we used
the following two properties of price-regulating markets: The price ratio is bounded
between (1 − α)/(1 + α) and (1 + α)/(1 − α); and must be equal to one of them if
the demand of G1 from the price-regulating market is different from that of G2. The
continuous nature of CES utilities, however, makes it difficult, if not impossible, to
construct a CES market that behaves similarly.
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Instead, we use the simple two-good two-trader market M from Gjerstad [1996],
which is itself a non-monotone market with three isolated market equilibria. The high-
level picture of the construction is similar to that of Theorem 2.18, in which we add
to MP a long chain of copies of the non-monotone market M for each j ∈ [n] starting
from G2 j−1, G2 j and ending at H2 j−1, H2 j . The proof of correctness, however, is more
challenging for which we need to first prove a few global properties of M. With these
properties, we show that whenever the ratio of π (G2 j−1) and π (G2 j) deviates from 1 by
a non-negligible amount, the chain would amplify the ratio step by step. By the end of
the chain at H2 j−1 and H2 j , the ratio converges to one of two constants that correspond
to the two nontrivial equilibria of M. Correctness of the reduction then follows.

3. FROM POLYMATRIX TO MARKETS WITH NON-MONOTONE AND LINEAR UTILITIES

We prove Theorem 2.18 in this section, which we restate here for convenience.

RESTATEMENT OF THEOREM 2.18. Let U be a non-monotone family of utility functions. If
there exists a market M ∈ MU such that M is non-monotone at a rational price vector
p, such that the excess demand Z1(p) of G1 at p is moderately computable, then the
problem U-MARKET is PPAD-hard.

Let U be a non-monotone family of utilities, and M ∈ MU be a market that is non-
monotone at a rational price vector p. We let k ≥ 2 denote the number of goods in M.
We assume that the excess demand Z1(p) of G1 at p is moderately computable. As we
discussed earlier, M, k, p, and Z1(p) (including the total supply of each good in M) are
considered as constants, independent of the polymatrix game we reduce from.

3.1. Normalized Polymatrix Games

To prove Theorem 2.18, we present a polynomial-time reduction from POLYMATRIX to
strongly connected markets in M∗

U . Let P be a rational 2n× 2n matrix that has entries
between 0 and 1. We first normalize P into a 2n×2n matrix P′: For i ∈ [2n], j ∈ [n], set

P ′
i,2 j−1 = 1/2 + (Pi,2 j−1 − Pi,2 j)/2 and P ′

i,2 j = 1/2 − (Pi,2 j−1 − Pi,2 j)/2.

It is clear that P′ is also a rational matrix with entries between 0 and 1. In addition,

P ′
i,2 j−1 + P ′

i,2 j = 1, for all i ∈ [2n] and j ∈ [n]. (5)

From the definition of ε-well-supported Nash equilibria, it is easy to show that

LEMMA 3.1. For ε ≥ 0, P and P′ have the same set of ε-well-supported equilibria.

From now on, we assume, without loss of generality, that the input polymatrix game
P is normalized, meaning that entries of P satisfy Equation (5).

3.2. Normalized Non-Monotone Markets

Note that in Examples 2.19, 2.20, and 2.21, the market we construct not only is non-
monotone at 1 = (1, 1) but also has Z1(1) = 0. (Indeed, 1 is an equilibrium in all three
examples.) The lemma below shows that this is not really a coincidence, since we can
always convert a non-monotone market into one that is non-monotone at 1, as shown
below. Recall that M ∈ MU is a market that is non-monotone at a rational vector p,
with k ≥ 2 goods, such that Z1(p) is moderately computable. We use M and p to prove
the following lemma:

LEMMA 3.2 (NORMALIZED NON-MONOTONE MARKETS). There exist two (not necessarily
rational) positive constants c and d with the following properties. Given any γ > 0, one
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can build a market Mγ ∈ MU with k ≥ 2 goods G1, . . . , Gk, in time polynomial in 1/γ ,
such that

Let fγ (x) denote the excess demand function of G1 when the price of G1 is 1 + x and
the prices of all other (k−1) goods are 1− x. Then fγ is well defined over [−c, c] with
| fγ (0)| ≤ γ and its derivative f ′

γ (0) = d > 0. For any x ∈ [−c, c], fγ (x) satisfies

| fγ (x) − fγ (0) − dx| ≤ |x/D|, where D = max{20, 20/d}.7

Moreover, the total supply of each of the k goods remains O(1) in Mγ .

PROOF. First, we construct M′ from M by scaling: For each trader with utility u and
initial endowment vector w ∈ Qk

+, replace them by w′
j = w j · π j for every j ∈ [k] and

u′(x1, . . . , xk) = u
(

x1

π1
, . . . ,

xk

πk

)
.

Since p is rational and positive, we have M′ ∈ MU . It is also easy to verify that M′
now is non-monotone at 1. Let g(x) denote the excess demand function of G1 when the
price of G1 is 1 + x and the prices of all other goods are 1 − x, then by the definition of
non-monotone markets, there exist two positive constants c and d such that g is well
defined over [−c, c], g(0) ≥ 0 and g′(0) = d > 0. The latter follows from the fact that the
excess demand at (1+ x, 1− x, . . . , 1− x) is the same as that at ((1+ x)/(1− x), 1, . . . , 1).
As d (and thus, D) is a constant, it follows from g′(0) = d that by setting c to be a small
enough constant: ∣∣g(x) − g(0) − dx

∣∣ ≤ |x/D|, for all x ∈ [−c, c].

Next, let Z′
1 = g(0) denote the excess demand of G1 in M′ at 1. Then Z′

1 = π1 · Z1(p)
and, thus, Z′

1 is also moderately computable. Given any γ > 0, we compute a γ -rational
approximation z of Z′

1. We assume, without loss of generality, that z is nonnegative;
otherwise, simply set z = 0. Finally, we construct Mγ from M′ by adding a trader with
z units of G1 who is only interested in Gk. It is clear that the total supply of each good
in Mγ remains O(1) as both p and Z1(p) are constants.

Let fγ (x) denote the excess demand function of G1 in Mγ , when the price of G1 is
1 + x and all other goods have price 1 − x. The construction of Mγ then implies that
fγ (x) = g(x) − z and, thus, | fγ (0)| ≤ γ . It follows that Mγ and fγ satisfy all the desired
properties with respect to constants c and d above.

3.3. Our Construction

Given a normalized 2n × 2n polymatrix game P, we construct a market MP ∈ M∗
U in

polynomial time (in the input size of P) as follows. First, we describe the two building
blocks of MP and introduce some useful notation for them.

Normalized Non-Monotone Market: We use the following notation. Given two pos-
itive rational numbers μ and γ , we use NM (μ, γ, G1, . . . , Gk) to denote the creation of
the following set of traders in MP. First, we make a new copy of Mγ in which the k
goods that they are interested in are G1, . . . , Gk. Then for each trader in Mγ with utility
function u(x1, . . . , xk) and endowment w = (w1, . . . , wk), where xj denotes the amount

7As it will become clear in the proof of Lemma 3.2, one can choose D to be any positive constant (by picking
a small enough constant c accordingly). Our choice of D = max{20, 20/d} (and the constant 20) just makes
sure that D is large enough for the proof of correctness of our reduction to work later.

Journal of the ACM, Vol. 64, No. 3, Article 20, Publication date: June 2017.



20:18 X. Chen et al.

of Gj she buys and w j denotes the amount of Gj she owns, replace w by μw and u by

u′(x1, . . . , xk) = u
(

x1

μ
, . . . ,

xk

μ

)
.

When both parameters μ and 1/γ are bounded from above by a polynomial in n, it takes
time polynomial in n to create these traders. Let fμ,γ (x) denote the excess demand of
G1 when the price of G1 is 1+ x and the prices of all other goods are 1− x, then we have
fμ,γ (x) = μ · fγ (x). From the properties of fγ stated in Lemma 3.2, fμ,γ is well defined
over [−c, c], satisfies | fμ,γ (0)| ≤ μγ , and

| fμ,γ (x) − fμ,γ (0) − μdx| ≤ |μx/D|, for x ∈ [−c, c], with D = max{20, 20/d}. (6)

Recall c and d are positive constants from Lemma 3.2, which do not depend on γ or μ.
Also note that the total supply of each good in NM (μ, γ, G1, . . . , Gk) is O(μ).

Price-Regulating Market: Let G1, . . . , G� denote � ≥ 2 goods in MP (where � is k or
2 below), and let λ and α denote two positive rational numbers, where α < 1. We use
PR(λ, α, G1, . . . , G�) below to denote the creation of the following two traders T1, T2, and
we refer to the submarket they form as a price-regulating market [Chen et al. 2009a;
Vazirani and Yannakakis 2011].

The endowment of T1 is (� − 1)λ units of G1, and the endowment of T2 is λ units of
G2, . . . , G� each. Let u1 and u2 denote their utility functions, both of which are linear:

u1(x1, . . . , x�) = (1 + α)x1 +
∑

2≤ j≤�

(1 − α)xj and

u2(x1, . . . , x�) = (1 − α)x1 +
∑

2≤ j≤�

(1 + α)xj,

where in both u1 and u2, we used xj to denote the amount of Gj bought.
We will see that, when λ is large enough and certain conditions are satisfied, a price-

regulating market basically requires the prices of G2, . . . , G� to be the same when � > 2;
and the ratio of prices of G1 and G2 to be between (1 − α)/(1 + α) and (1 + α)/(1 − α), in
any approximate market equilibrium.

Other than these two building blocks, all other traders in the market MP are indeed
single-minded: Each of them is only interested in one specific good and spends all her
budget on it. We use the following notation. First, we say a trader is a (τ, G1 : G2)-trader
if her endowment consists of τ units of G1 and she is only interested in G2. Second, we
say a trader is a (τ, G1, G2 : G3)-trader if her endowment consists of τ units of G1 and
G2 each, and she is only interested in G3.

Now, we describe the construction of the market MP. We start with its set of goods.
Without loss of generality, we always assume that n = 2t for some integer t. Then, the
market MP consists of the following O(ntk) = O(n log n) goods:

AUXi, G2i−1, j, G2i, j, and Si,�,r, for i ∈ [n], j ∈ [0 : 4t], � ∈ [4t] and r ∈ [3 : k].

Recall that k is the number of goods in the non-monotone market M. The main goods
in MP are G2i−1, j and G2i, j , while AUXi and Si,�,r are auxiliary. Informally, AUXi ’s are
introduced to balance the total money spent on G2i−1,0 and G2i,0 (see the proof of
Theorem 3.11). On the other hand, we need Si,�,r ’s only when k ≥ 3: When we need to add
an NM market over G2i−1,� and G2i,� as its goods 1 and 2 (with � ∈ [4t]), Si,�,3, . . . , Si,�,k
are used as goods 3, . . . , k. When k = 2, we do not need Si,�,r ’s in MP.

We also give some intuition about the choice of t = log n here. The key challenge for
the reduction is to make sure that in any approximate equilibrium, a gap between the
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Fig. 2. A chain of markets over groups Ri, j of goods, where j ∈ [0 : 4t]. Each edge from Gi, j to Gi, j+1
corresponds to a trader who owns n units of Gi, j and is only interested in Gi, j+1.

prices of G2i−1,0 and G2i,0 gets amplified in prices of G2i−1,4t and G2i,4t. More precisely,
whenever the ratio of the price of G2i−1,0 to that of G2i,0 is large (or small), the ratio of
the price of G2i−1,4t to that of G2i,4t must be even larger (or smaller); see Lemma 3.12
for the formal statement. This is achieved in our construction by 4t = 4 log n rounds of
minor amplifications, from G2i−1, j, G2i, j to G2i−1, j+1, G2i, j+1, for each j = 0, . . . , 4t − 1.

We divide all the goods, except the AUXi ’s, into the following n(4t + 1) groups {Ri, j},
where i ∈ [n] and j ∈ [0 : 4t]. For each i ∈ [n] and j ∈ [4t], we use Ri, j to denote

Ri, j = {G2i−1, j, G2i, j, Si, j,3, . . . , Si, j,k},
a group of k goods; for each i ∈ [n], we use Ri,0 to denote {G2i−1,0, G2i,0}.

Next, we list all the parameters used in the construction. We use α j to denote 2 j/n5,
for each j ∈ [0 : 4t] (thus, α0 = 1/n5 and α4t = 1/n). Recall the positive constant d from
Lemma 3.2. We let d∗ denote a positive rational number (a constant) that satisfies

1 − 1/D ≤ d∗d ≤ 1, where D = max{20, 20/d}.
The rest of parameters are

β = α4t = 1/n, μ = d∗n, τ = n2, γ = 1/n6, ξ = εnt, δ = ε t, and ε = 1/n8.

We explain some of the key parameters. First, ε is the approximation parameter of
market equilibria we are interested in. Next, each α j specifies the gap between prices
of G2i−1, j and G2i, j in the amplification we described earlier. More formally, if the ratio
of the price of G2i−1, j to that of G2i, j is (1 + α j)/(1 − α j) (or (1 − α j)/(1 + α j)), then the
ratio of G2i−1, j+1 to G2i, j+1 must be (1 + α j+1)/(1 − α j+1) (or (1 − α j+1)/(1 + α j+1)). So if
there is an α0-gap between G2i−1,0 and G2i,0, it would be amplified to a β-gap between
G2i−1,4t and G2i,4t. Finally, μ, τ , and γ are parameters used in the NM and PR markets
that we add to MP; ξ and δ are parameters used in the proof of correctness only.

Construction of MP. First, we use NM and PR to build a closed economy over each
group Ri, j . Here, by a closed economy over a group of goods, we mean a set of traders
whose endowments consist of goods from this group only and they are interested in
goods from this group only.

(1) For each group Ri, j , where i ∈ [n] and j ∈ [4t], we add a price-regulating market,

PR
(
τ, α j, G2i−1, j, G2i, j, Si, j,3, . . . , Si, j,k

)
.

We also add a non-monotone market,

NM
(
μ, γ, G2i−1, j, G2i, j, Si, j,3, . . . , Si, j,k

)
.

We will refer to them as the PR market and the NM market over Ri, j , respectively.
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(2) For each group Ri,0 of {G2i−1,0, G2i,0}, i ∈ [n], we add a price-regulating market,

PR
(
τ, α0, G2i−1,0, G2i,0

)
.

We will refer to it as the PR market over Ri,0.

Next, we add a number of single-minded traders who trade between different groups.
The initial endowment of each such trader consists of G2i−1, j and G2i, j of a group Ri, j
(one of them or both) and she is only interested in either G2i′−1, j ′ or G2i′, j ′ of another
group Ri′. j ′ , where (i, j) �= (i′, j ′). We will refer to her as a trader who trades from Ri, j
to Ri′, j ′ .

At the same time, we construct a weighted directed graph G = (V, E), which will be
used in the proof of correctness only. Here each group of goods Ri, j corresponds to a
vertex in the graph G so |V | = n(4t + 1). Now given two groups Ri, j and Ri′, j ′ , we add
an edge from Ri, j to Ri′, j ′ in G whenever we create a set of traders who trade from Ri, j
to Ri′, j ′ . Our construction below always makes sure that, whenever we create a set of
traders who trade from Ri, j to Ri′, j ′ , the total initial endowment of these traders must
consist of the same amount, say w > 0, of G2i−1, j and G2i, j . We then set w as the weight
of this edge. We will prove, by the end of the construction, that G is a strongly connected
graph and for each group Ri, j , its total in-weight is the same as its total out-weight.

Here is the construction:

(1) For each i ∈ [2n], we use Gi to denote Gi,0 and Hi to denote Gi,4t for convenience. For
each pair i, j ∈ [n], we add to MP the following four traders who trade from group
Ri,4t to group R j,0: one (P2i−1,2 j−1, H2i−1 : G2 j−1)-trader, one (P2i−1,2 j, H2i−1 : G2 j)-
trader, one (P2i,2 j−1, H2i : G2 j−1)-trader, and one (P2i,2 j, H2i : G2 j)-trader. Since P is
normalized, we have

P2i−1,2 j−1 + P2i−1,2 j = P2i,2 j−1 + P2i,2 j = 1.

Thus, the total endowment of these four traders consists of one unit of H2i−1 and
H2i each, so we add an edge in G from Ri,4t to R j,0 with weight 1. At this moment,
the total out-weight of each Ri,4t in G (a complete bipartite graph) is n, and the total
in-weight of each Ri,0 in G is n.

(2) For each i ∈ [n] and j ∈ [0 : 4t − 1], we add two traders who trade from group Ri, j
to Ri, j+1: one (n, G2i−1, j : G2i−1, j+1)-trader and one (n, G2i, j : G2i, j+1)-trader. We also
add an edge in graph G from Ri, j to Ri, j+1 with weight n.

This finishes the construction of G. It is also easy to check that G is strongly connected
and every vertex (group) has both its total in-weight and out-weight equal to n.

Finally, we add traders between AUX j and R j,0 for each j ∈ [n]. Let

r2 j−1 = 2n − ∑
i∈[2n] Pi,2 j−1 > 0 and r2 j = 2n − ∑

i∈[2n] Pi,2 j > 0. (7)

Because the polymatrix game P is normalized, note that

r2 j−1 + r2 j = 2n, for any j ∈ [n].

Recall that β = α4t = 1/n. We add to MP three traders: one ((1 − β)r2 j−1, AUX j : G2 j−1)-
trader, one ((1 − β)r2 j, AUX j : G2 j)-trader, and one ((1 − β)n, G2 j−1, G2 j : AUX j)-trader.

This finishes the construction of MP. It follows immediately from the strong connec-
tivity of G that the economy graph of MP is strongly connected and, thus, MP is a valid
input of problem U-MARKET and can be constructed from P in polynomial time. We also
record the following properties of MP:

LEMMA 3.3. For each i ∈ [n], the total supply of AUXi is 2(1 − β)n;
For each i ∈ [2n], the total supply of Gi,0 is n2 + O(n);
For each i ∈ [n] and j ∈ [4t], the total supply of G2i−1, j is (k − 1)n2 + O(n); and
For each i ∈ [n], j ∈ [4t] and � ∈ [3 : k], the total supply of G2i, j and Si, j,� is n2 + O(n).
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Fig. 3. Market MP: Black arrows correspond to single minded-traders from Hi ’s to Gj ’s. Dashed arrows
correspond to the chains of markets over Ri, j ’s pictured in Figure 2.

3.4. Proof of Correctness

We introduce additively approximate market equilibria to simplify the presentation:

Definition 3.4. We say p is an ε-additively approximate market equilibrium of a
market M, for some ε ≥ 0, if there exists a vector z ∈ Z(p) such that zj ≤ ε for all j.

From the definitions, if the total supply of each good in M is bounded from above by
L, then any ε-approximate equilibrium of M must be an (εL)-additively approximate
equilibrium as well.

Now, let p denote a (1/(kn10))-approximate equilibrium of MP. Then, by Lemma 3.3
and the observation above, it must be an ε-additively approximate equilibrium of MP
as well, where ε = 1/n8. We prove in the rest of this section that given an ε-additively
approximate equilibrium p of MP, we can compute a (1/n)-well-supported Nash equi-
librium of P in polynomial time. Theorem 2.18 then follows. In the proof below, we use
π (G) to denote the price of a good G in the price vector p. We use a = b± c, where c > 0,
to denote the inequality b − c ≤ a ≤ b + c.

First, from the PR markets in MP, we prove the following lemma:

LEMMA 3.5. Let p denote an ε-additively approximate equilibrium of MP. Then

1 − α j

1 + α j
≤ π (G2i−1, j)

π (G2i, j)
≤ 1 + α j

1 − α j
, for all i ∈ [n] and j ∈ [0 : 4t].

Furthermore, we have π (G2i, j) = π (Si, j,3) = · · · = π (Si, j,k) for all i ∈ [n] and j ∈ [4t].
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PROOF. We consider the case when i ∈ [n] and j ∈ [4t], since the case j = 0 is simpler.
Denote the two traders in the PR market over Ri, j by T1 and T2. We let

pmin = min
{
π (G2i, j), π (Si, j,3), . . . , π (Si, j,k)

}
,

pmax = max
{
π (G2i, j), π (Si, j,3), . . . , π (Si, j,k)

}
.

First, assume for contradiction that

1 + α j

π (G2i−1, j)
<

1 − α j

pmin
.

It follows that neither T1 nor T2 is interested in G2i−1, j and they only buy goods from
Ri, j that are priced at pmin. Let Fmin ⊂ Ri, j denote the set of such goods, then we
have G2i−1, j /∈ Fmin. On the other hand, by the definition of pmin, the budget of both T1
and T2 is at least (k − 1)τ pmin. It follows that the total demand for goods in Fmin is at
least 2(k − 1)τ . However, the total supply of goods in Fmin is at most (k − 1)τ + O(n),
contradicting with the assumption that p is an ε-additively approximate equilibrium.

Next, assume for contradiction that

1 − α j

π (G2i−1, j)
>

1 + α j

pmax
,

and we let Fmax ⊂ Ri, j denote the set of goods priced at pmax. Then, neither T1 nor T2 is
interested in goods from Fmax and they only buy goods from Ri, j − Fmax. In particular,
T2 spends the part of budget she earns from selling Fmax on goods in Ri, j − Fmax as well.
As goods in Fmax are the most expensive among Ri, j , the demand for one of the goods
in Ri, j − Fmax must be larger than the supply by �(τ ), contradicting the assumption
that p is an ε-additively approximate equilibrium.

Combining these two steps, we immediately get

1 − α j

1 + α j
≤ π (G2i−1, j)

pmax
≤ π (G2i−1, j)

π (G2i, j)
≤ π (G2i−1, j)

pmin
≤ 1 + α j

1 − α j
. (8)

In the rest of the proof, we show that π (G2i, j) = π (Si, j,3) = · · · = π (Si, j,k).
Assume for contradiction that this is not the case. Then, pmax > pmin, which implies

that neither T1 nor T2 is interested in Fmax. This leads us to the same contradiction,
following the argument of the second step. The only difference is that π (G2i−1, j) now
might be larger than pmax but can be bounded using Equation (8).

Combining Lemma 3.5 (both π (G2i, j) = π (Si, j,3) = · · · = π (Si, j,k) and the bounds on
the ratio of π (G2i−1, j) to π (G2i, j)) and α j = o(1) � c, we can now use fμ,λ to derive the
excess demand of G2i−1, j from the NM market over Ri, j , given π (G2i−1, j) and π (G2i, j).
From now on, for each group Ri, j , i ∈ [n] and j ∈ [0 : 4t], we let

πi, j = π (G2i−1, j) + π (G2i, j).

Next note that only one trader is interested in AUX j and her budget is (1 − β)nπ j,0.
From this, we have the following lemma.

LEMMA 3.6. Let p be an ε-additively approximate market equilibrium of MP with
ε = 1/n8. If we scale p so π j,0 = 2 for some j ∈ [n], then π (AUX j) ≥ 1 − O(ε/n)

PROOF. As the total supply of AUX j is 2n(1 − β), we have

2n(1 − β) ≤ (2n(1 − β) + ε)π (AUX j).

This finishes the proof of the lemma.
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By using the strong connectivity of the graph G and the property that each vertex in
G has the same total in-weight and out-weight, we prove the following lemma:

LEMMA 3.7. Let p denote an ε-additively approximate equilibrium of MP. Let

πmax = max
i, j

πi, j and πmin = min
i, j

πi, j,

where the max and min are both taken over all i ∈ [n] and j ∈ [0 : 4t]. If we scale p so
πmin = 2, then we must have πmax = 2 + O(ε t).

PROOF. For convenience, we use u and v to denote vertices (groups) in G. For each u
in G, we use πu to denote πi, j if u corresponds to Ri, j . An edge from u to v of weight w
means traders from u to v spend wπu on v.

Now fix a vertex v and let R denote its corresponding group of goods. By Lemma 3.5,
we know the prices of all goods in R are close to each other. As p is an ε-approximate
market equilibrium, we must have

total money spent on goods in R − total worth of goods in R ≤ O(εkπv) = O(επv). (9)

For those traders in the closed economy over R, by Walras’ law, the money they spend
on R is equal to the total worth of their initial endowments of R. So they cancel each
other in Equation (9). Below we enumerate all other traders in MP who either own
goods in R at the beginning or are interested in goods in R:

(1) Let N−(v) denote the set of predecessors of v. Then for each u ∈ N−(v), the amount
of money that traders from u to v spend on R is wu,v · πu, where wu,v denotes the
weight of edge (u, v).

(2) Let N+(v) denote the set of successors of v. Then for each u ∈ N+(v), the total worth
of goods in R owned by traders from v to u at the beginning is wv,u · πv.

(3) For the special case when R = R j,0 for some j ∈ [n], we have three more traders:
one ((1 − β)r2 j−1, AUX j : G2 j−1)-trader, one ((1 − β)r2 j, AUX j : G2 j)-trader, and
one ((1 − β)n, G2 j−1, G2 j : AUX j)-trader.

Since these are all the traders in MP relevant to goods in R, from Lemma 3.6 and
Equation (9), ∑

u∈N−(v)

wu,v · πu −
∑

u∈N+(v)

wv,u · πv ≤ O(επv), for each v ∈ V . (10)

Now we use Equation (10) to prove the lemma:

(1) First, each group Ri, j , where i ∈ [n] and j ∈ [4t − 1], has exactly one predecessor
Ri, j−1 and one successor Ri, j+1, both with weight n. From Equation (10), we have

πi, j−1 − πi, j ≤ O(επi, j/n), for all i ∈ [n] and j ∈ [4t − 1]. (11)

(2) Next, each group Ri,4t, where i ∈ [n], has only one predecessor Ri,4t−1 with weight
n, and n successors each with weight 1. From Equation (10), we have

πi,4t−1 − πi,4t ≤ O(επi,4t/n), for all i ∈ [n]. (12)

(3) Finally, each group Ri,0, where i ∈ [n], has n predecessors {R�,4t}�∈[n], all of weight
1, and has one successor Ri,1 with weight n. From Equation (10), we have∑

�∈[n] π�,4t − nπi,0 ≤ O(επi,0), for all i ∈ [n]. (13)

Let πi, j = πmin = 2 after scaling and πx,y = πmax. Using Equations (11) and (12), we
have

πi,0 ≤ (1 + O(ε/n))4t · πi, j = 2(1 + O(ε t/n)) = 2 + O(ε t/n),
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where we used the fact that ε t/n � 1. Similarly, we also have

πx,4t ≥ (1 + O(ε/n))−4t · πmax ≥ (1 − O(ε t/n))πmax.

Combining these two bounds with Equation (13), we get

(n + O(ε))(2 + O(ε t/n)) ≥ (n + O(ε))πi,0 ≥
∑
�∈[n]

π�,4t ≥ 2(n − 1) + (1 − O(ε t/n))πmax.

Solving it for πmax gives us

πmax ≤ 2n + O(ε) + O(εt) + O(ε2t/n) − 2(n − 1)
1 − O(εt/n)

= 2 + O(εt)
1 − O(εt/n)

= 2 + O(εt).

This finishes the proof of the lemma.

Using Lemma 3.7, we can also prove the following upper bound for π (AUX j):

LEMMA 3.8. Let p denote an ε-additively approximate market equilibrium of MP with
ε = 1/n8. If we scale p so π j,0 = 2 for some j ∈ [n], then π (AUX j) ≤ 1 + O(ε t).

PROOF. We revisit Equation (9). Let v denote the vertex that corresponds to R j,0.
Plugging in Equation (9), the list of traders enumerated in the proof of Lemma 3.7,

we have ∑
�∈[n]

π�,4t + 2n(1 − β) · π (AUX j) − nπ j,0 − (1 − β)nπ j,0 ≤ O(επ j,0).

The lemma then follows directly from Lemma 3.7.

From now on, we always use p to denote the scaled price vector with πmin = 2. Using
Lemmas 3.6, 3.7, and 3.8 together, we have

2 ≤ πi, j = π (G2i−1, j) + π (G2i, j) ≤ 2 + O(ε t) and π (AUXi) = 1 ± O(ε t), (14)

for all i ∈ [n] and j ∈ [0 : 4t], where the last equation follows from

(πi,0/2)(1 − O(ε/n)) ≤ π (AUXi) ≤ (πi,0/2)(1 + O(εt)).

For convenience, we let δ = ε t.
Recall that we use Hi to denote the good Gi,4t. For each i ∈ [n], we let

θi = π (H2i−1) + π (H2i)
2

.

From Equation (14), we get the following corollary:

COROLLARY 3.9. For every i ∈ [n], we have 1 ≤ θi ≤ 1 + O(δ).

Next, we use Walras’ law to show that the excess demand of each good is close to 0
from both sides:

LEMMA 3.10. If p is an ε-additively approximate equilibrium of MP. Then there is a
vector z ∈ Z(p) such that |z|∞ ≤ O(εnt).

PROOF. Given a vector z ∈ Z(p) and a good G in MP, we let z(G) denote the excess
demand of G in z. By definition, we know there is a vector z ∈ Z(p) such that z(G) ≤ ε
for all G, thus |z(G)| ≤ ε for goods G with positive excess demand. By Walras’ law we
also have z ·p = 0. By Lemmas 3.5, 3.6, 3.7, and 3.8, we know that all prices are close to
each other. As the total number of goods in MP is O(nt) and z(G) ≤ ε for all G, it follows
from Walras’ law that |z(G)| ≤ O(εnt) for all G with negative excess demand.
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From now on, we let ξ = εnt = log n/n7. Now, we are ready to recover a (1/n)-well-
supported Nash equilibrium of the polymatrix game P from the price vector p. Set x to
be the following 2n-dimensional nonnegative vector:

x2i−1 = π (H2i−1) − (1 − β)θi

2βθi
and x2i = π (H2i) − (1 − β)θi

2βθi
. (15)

Recall that β = α4t = 1/n. It is easy to verify that x2i−1 + x2i = 1 for each i ∈ [n]. Here
xi ≥ 0 follows from Lemma 3.5. To finish the proof, we prove the following theorem:

THEOREM 3.11. When n is sufficiently large, x from Equation (15) is a (1/n)-well-
supported Nash equilibrium of P.

We need the following key lemma to establish Theorem 3.11. Recall that Gi is Gi,0.

LEMMA 3.12. For every i ∈ [n], we have

1 + α0

π (G2i−1)
= 1 − α0

π (G2i)
⇒ 1 + β

π (H2i−1)
= 1 − β

π (H2i)
and

1 − α0

π (G2i−1)
= 1 + α0

π (G2i)
⇒ 1 − β

π (H2i−1)
= 1 + β

π (H2i)
.

Before proving Lemma 3.12, we use it to prove Theorem 3.11:

PROOF OF THEOREM 3.11. Assume for contradiction that the vector x, we construct
from p in Equation (15) is not a (1/n) well-supported Nash equilibrium of P. Then
without loss of generality, we assume that

xT · P1 > xT · P2 + 1/n, (16)

where P1 and P2 denote the first and second columns of P, respectively, but x2 > 0.
To reach a contradiction, by Lemma 3.12, it suffices to show that Equation (16)

implies that

1 + α0

π (G1)
= 1 − α0

π (G2)
, (17)

because it then implies that (1 + β)/π (H1) = (1 − β)/π (H2) and thus, x2 = 0 by Equa-
tion (15).

To prove Equation (17), we first compare the total money spent on goods G1 and G2
from all traders in MP except the two traders in the PR market over G1 and G2, and
show that the money spent on G1 is considerably larger. Given that the prices of G1 and
G2 are very close, it implies that the demand of G1 from these traders is strictly larger
than that of G2. As p is an approximate market equilibrium and G1, G2 have the same
total supply in MP, we have that the PR market over G1 and G2 must demand strictly
more G2 than G1 to have things balanced, which can happen only when Equation (17)
holds.

We start by enumerating all traders that are interested in G1 and G2, except the two
traders in the PR market over G1 and G2:

(1) For each i ∈ [2n], there is a (Pi,1, Hi : G1)-trader. The total money these traders
spend on G1 is given by∑

i∈[2n]

Pi,1 · π (Hi) =
∑

i∈[2n]

Pi,1 · (1 − β + 2β · xi) · θ�i/2�.
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(2) For each i ∈ [2n], there is a (Pi,2, Hi : G2)-trader. The total money these traders
spend on G2 is given by∑

i∈[2n]

Pi,2 · π (Hi) =
∑

i∈[2n]

Pi,2 · (1 − β + 2β · xi) · θ�i/2�.

(3) Recall r2 j−1 and r2 j in Equation (7). There is one ((1 − β)r1, AUX1 : G1)-trader, who
spends her budget (1−β)r1 ·π (AUX1) on G1. There is one ((1−β)r2, AUX1 : G2)-trader,
who spends her budget (1 − β)r2 · π (AUX1) on G2.

We denote by M1 (respectively, M2) the total money these traders spend on G1 (respec-
tively, G2). Then,

M1 =
∑

i∈[2n]

Pi,1 · (1 − β + 2β · xi) · θ�i/2� + (1 − β)r1 · π (AUX1)

Plugging in θ�i/2� ≥ 1, π (AUX1) ≥ 1 − O(δ) and the definition of r1, we get

M1 ≥ 2n(1 − β) + 2β · xT · P1 − O(nδ).

Similarly, we also have the total money spent on G2 is

M2 =
∑

i∈[2n]

Pi,2 · (1 − β + 2β · xi) · θ�i/2� + (1 − β)r2 · π (AUX1).

Plugging in θ�i/2� ≤ 1 + O(δ), π (AUX2) ≤ 1 + O(δ), and the definition of r2, we get

M2 ≤ 2n(1 − β) + 2β · xT · P2 + O(nδ).

Combining these two bounds with Equation (16), we get

M1 ≥ M2 + 2β · (1/n) − O(nδ) = M2 + �(β/n),

since β/n = 1/n2 � nδ. Hence, the difference between the demands for G1 and G2 from
these traders is

M1

π (G1)
− M2

π (G2)
≥ M2 + �(β/n)

π (G1)
− M2(1 + α0)

π (G1)(1 − α0)
= �(β/n)

π (G1)
− M2

π (G1)
· 2α0

1 − α0
= ω(ξ ),

where the last inequality used M2 = O(n), α0 = 1/n5, β = 1/n, and ξ = log n/n7.
The only other traders that are interested in G1, G2 are the two traders in the price-

regulating market over R1,0 denoted by T1 and T2. Also, from the construction of MP,
the total supply of G1 is exactly the same as that of G2. By Lemma 3.10, we know that
the total demand of G1 from T1 and T2 must be strictly smaller than the total demand
of G2 from them, which in turn implies that the total demand of G1 from T1 and T2
must be strictly smaller than the total supply of G1 from T1 and T2 by Walras’ law.

Assume Equation (17) does not hold, then by Lemma 3.5, we must have

1 + α0

π (G1)
>

1 − α0

π (G2)
.

This implies that the (unique) optimal bundle of T1 is to buy back her initial endowment
of G1 and thus, the total demand of T1 and T2 for G1 is at least as much as the
total supply of G1 from T1 and T2, contradicting with Lemma 3.10. The theorem then
follows.

Finally, we prove Lemma 3.12, which crucially relies on properties (the function fμ,γ

in particular) of the NM markets added in MP. By induction it suffices to prove

Journal of the ACM, Vol. 64, No. 3, Article 20, Publication date: June 2017.



The Complexity of Non-Monotone Markets 20:27

LEMMA 3.13. For every i ∈ [n] and j ∈ [4t], we have

1 + α j−1

π (G2i−1, j−1)
= 1 − α j−1

π (G2i, j−1)
⇒ 1 + α j

π (G2i−1, j)
= 1 − α j

π (G2i, j)
and

1 − α j−1

π (G2i−1, j−1)
= 1 + α j−1

π (G2i, j−1)
⇒ 1 − α j

π (G2i−1, j)
= 1 + α j

π (G2i, j)
.

To this end, we examine a group Ri, j , i ∈ [n], and j ∈ [4t] more closely. For conve-
nience, we scale the price vector p again so πi, j = π (G2i−1, j) + π (G2i, j) = 2. Note that
what we need to prove in Lemma 3.13 remains the same after scaling. We are inter-
ested in the total demand of G2i−1, j from all traders in MP except those two traders in
the price-regulating market PR over Ri, j .

First, for the NM market over Ri, j , we use f (x) to denote the excess demand (within
the NM market only) for G2i−1, j when the price of G2i−1, j is 1 + x and the prices of
G2i, j, Si, j,3, . . . , Si, j,k are 1 − x. Let μ = d∗n = O(n) and γ = 1/n6. Then f ≡ fμ,γ in
Equation (6), and hence has the following properties:

| f (0)| = O(μγ ) and | f (x) − f (0) − μdx| ≤ |μx/D|, for all x ∈ [−c, c], (18)

where D = max{20, 20/d} and c > 0 are both constants independent of n. So, when n
is sufficiently large, we have β = α4t = 1/n � c. Next, we use h(x, y) to denote

h(x, y) = excess demand of G2i−1, j from all traders except those in the PR over Ri, j,

when the price of G2i−1, j−1 is 1 + y, the price of G2i−1, j is 1 + x, and the prices of G2i, j,
Si, j,3, . . . , Si, j,k are 1 − x. By Lemmas 3.5 and 3.7, we are interested in x, y, satisfying

|x| ≤ α j and |y| ≤ α j−1 + O(δ).

Using f , we obtain the following more explicit form of h, since other than the NM and
PR markets over Ri, j , there are n units of G2i−1, j and only one (n, G2i−1, j−1 : G2i−1, j)-
trader interested in G2i−1, j :

h(x, y) = f (x) + n(1 + y)
1 + x

− n = f (x) − nx
1 + x

+ ny
1 + x

.

We now use Equation (18) to prove the following useful lemma about h(x, y):

LEMMA 3.14. For all x and y with |x| ≤ 3|y| and |y| = α j−1 ± O(δ), we have

h(x, y) > ny/2 if y > 0 and h(x, y) < ny/2 if y < 0.

PROOF. For x/(1 + x), we can approximate it by x when |x| is small:

|x/(1 + x) − x | = x2/(1 + x) ≤ 2x2.

For f (x), by Equation (18), we can approximate it by μdx:

| f (x) − μdx | ≤ | f (0)| + |μx/D| = O(μγ ) + |nx/20|,
where we used D = max{20, 20/d} and the assumption that 1 − 1/D ≤ d∗d ≤ 1.

Thus, we can approximate f (x)−nx/(1+x) using (μd−n)x, where the absolute value
of error is bounded by 2nx2 + O(μγ ) + |nx/20|. On the other hand, by the choice of d∗,

−nx/20 ≤ −nx/D ≤ (μd − n)x ≤ 0.

Therefore, we can bound the absolute value | f (x) − nx/(1 + x)| by

2nx2 + O(μγ ) + |nx/10|.
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From μ = O(n), γ = 1/n6, |x| ≤ 3|y| and |y| = α j−1 ± O(δ), this can be trivially bounded
from above by |ny/3|. The lemma then follows, since |ny/(1 + x)| > |5ny/6|.

We are now ready to prove Lemma 3.13:

PROOF OF LEMMA 3.13 We scale p so π (G2i−1, j) + π (G2i, j) = 2. Assume that

1 + α j−1

π (G2i−1, j−1)
= 1 − α j−1

π (G2i, j−1)
or

1 − α j−1

π (G2i−1, j−1)
= 1 + α j−1

π (G2i, j−1)
. (19)

We refer to the case that the first equation of Equation (19) holds as Case 1, and the
case that the second equation holds as Case 2. In Case 1, we have y = α j−1 ± O(δ),
and in Case 2, we have y = −α j−1 ± O(δ) by Lemma 3.5 and Lemma 3.7. Moreover,
from Lemma 3.5, we have |x| ≤ α j and thus, it always holds that |x| ≤ 3|y|, since
α j = 2α j−1 = ω(δ). Therefore, we can conclude from Lemma 3.14 that

h(x, y) > ny/2 (in Case 1) or h(x, y) < ny/2 (in Case 2)

holds, respectively. Because nα j−1 ≥ nα4t � ξ , Lemma 3.10 implies that the excess
demand of G2i−1, j , within the price-regulating market PR over Ri, j , is either strictly
negative or strictly positive, respectively.

When it is strictly negative (i.e., in Case 1), we know that the first trader T1 of the
price-regulating market does not spend all her budget on G2i−1, j . This combined with
Lemma 3.5 implies

1 + α j

π (G2i−1, j)
= 1 − α j

π (G2i, j)
.

Similarly, when it is strictly positive (in Case 2), we conclude that the second trader
T2 must be interested in G2i−1, j as well. This combined with Lemma 3.5 implies that

1 − α j

π (G2i−1, j)
= 1 + α j

π (G2i, j)
.

This finishes the proof of the lemma.

4. FROM POLYMATRIX TO MARKETS WITH CES UTILITIES

In this section, we prove Theorem 2.14, which we restate here for convenience.
RESTATEMENT OF THEOREM 2.14. For any rational constant ρ < −1, the problem ρ-CES-

APPROX is PPAD-hard.

Let ρ < −1 be a fixed rational number and let P be a normalized 2n× 2n polymatrix
game. First, we examine more closely the non-monotone CES market of Example 2.19,
with two goods and two traders. We then describe the construction of a strongly con-
nected market MP in which every trader has a CES utility of parameter ρ. Finally, we
show that given any approximate market equilibrium p of MP, one can recover a well-
supported Nash equilibrium of P efficiently. As we will see, the construction of MP is
similar to that of Section 3, but the proof of correctness is more involved.

4.1. Properties of the Excess Spending Function of Example 2.19

We need the following notion of excess spending. Let S denote a subset of traders. Given
p and a good G, the excess spending on G from traders in S is the product of π (G) and
the excess demand of G from S:(

total demand of G from S − total supply of G from S
) × π (G).

For convenience, we always use r > 1 to denote −ρ.
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Let M denote the following market described in Example 2.19 with two goods G1, G2
and two traders T1, T2: T1 has 1 unit of G1, T2 has 1 unit of G2, and their utilities are

u1(x1, x2) = (
α · xρ

1 + xρ

2

)1/ρ and u2(x1, x2) = (
xρ

1 + α · xρ

2

)1/ρ

for some rational number α > 0. By Equation (1), one can show that given any positive
prices π1 and π2, the optimal bundles (x1,1, x1,2) and (x2,1, x2,2) are unique and must
satisfy

x1,1

x1,2
=

(
α · π2

π1

)1/(1+r)

and
x2,1

x2,2
=

(
1
α

· π2

π1

)1/(1+r)

. (20)

It is clear that (1, 1) is a market equilibrium of M.
From now on, we assume that α is a positive rational number such that a = α1/(r+1)

is rational as well. We are interested in the excess spending f (x) on G1 from T1 and T2
when the prices π1 = 1 + x and π2 = 1 − x with x ∈ (−1, 1). Let mi, j denote the amount
of money Ti spends on Gj , then

m1,1

m1,2
= a

(
π1

π2

)r/(1+r)

and
m2,1

m2,2
= 1

a

(
π1

π2

)r/(1+r)

.

We also have m1,1 + m1,2 = π1. This gives us an explicit form of m1,1 as a function of x:

m1,1(x) = π1

1 + 1
a

(
π2
π1

) r
1+r

= 1 + x

1 + 1
a

( 1−x
1+x

) r
1+r

.

Similarly, we have the following explicit form of m2,1, as a function of x:

m2,1(x) = π2

1 + a
(

π2
π1

) r
1+r

= 1 − x

1 + a
( 1−x

1+x

) r
1+r

.

The excess spending function f (x) on G1 from T1 and T2 is then

f (x) = m1,1(x) + m2,1(x) − (1 + x), for x ∈ (−1, 1).

It is easy to show that f (0) = 0 and f (x) = − f (−x) for any x ∈ (−1, 1). By symmetry,

f (x) = − f (−x) ⇒ f ′(x) = f ′(−x) ⇒ f ′′(x) = − f ′′(−x) ⇒ f ′′(0) = 0.

Our first goal is to prove the following properties about f :

LEMMA 4.1. When a > (r + 1)/(r − 1) is rational, f ′(0) > 0 is also rational, and f has
three roots in (−1, 1). Let {−θ, 0, θ } denote these roots, with θ > 0. Then, f ′(θ ) < 0.

PROOF. First, we replace x by the following variable y. Let

y1+r = 1 − x
1 + x

and x = 1 − y1+r

1 + y1+r . (21)

It suffices to show that, when a > (r + 1)/(r − 1), the following function p(y) has three
roots over (0,+∞):

p(y) = 2
(1 + y1+r)(1 + yr/a)

+ 2y1+r

(1 + y1+r)(1 + ayr)
− 2

1 + y1+r .

Let q(y) = (1 + y1+r)(1 + yr/a)(1 + ayr) · p(y). Then, it suffices to show that

q(y) = 2(1 + ayr) + 2y1+r(1 + yr/a) − 2(1 + yr/a)(1 + ayr) = 2
a

yr(y1+r − ayr + ay − 1)

Journal of the ACM, Vol. 64, No. 3, Article 20, Publication date: June 2017.



20:30 X. Chen et al.

Fig. 4. The excess spending function f .

has three roots. Taking the derivative of h(y) = y1+r − ayr + ay − 1, we get

h′(y) = (r + 1)yr − ar yr−1 + a.

It is easy to see that h(0) = −1 < 0, h(1) = 0, and h(y) → +∞ when y → +∞. Moreover,

h′(1) = (r + 1) − ar + a = (r + 1) − a(r − 1) < 0

when a > (r + 1)/(r − 1). This immediately implies that h has at least three roots in
(0,+∞) and, thus, f has at least three roots in (−1, 1). Next, we show that h has at
most three roots. To see this, we have

h′′(y) = r(r + 1)yr−1 − ar(r − 1)yr−2 = r yr−2((r + 1)y − a(r − 1)).

Therefore, there is a threshold b = a(r − 1)/(r + 1) > 0, such that h′′(y) > 0 when y > b;
and h′′(y) < 0 when y < b. This implies that h′(b) is the minimum of h′ over [0,+∞). It
follows from h′(b) ≤ h′(1) < 0 that h′ has exactly one root in (0, b) and exactly one root
in (b,+∞). This implies that h has at most three roots in (0,+∞) and, thus, f has at
most three roots in (−1, 1). As a result, f has exactly three roots.

Let {−θ, 0, θ } denote the three roots of f with θ > 0. Then {y(−θ ), 1, y(θ )} are exactly
the three roots of h. From the proof, we also have f ′(0) > 0 and f ′(θ ) < 0. To see this,

f (x) = p
(
y(x)

) ⇒ f ′(x) = p′(y) ·
(

1
1 + r

)
·
(

1 − x
1 + x

) −r
1+r

· −2
(1 + x)2 .

This implies that f ′(0) = −2 p′(1)/(1 + r). Taking the derivative of

(1 + y1+r)(1 + yr/a)(1 + ayr) · p(y) = 2yrh(y)
/

a

and plugging in h(1) = p(1) = 0, we get

p′(1) = h′(1)/(1 + a)2 < 0,

and, thus, f ′(0) > 0 is rational. By using h(y(θ )) = 0 and h′(y(θ )) > 0, we can similarly
show that f ′(θ ) < 0. The lemma follows.

From now on, we assume that a > (r + 1)/(r − 1) and let {−θ, 0, θ } denote the three
roots of f over (−1, 1), with θ > 0. Let λ = f ′(0), which is rational and positive. Let

g(x) = f (x) − λx, for x ∈ (−1, 1).

From the definition of g(x), we have g(0) = 0, g′(0) = 0, and g′′(0) = 0.

Journal of the ACM, Vol. 64, No. 3, Article 20, Publication date: June 2017.



The Complexity of Non-Monotone Markets 20:31

Fig. 5. The function g and the line −λx.

Next, we show that when a is chosen carefully, g satisfies the following property:

LEMMA 4.2. Given any rational number r > 1, there is a rational number a such that
a > (r+1)/(r−1), α = a1+r is rational, and g(x) < 0 for all x ∈ (0, 1). From the symmetry
of g, g(x) > 0 for all x ∈ (−1, 0).

PROOF. Assume for contradiction that there is an x∗ ∈ (0, 1), such that g(x∗) ≥ 0 and
g(−x∗) ≤ 0. Similar to the proof of Lemma 4.1, we use y in Equation (21) to replace x.
We are interested in p(y) over y ∈ (0,+∞):

p(y) = 2
(1 + y1+r)(1 + yr/a)

+ 2y1+r

(1 + y1+r)(1 + ayr)
− 2

1 + y1+r − λ · 1 − y1+r

1 + y1+r .

By the definition of p(y), we have

g(x) = p
(
y(x)

) ⇒ p(1) = 0, p′(1) = 0 and p′′(1) = 0, (22)

using the chain rule as well as the fact that y′(x) is nonzero at x = 0. Let y1 = y(x∗) and
y2 = y(−x∗). Then, we have 0 < y1 < 1 < y2, p(y1) ≥ 0 and p(y2) ≤ 0. Next, we use q(y)
to denote the following function:

q(y) = (1 + y1+r)(1 + yr/a)(1 + ayr) · p(y)
/

2.

Then, we have

q(y) = (1 + ayr) + y1+r(1 + yr/a) − (1 + yr/a)(1 + ayr) − (λ/2)(1 − y1+r)(1 + yr/a)(1 + ayr).

By the definition of q(y), we have q(y1) ≥ 0 and q(y2) ≤ 0. We use u, v, w > 0 to denote

u = λ

2
, v = aλ

2
+ λ

2a
+ 1

a
, and w = 1 + λ

2
,

then we can rewrite q(y) as follows:

q(y) = u · y1+3r + v · y1+2r − w · y2r + w · y1+r − v · yr − u.

Taking its derivative, we get

q′(y) = u(1 + 3r) · y3r + v(1 + 2r) · y2r − 2wr · y2r−1 + w(1 + r) · yr − vr · yr−1.

Let q′(y) = yr−1 · s(y), then we have

s(y) = u(1 + 3r) · y1+2r + v(1 + 2r) · y1+r − 2wr · yr + w(1 + r) · y − vr.
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Taking its derivative, we get

s′(y) = u(1 + 3r)(1 + 2r) · y2r + v(1 + 2r)(1 + r) · yr − 2wr2 · yr−1 + w(1 + r), (23)

and its second-order derivative,

s′′(y) = 2ur(1 + 3r)(1 + 2r) · y2r−1 + vr(1 + 2r)(1 + r) · yr−1 − 2wr2(r − 1) · yr−2.

Let s′′(y) = yr−2 · t(y), then we have

t(y) = 2ur(1 + 3r)(1 + 2r) · yr+1 + vr(1 + 2r)(1 + r) · y − 2wr2(r − 1). (24)

We prove some useful properties about these functions. First, we show that s′′(1) is
indeed positive when a is close enough to (r + 1)/(r − 1). By Equation (23), we have

s′′(1) = 2ur(1 + 3r)(1 + 2r) + vr(1 + 2r)(1 + r) − 2wr2(r − 1).

Let c = a + 1/a. Plugging in v = cu + 1/a and w = 1 + u, we have

s′′(1) = 2ur(1 + 3r)(1 + 2r) + (cu + 1/a)(1 + 2r)(1 + r)r − 2(1 + u)r2(r − 1).

The trouble here is that λ (and u) depends on the choice of a. But note that the coefficient
of u in s′′(1) is

2r(1 + 3r)(1 + 2r) + cr(1 + 2r)(1 + r) − 2r2(r − 1) > 0,

and u is positive when a > (r + 1)/(r − 1). The rest of s′′(1) is the following:

(1/a)(1 + 2r)(1 + r)r − 2r2(r − 1).

Let a = (1 + ε)(r + 1)/(r − 1). When ε goes to 0, the expression above converges to

r(r − 1)(1 + 2r) − 2r2(r − 1) = r(r − 1)(1 + 2r − 2r) = r(r − 1) > 0.

Therefore, there exists a positive rational number a > (r +1)/(r −1) such that s′′(1) > 0
and α = a1+r is rational (note that we do not care about the number of bits needed to
encode it). We use such an a from now on. From the definition of q and s from p, as well
as the chain rule, one can show that p(1) = p′(1) = p′′(1) = 0 (Equation (22)) implies
that q(1) = q′(1) = q′′(1) = 0 and s(1) = s′(1) = 0; furthermore, since s′′(1) > 0, we have
p′′′(1) > 0. Together with Equation (22), we know there is a small enough ε > 0 that
satisfies

p(1 + ε) > 0, p(1 − ε) < 0, and y1 < 1 − ε < 1 + ε < y2.

Recall that p(y1) ≥ 0 and p(y2) ≤ 0. By the definition of q(y) from p(y), we have

q(y1) ≥ 0, q(1 − ε) < 0, q(1 + ε) > 0 and q(y2) ≤ 0. (25)

In the rest of the proof, we show that this cannot happen.
First, it is easy to check that t(0) < 0; t(y) > 0 when y → +∞; and t′(y) > 0 for any

y > 0. This shows that there is a unique b ∈ (0,∞), such that t(y) < 0 for any y < b,
t(b) = 0, and t(y) > 0 for any y > b.

Next, using s′′(y) = yr−2 · t(y), the same statement above also holds for s′′(y).
Now, we examine s′(y). Note that s′(0) > 0 and s′(y) > 0 when y → ∞. It follows from

the property of s′′(y) that going from y = 0 to +∞, the sign of s′(y) can change at most
twice from positive to negative and then back to positive.

Finally, regarding s(y), we have s(0) < 0 and s(y) > 0 when y → +∞. By the property
of s′(y), we know s(y) can have at most three roots in (0,+∞). From q′(y) = yr−1 · s(y), the
same statement also holds for q′(y). However, this contradicts Equation (25), because

(1) From q(0) < 0 and q(y1) ≥ 0, there exists a y ∈ (0, y1) such that q′(y) > 0;
(2) From q(y1) ≥ 0 and q(1 − ε) < 0, there exists a y ∈ (y1, 1 − ε) such that q′(y) < 0;

Journal of the ACM, Vol. 64, No. 3, Article 20, Publication date: June 2017.



The Complexity of Non-Monotone Markets 20:33

(3) From q(1−ε) < 0 and q(1+ε) > 0, there exists a y ∈ (1−ε, 1+ε) such that q′(y) > 0;
(4) From q(1 + ε) > 0 and q(y2) ≤ 0, there exists a y ∈ (1 + ε, y2) such that q′(y) < 0;
(5) From q(y2) ≤ 0 and q(y) > 0 when y → +∞, there exists a y ∈ (y2,+∞) such that

q′(y) > 0.

It follows that q′(y) has at least four roots in (0,+∞), a contradiction.

From now on, we always assume that a is positive and rational such that α = a1+r is
rational, f satisfies conditions of Lemma 4.1, and g satisfies conditions of Lemma 4.2.
We use λ to denote f ′(0), a positive rational number, and use θ to denote the positive root
of f . While θ is not rational in general, we can use f (and h in the proof of Lemma 4.1)
to compute a γ -rational approximation θ∗ of θ , that is, |θ∗ − θ | ≤ γ , in time polynomial
in 1/γ . Let σ be f ′(θ ) < 0. The following corollaries follow from Lemma 4.1 and 4.2.

COROLLARY 4.3. We have g(x) < −λx < −λθ for any x ∈ (θ, 1); g(x) > −λx > −λθ for
any x ∈ (0, θ ).

PROOF. By Lemma 4.1, we have f (x) < 0 for any x ∈ (θ, 1) and thus, g(x) = f (x)−λx <
−λx. By Lemma 4.1, we have f (x) > 0 for any x ∈ (0, θ ) and thus, g(x) = f (x) − λx >
−λx.

COROLLARY 4.4. g(θ ) = −λθ and g′(θ ) = σ − λ < −λ, where σ = f ′(θ ).

COROLLARY 4.5. There exists a positive constant c such that for any x ∈ [−c, c]:

| f (x) − λx | ≤ |λx/2| and | f (θ + x) − σ x | ≤ |σ x/2|.
Given a sufficiently large positive integer N, we are interested in f and g over

AN = [−δ, δ], BN = [δ, θ − δ], CN = [θ − δ, θ + δ], (26)
B′

N = [−θ + δ,−δ], C ′
N = [−θ − δ,−θ + δ], and SN = [−θ − δ, θ + δ],

where δ = 1/N. We use Lemma 4.1 and Lemma 4.2 to prove the following lemmas:

LEMMA 4.6. When N is sufficiently large, we have |g(x)| ≤ |λx/2| for any x ∈ AN.

PROOF. The lemma follows directly from the first part of Corollary 4.5.

LEMMA 4.7. When N is sufficiently large, f (x) ≥ min(λ, |σ |)δ/2 for all x ∈ BN.

PROOF. Assume for contradiction this is not the case, meaning that there is an infinite
sequence of N and xN, such that xN ∈ BN but f (xN) < min(λ, |σ |)δ/2. As xN ∈ [0, θ ] is
compact, there is a subsequence of xN that converges to a root x∗ of f in [0, θ ]. As 0 and
θ are the only nonnegative roots of f , x∗ = 0 or θ . But no matter which case it is, the
derivative of f at x∗ is smaller than we expect and we get a contradiction.

Using Lemma 4.7, we prove the following lemma:

LEMMA 4.8. Assume that N is sufficiently large. If

g(x) = −λθ ± �,

where � = δ(λ − σ/2), then we must have that x ∈ CN.

PROOF. First g(x) < 0 when N is sufficiently large. From Lemma 4.2, we have x > 0.
Replacing x by θ + y, we have

f (θ + y) − λ(θ + y) = −λθ ± � ⇒ f (θ + y) = λy ± �.

As f (θ + y) < 0 when y > 0, and f (θ + y) > 0 when y < 0 (and x = θ + y > 0), we have
|y| < �/λ and thus Corollary 4.5 applies when N is sufficiently large: If y > 0, then we
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have
3σ y/2 ≤ λy ± � = f (θ + y) ≤ σ y/2,

which implies 0 < y ≤ �/(λ − σ/2) = δ. The case when y < 0 is similar.

Note that by the symmetry of f and g, similar lemmas can be proved for B′
N, C ′

N.

4.2. Our Construction

Let ρ < −1 be a fixed rational number, and let r = |ρ |. Given any normalized 2n × 2n
polymatrix game P, we construct a market MP in which each trader has a CES utility
function of parameter ρ. The main building block in the construction is the following:

Non-Monotone CES Markets: We use M to denote the non-monotone CES market
discussed in Example 2.19 and Section 4.1, with rational constants α and a satisfying
all conditions of Lemma 4.1 and Lemma 4.2. We use the following notation. Given a
positive rational number μ, we use CES(μ, G1, G2) to denote the creation of the following
two traders T1 and T2 in MP. T1 and T2 are only interested in G1 and G2 and have the
same utility functions as those of the two traders in M. T1 has μ units of G1 and T2
has μ units of G2. We let fμ(x) denote the excess spending function on G1 from these
two traders when the prices of G1 and G2 are 1 + x and 1 − x. Then, fμ(x) = μ · f (x).

Recall λ = f ′(0) is positive and rational, θ is the positive root of f , and σ = f ′(θ ) < 0.
Let m = n7.

Construction of MP. The market MP consists of the following O(nm) = O(n8) goods:

AUXi, G2i−1, j and G2i, j, for i ∈ [n] and j ∈ [0 : m].

We divide the goods into n(m+ 1) groups: Ri, j = {G2i−1, j, G2i, j }, i ∈ [n] and j ∈ [0 : m].
First, for each i ∈ [n], we add a trader with τ = n4 units of G2i−1,0 and G2i,0 each, and

we set her utility to be

u(x1, x2) = (
xρ

1 + xρ

2

)1/ρ
,

where x1 (or x2) denotes the amount of G2i−1,0 (or G2i,0, respectively) she obtains.
Next, for each Ri, j , i ∈ [n] and j ∈ [m], we create a market CES(μ, G2i−1, j, G2i, j) with

μ = n/λ.
Now, we add a number of single-minded traders who trade between different groups.

Recall that we say a trader is a (r, G1 : G2)-trader, if her endowment consists of r units
of G1 and she is only interested in G2; We say a trader is a (r, G1, G2 : G3)-trader, if
her endowment consists of r units of G1 and G2 each, and is only interested in G3. At
the same time, we define a weighted directed graph G = (V, E), which will be used
in the proof of correctness later. The vertices of G correspond to the n(m + 1) groups
Ri, j . The meaning of an edge and its weight in G is the same as the graph G defined in
Section 3. Here is the construction:

(1) For each i ∈ [2n], we use Gi to denote Gi,0 and Hi to denote Gi,m for convenience.
For each pair i, j ∈ [n], we add to MP the following four traders who trade from
group Ri,m to group R j,0: one (P2i−1,2 j−1, H2i−1 : G2 j−1)-trader, one (P2i−1,2 j, H2i−1 :
G2 j)-trader, one (P2i,2 j−1, H2i : G2 j−1)-trader, and one (P2i,2 j, H2i : G2 j)-trader. Since
P is normalized, we have

P2i−1,2 j−1 + P2i−1,2 j = P2i,2 j−1 + P2i,2 j = 1.

Thus, the total endowment of these four traders consists of one unit of H2i−1 and
H2i each, so we add an edge in G from Ri,m to R j,0 with weight 1. At this moment,
the total out-weight of each Ri,m in G (a complete bipartite graph) is n, and the total
in-weight of each R j,0 in G is n.
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(2) Next, for each i ∈ [n] and j ∈ [m], we add two traders who trade from group Ri, j−1
to group Ri, j : one (n, G2i−1, j−1 : G2i−1, j)-trader and one (n, G2i, j−1 : G2i, j)-trader. As
their total endowment consists of n units of G2i−1, j−1 and G2i, j−1 each, we add an
edge from Ri, j−1 to Ri, j of weight n.

This finishes the construction of G. It is also easy to verify that G is strongly connected
and each vertex has both its total in-weight and out-weight equal to n.

Finally, for each j ∈ [n], we add traders between AUX j and R j,0. Let r2 j−1 and r2 j be
the two numbers defined in Equation (7). Let θ∗ denote a γ -rational approximation of
θ , the positive root of f , where γ = 1/n7. Then, we add the following three traders:
one ((1 − θ∗)r2 j−1, AUX j : G2 j−1)-trader, one ((1 − θ∗)r2 j, AUX j : G2 j)-trader, and one ((1 −
θ∗)n, G2 j−1, G2 j : AUX j)-trader. Note that r2 j−1 + r2 j = 2n as P is normalized.

This finishes the construction of MP. It follows immediately from the strong connec-
tivity of G that the economy graph of MP is strongly connected as well. Thus, MP is
a valid input of problem ρ-CES-APPROX and can be constructed from P in polynomial
time. We also record the following properties of MP:

LEMMA 4.9. For each i ∈ [n], the total supply of good AUXi is 2n(1 − θ∗);
For each i ∈ [2n], the total supply of good Gi,0 is τ + (2 − θ∗)n; and
For each i ∈ [2n] and j ∈ [m], the total supply of good Gi, j is μ + n = �(n).

4.3. Proof of Correctness

Now let p denote an ε-additively approximate market equilibrium of MP, where ε =
1/n14. We show in the rest of this section that given p, one can compute a (1/n)-well-
supported Nash equilibrium of P efficiently in polynomial time. Theorem 2.14 then
follows. Below, for each Ri, j , we let πi, j = π (G2i−1, j) + π (G2i, j).

First, note that only one trader is interested in AUX j and, thus,

LEMMA 4.10. Let p denote an ε-additively approximate equilibrium of MP, where
ε = 1/n14. If we scale p so π j,0 = π (G2 j−1) + π (G2 j) = 2 for some j ∈ [n], then we have
π (AUX j) ≥ 1 − O(ε/n).

Second, by using the strong connectivity of G and the property that every vertex in
G has the same total in-weight and out-weight, we can follow the proof of Lemma 3.7
(replacing 4t with m) to prove

LEMMA 4.11. Let p denote an ε-additively approximate equilibrium of MP. Let

πmax = max
i, j

πi, j and πmin = min
i, j

πi, j,

both over i ∈ [n] and j ∈ [0 : m]. If we scale p so πmin = 2, then πmax = 2 + O(mε).

Then, we can follow the proof of Lemma 3.8 to prove the following bound on π (AUX j):

LEMMA 4.12. Let p denote an ε-additively approximate equilibrium of MP with ε =
1/n14. If we scale p so π j,0 = 2 for some j ∈ [n], then we have π (AUX j) ≤ 1 + O(mε).

From now on, we use xi, j to denote the unique number that satisfies

1 + xi, j

1 − xi, j
= π (G2i−1, j)

π (G2i, j)
, for each i ∈ [n] and j ∈ [0 : m].

Note that the xi, j ’s are invariant under scaling of p. If we scale p so πi, j = 2, for some i
and j, then we must have π (G2i−1, j) = 1 + xi, j and π (G2i, j) = 1 − xi, j . Moreover, even if
we scale p so the sum of prices of another group becomes 2, we still have the following
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estimations by Lemma 4.10, 4.11 and 4.12:

π (G2i−1, j) = 1+xi, j ±O(mε), π (G2i, j) = 1−xi, j ±O(mε) and π (AUX j) = 1±O(mε). (27)

It would be great if we can get a lemma similar to Lemma 3.10. However, right now,
we have no bound on the ratio of π (G2i−1, j) and π (G2i, j). Next, we show that xi,0 must
be very close to 0 for all i ∈ [n].

LEMMA 4.13. If p is an ε-additively approximate equilibrium, then |xi,0 | = O(1/n3)
for all i ∈ [n].

PROOF. Fix an i ∈ [n]. We first scale p so πi,0 = 2, and we use x to denote xi,0.
We let T denote the trader with τ units of G2i−1 and G2i each. We let y1 denote the

demand of G2i−1 and y2 to denote the demand of G2i from T . Then,

y1(1 + x) + y2(1 − x) = 2τ,

and by Equation (20), we have

y1

y2
=

(
1 − x
1 + x

)1/(1+r)

.

Assume without loss of generality x > 0, we will show that x = O(1/n3). To this end,

y2 = 2τ

(1 − x) + (1 − x)1/(1+r)(1 + x)r/(1+r)
≤ τ + O(n),

which follows from p being an additively approximate equilibrium. It implies that

(1 − x)1/(1+r) ≥ (1 + x)1/(1+r) − O(1/n3) > 1 − O(1/n3).

Since r is a positive constant, we have x = O(1/n3), and the lemma follows.

From now on, we set N = n6. Recall the definition of AN, BN, CN, B′
N, C ′

N, SN in
Equation (26). Using Lemma 4.13, we have xi,0 ∈ SN. Next, we show that xi, j ∈ SN for
all i and j.

LEMMA 4.14. If p is an ε-additively approximate equilibrium, then xi, j ∈ SN for all
i ∈ [n] and j ∈ [m].

Lemma 4.14 follows directly from the following three lemmas by induction:

LEMMA 4.15. For any i ∈ [n] and j ∈ [m], if xi, j−1 ∈ AN, then xi, j ∈ AN ∪ BN ∪ B′
N.

LEMMA 4.16. For any i ∈ [n] and j ∈ [m], if xi, j−1 ∈ BN, then xi, j ∈ BN ∪ CN; and if
xi, j−1 ∈ B′

N then xi, j ∈ B′
N ∪ C ′

N.

LEMMA 4.17. For any i ∈ [n] and j ∈ [m], if xi, j−1 ∈ CN, then xi, j ∈ CN; and if
xi, j−1 ∈ C ′

N, then xi, j ∈ C ′
N.

PROOF OF LEMMA 4.15. First, we scale p so πi, j = 2. We use x to denote xi, j so the
prices of π (G2i−1, j) and π (G2i, j) are 1 + x and 1 − x, respectively. We also let

y = xi, j−1, π (G2i−1, j−1) = 1 + y1, and π (G2i, j−1) = 1 − y2.

From Lemma 4.11, y1 and y2 are both y ± O(mε). The excess spending of G2i−1, j of the
whole market is

μ · f (x) + n(1 + y1) − n(1 + x) = n(1/λ)( f (x) − λx + λy1) = n(1/λ)(g(x) + λy1), (28)

while the excess spending of G2i, j of the whole market is

−μ · f (x) + n(1 − y2) − n(1 − x) = −n(1/λ)(g(x) + λy2). (29)
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As πi, j = 2 and p is an ε-additively approximate equilibrium, both Equations (28) and
(29) are at most O(ε). As a result, we have∣∣n(1/λ)(g(x) + λy)

∣∣ = O(nmε) ⇒ |g(x) + λy| = O(mε), (30)

since λ is a positive constant. As |y| = |xi, j−1| ≤ 1/N = 1/n6 and mε = 1/n7, we have
|g(x)| = O(1/N). The lemma now follows from Corollary 4.3 and 4.5.

PROOF OF LEMMA 4.16. Assume xi, j−1 ∈ BN; the proof of the other case is similar.
Using the same notation and argument of Lemma 4.15, we start with Equation (30)

and get

g(x) ≥ −λy − O(mε) ≥ −λ(θ − 1/N + O(mε)) > −λθ,

where the second inequality used y = xi, j−1 ∈ BN and, thus, y ≤ θ − 1/N. We also have

g(x) ≤ −λy + O(mε) ≤ −λ/N + O(mε) < 0,

where the second inequality used y = xi, j−1 ≥ 1/N. By Corollary 4.3, x ∈ AN ∪ BN ∪CN.
Assume for contradiction that x ∈ AN. Then by Corollary 4.5, we have

−λ/N + O(mε) ≥ g(x) ≥ −λx/2.

Thus, x ≥ 2/N − O(mε) /∈ AN, and we get a contradiction.

PROOF OF LEMMA 4.17. Assume xi, j−1 ∈ CN; the proof of the other case is similar.
Using the same notation and argument of Lemma 4.15, we start with Equation (30)

and get O(mε) = |g(x) + λy| = |g(x) + λθ ± λ/N |, which implies

|g(x) + λθ | ≤ λ/N + O(mε).

The right side is smaller than (λ − σ/2)/N as N = n6, ε = 1/n14, and m = n7. It follows
from Lemma 4.8 that x ∈ CN. The lemma follows directly.

We construct a 2n-dimensional vector y from p as follows. Recall θ∗ is a γ -rational
approximation of θ with γ = 1/n7. Let δ = 1/N. For each i ∈ [n], if xi,m ≥ θ∗ − 2δ, then
we set y2i−1 = 1 and y2i = 0; if xi,m ≤ −(θ∗ − 2δ), then we set y2i−1 = 0 and y2i = 1;
otherwise, we set y2i−1 and y2i to be

y2i−1 = θ∗ + xi,m

2θ∗ and y2i = θ∗ − xi,m

2θ∗ .

By definition, y is a nonnegative vector and y2i−1 + y2i = 1 for all i ∈ [n]. Note that
when xi,m ∈ CN, we have xi,m ≥ θ∗ − 2δ, since γ < δ, and hence y2i−1 = 1 and y2i = 0.
Similarly, if xi,m ∈ C ′

N then y2i−1 = 0 and y2i = 1. By Lemma 4.11, for every i ∈ [2n],

yi = θ∗ + π (Gi) − 1
2θ∗ ± (

O(γ + mε + 1/N)
) ⇒ π (Gi) = 2θ∗ yi + (1 − θ∗) ± O(1/N).

To finish the proof of Theorem 2.14, we prove the following theorem:

THEOREM 4.18. When n is sufficiently large, y built above is a (1/n)-well-supported
Nash equilibrium of P.

To prove Theorem 4.18, we need the following key lemma:

LEMMA 4.19. For every i ∈ [n], if xi,0 ∈ BN ∪ CN, then we have xi,m ∈ CN and y2i−1 = 1,
y2i = 0. Similarly, if xi,0 ∈ B′

N ∪ C ′
N, then xi,m ∈ C ′

N and y2i−1 = 0, y2i = 1.

PROOF. By Lemma 4.17, we assume that xi,0 ∈ BN without loss of generality.
Now assume for contradiction that xi,m /∈ CN. By Lemma 4.17 again, we have xi, j ∈ BN

for all j ∈ [m]. This contradicts with the following lemma:
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LEMMA 4.20. For any j ∈ [m], if xi, j−1, xi, j ∈ BN, then xi, j = xi, j−1 + �(1/N).

PROOF. Using the same notation and argument of Lemma 4.15, we start with (30)
and get g(xi, j) = −λxi, j−1 ± O(mε). From Lemma 4.7, g(xi, j) + λxi, j = f (xi, j) = �(1/N),
since xi, j ∈ BN. As a result, we have

−λxi, j + �(1/N) = g(xi, j) = −λxi, j−1 ± O(mε),

and, thus, xi, j = xi, j−1 + �(1/N), using m = n7 and ε = 1/n14. The lemma follows.

We get a contradiction from Lemma 4.20 as m = n7, N = n6. Lemma 4.19 follows.

Finally, we prove Theorem 4.18:

PROOF OF THEOREM 4.18. We assume for contradiction that y is not a (1/n)-well-
supported Nash equilibrium of P. Without loss of generality, we assume that

yT · P1 > yT · P2 + 1/n, (31)

where P1 and P2 denote the first and second columns of P, but y2 > 0. For a contradic-
tion, by Lemma 4.19, it suffices to show that Equation (31) implies that x1,0 ∈ BN ∪CN.

To this end, we first scale p so π (G1) + π (G2) = 2, and use x to denote x1,0. By
Lemma 4.13, we have π (G1),π (G2) = 1 ± O(1/n3) are very close to 1. By applying
Walras’ law over the whole market MP and using the assumption that p is an ε-
additively approximate equilibrium, we have

ε ≥ the excess demand of G1 (or G2) ≥ −O(mnε). (32)

Now, we compare the total money spent on G1 and G2, by all traders in MP except
the one, denoted by T , who owns τ units of G1 and G2 each. We list all such traders:

(1) For each i ∈ [2n], there is a (Pi,1, Hi : G1)-trader. The total money these traders
spend on G1 is∑

i∈[2n]

Pi,1 · π (Hi) =
∑

i∈[2n]

Pi,1 · (2θ∗ yi + (1 − θ∗) ± O(1/N)).

(2) For each i ∈ [2n], there is a (Pi,2, Hi : G2)-trader. The total money these traders
spend on G2 is∑

i∈[2n]

Pi,2 · π (Hi) =
∑

i∈[2n]

Pi,2 · (2θ∗ yi + (1 − θ∗) ± O(1/N)).

(3) There are one ((1 − θ∗)r1, AUX1 : G1)-trader and one ((1 − θ∗)r2, AUX1 : G2)-trader.

Recall r1 and r2 in Equation (7). The total money these traders spend on G1 is

M1 = 2θ∗ · yT · P1 + 2n(1 − θ∗) ± O(n/N),

using N = n6 and mε = 1/n7, and the total money these traders spend on G2 is

M2 = 2θ∗ · yT · P2 + 2n(1 − θ∗) ± O(n/N).

Thus, M1 − M2 = �(1/n) and the demand for G1 is larger than the demand for G2, from
these traders, by

M1

π (G1)
− M2

π (G2)
≥ M2 + �(1/n)

π (G1)
− M2

(1 − O(1/n3)) · π (G1)
= �(1/n),

where both inequalities used π (G1), π (G2) = 1 ± O(1/n3) and M1, M2 = O(n).

Journal of the ACM, Vol. 64, No. 3, Article 20, Publication date: June 2017.



The Complexity of Non-Monotone Markets 20:39

Let d1 (or d2) denote the demand of G1 (or G2, respectively) from T. Using Equa-
tion (32) and mnε � 1/n, we must have d2 − d1 = �(1/n). On the other hand, we have
from Equation (20):

d1

d2
=

(
1 − x
1 + x

)1/(1+r)

.

As π (G1), π (G2) are close to 1, d1 and d2 are O(τ ) even if T spends all the budget on one
of them. As a result, we have(

1 + x
1 − x

)1/(1+r)

= d2

d1
= 1 + d2 − d1

d1
= 1 + �(1/n5),

and, thus, x = �(1/n5). It follows from Lemma 4.13 and N = n6 that x ∈ BN.
This finishes the proof of the theorem.

5. MEMBERSHIP IN FIXP

We are given a market M with n traders and m goods. Each trader Ti, i ∈ [n], has an
endowment wi, j ≥ 0 of each good j ∈ [m], and has a CES utility with coefficients αi, j ≥ 0
and parameter ρi < 1. The endowments wi, j and coefficients αi, j are rationals given in
binary and the parameters ρi < 1 are rationals given in unary; the parameter ρi ’s for
different traders may be the same or different, and there may be a mixture of positive
and negative ρi ’s. We also assume that the economy graph is strongly connected.

We prove the following theorem in this section:

THEOREM 5.1. CES. is in FIXP.

We first introduce some notation:

(1) Let wmin = min i, j {wi, j : wi, j > 0} and wmax = max i, j {wi j} denote respectively the
minimum non-zero and the maximum endowment of a good, that is, if a trader
owns a good then he owns at least wmin and at most wmax units of this good.

(2) Let αmin = min i, j {αi, j : αi, j > 0} and αmax = max i, j {αi j} denote, respectively, the
minimum non-zero and the maximum CES coefficient over utilities of all traders.

(3) Finally, let μ = (hm/m)tm
, where

t = max({�1 − ρi� : ρi < 0} ∪ {�1/(1 − ρi)� : ρi > 0}) and h = αmin

αmax
· wmin

wmax
· 1

2nm2 .

Without loss of generality, we focus on vectors p that are normalized and sum to 1. Let

S = {p ∈ Rm
+ :

∑m
i=1 πi = 1}

be the unit simplex in the m-dimensional space. To prove membership in FIXP, given a
market M, we will construct in polynomial time an algebraic circuit C with operations
from {+,−, ∗, /, max, min, k

√ } with m inputs and m outputs, which then defines a con-
tinuous function F : S → S, such that the fixed points of F coincide with the equilibria
of M. As F is continuous on S, which is convex and compact, a fixed point always exists
because of Brouwer’s fixed point theorem. We also point out that in the construction,
the k’s in the k

√ operations are encoded in unary.
Given an input vector p ∈ S, the circuit C first computes μ, and then a new vector p̂,

where π̂ j = max(π j, μ) for all j ∈ [m]. Then it computes and outputs for each j ∈ [m]:

Fj(p) = π̂ j + max{0, Zj(p̂)}∑m
k=1(π̂k + max {0, Zk(p̂)}) ,

where we use Zj(p̂) to denote the excess demand of the jth good at p̂ in M.
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Note first that μ can be generated by the circuit C with only a polynomial number
of operations. This is because for any number c, we can generate c� with only O(log(�))
multiplications by using successive squaring. Hence, we can generate μ from hm/m
using O(mlog t) multiplications, from which we then compute the new vector p̂. From
p̂, the excess demand Zk(p̂) can be computed using Equation (1) with a polynomial
number of operations (it is important here that FIXP allows roots and hence fractional
powers), and so can F(p).

Note that all operations of C are well-defined. In particular, all the fractional powers
are applied to positive numbers and all denominators are positive (because of the
definition of p̂ with π̂ j = max(π j, μ) and hence π̂ j > 0 for all j). The map F is clearly
continuous. Furthermore, we have

∑
j Fj(p) = 1 and Fj(p) ≥ 0 for all j ∈ [m]. Thus, F

is a continuous map from S to itself.
Next, we show that the fixed points of F are precisely the market equilibria of M in

the unit simplex S. We need the following key lemma, which will be proved later. On
the one hand, it trivially implies that any market equilibrium p of M must have π j > μ
for all j. On the other hand, combined with the definition of F, it can also be employed
to show that any fixed point p of F must also have π j > μ for all j, and hence p̂ = p,
from which it follows that p is a market equilibrium.

LEMMA 5.2. Let p be a price vector with
∑m

j=1 π j ≥ 1, and suppose that πi ≤ μ for
some good i. Then there must be a good � ∈ [m] for which Z�(p) > nmwmax.

Using this lemma, we prove the following theorem. Theorem 5.1 then follows.

THEOREM 5.3. The fixed points of F are precisely the market equilibria of M in S.

PROOF. Assume that p ∈ S is an equilibrium of M. Then π j > μ for all j by Lemma 5.2,
and hence p̂ = p and Zj(p̂) = Zj(p) = 0 for all j. Thus, Fj(p) = π j for all j and p is a
fixed point of F.

Now let p be a fixed point of F. We first show that π j > μ for all j. Suppose that
there exists a good i with πi ≤ μ. By

∑m
j=1 π j = 1 and π̂ j ≥ π j , we have

∑m
j=1 π̂ j ≥ 1.

Then, because of Lemma 5.2, there is a good � with Z�(p̂) > nmwmax. We partition the
goods into two sets H = { j : π j > μ} and L = { j : π j ≤ μ}. For j ∈ H, we have π̂ j = π j ,
and for j ∈ L, π̂ j = μ. As p is a fixed point, from the definition of F, we get

max {0, Zj(p̂)} ≥ π j

m∑
k=1

max {0, Zk(p̂)}, for every good j in H.

From Z�(p̂) > nmwmax, we have
∑m

k=1 max {0, Zk(p̂)} > 0. Therefore, we have Zj(p̂) > 0
for all j ∈ H. Moreover, the excess demand of any good cannot be less than −nwmax as
each trader owns at most wmax units of any good. Combining these, we get

m∑
j=1

π̂ j · Zj(p̂) =
∑
j∈H

π̂ j · Zj(p̂) +
∑
j∈L

μ · Zj(p̂) ≥ π̂� · Z�(p̂) −
∑
j∈L

μ · nwmax > 0.

Note that this inequality holds no matter whether � ∈ H or � ∈ L. However, by Warlas’
law, we have

∑m
j=1 π̂ j · Zj(p̂) = 0, a contradiction. So π j > μ for all j and p̂ = p.

Finally, assume that p is not an equilibrium, that is, Z�(p) > 0 for some �. Then,∑m
k=1 max {0, Zk(p)} > 0.

For any good j, we have Fj(p̂) = Fj(p) = π j > μ, and from the definition of F we get

max {0, Zj(p)} = π j
∑m

k=1 max {0, Zk(p)} > 0,
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and thus Zj(p) > 0 for all j. Therefore,
∑m

j=1 π j · Zj(p) > 0, which violates Walras’ law.
It follows that p must be a market equilibrium of M, and the theorem is proven.

It remains to prove Lemma 5.2. We show first the following lemma.

LEMMA 5.4. If the economy graph has an edge q → j, such that π j ≤ ht · π t
q, then there

is a good � with excess demand Z�(p) > nmwmax.

PROOF. Assume that the excess demand Zj(p) ≤ nmwmax, for all goods j. Since the
total supply of each good is at most nwmax, this implies that the total demand for each
good is less than 2nmwmax.

Suppose that the economy graph has an edge q → j such that π j ≤ ht · π t
q, and let Ti

denote a trader with wi,q > 0 and αi, j > 0. We may assume, without loss of generality,
that good j has the lowest price among those goods that Ti is interested in, that is, that
π j ≤ πk for all k such that αi,k > 0. (If not, then let

� = arg min
k

{πk : αi,k > 0},
and consider the edge q → � instead of q → j; clearly π� also satisfies π� ≤ ht · π t

q.) We
distinguish two cases depending on the sign of ρi.

Case 1: ρi < 0. Using Equation (1), and since ρi < 0, we have

xi, j = α
1

1−ρi
i, j · ∑m

k=1 wi,k · πk

π
1

1−ρi
j · ∑m

k=1 α
1

1−ρi
i,k · π

−ρi
1−ρi

k

≥ α
1

1−ρi
min · wmin · πq

π
1

1−ρi
j · m · α

1
1−ρi
max

.

We must have xi, j < 2nmwmax. Thus, solving for π j and using ρi < 0 and t ≥ 1−ρi:

π j >
αmin

αmax
·
(

wmin

wmax
· 1

2nm2

)1−ρi

· π1−ρi
q ≥ ht · π t

q.

Case 2: ρi > 0. By Equation (1), and since ρi > 0 and π j ≤ πk for all k with αi,k > 0,
we have

xi, j = α
1

1−ρi
i, j · ∑m

k=1 wi,k · πk

π
1

1−ρi
j · ∑m

k=1 α
1

1−ρi
i,k · π

−ρi
1−ρi

k

≥ α
1

1−ρi
min · wmin · πq

π
1

1−ρi
j · m · α

1
1−ρi
max · π

−ρi
1−ρi
j

≥
(

αmin

αmax

) 1
1−ρi · wmin

m
· πq

π j
.

From xi, j < 2nmwmax, solving for π j and using ρi > 0 and t ≥ 1/(1 − ρi) > 1:

π j >

(
αmin

αmax

) 1
1−ρi · wmin

wmax
· 1

2nm2 · πq > ht · π t
q.

Combining the two cases, the lemma is now proven.

We can prove now Lemma 5.2:

PROOF OF LEMMA 5.2. Let p be a price vector with
∑m

j=1 π j ≥ 1. If π j = 0 for some j,
then it has infinite demand. So assume without loss of generality that π j > 0 for all j.
Suppose that all goods j have excess demand Zj(p) ≤ nmwmax. Then, π j > ht · π t

q for all
edges q → j by Lemma 5.4.

Let Gmax and Gmin denote a good with the maximum and minimum price in p, re-
spectively, and let πmax and πmin denote their prices, respectively. Because the economy
graph is strongly connected, it contains a simple path from Gmax to Gmin. Let

Gmax = j0 → j1 → j2 → · · · → j� = Gmin
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be one such simple path. By Lemma 5.4, π jk > ht · π t
jk−1

for k = 1, . . . , �. Therefore,

πmin = π j� > h�t� · π t�

j0 = h�t� · π t�

max

by induction on k. As the path is simple, � ≤ m. Also, since πmax is the maximum price
and

∑
j π j ≥ 1, we have πmax ≥ 1/m. It then follows from the definition of μ that

πmin > (hm · πmax)tm ≥ (hm/m)tm = μ,

and the lemma follows.

6. MEMBERSHIP IN PPAD

We focus on CES markets with n traders, m goods, and strongly connected economy
graphs. Each trader Ti uses a CES utility function, with its coefficients αi, j ’s encoded
in binary and its parameter ρi < 1 encoded in unary. Again, we allow traders to use
different ρi ’s. We prove the following theorem in this section.

THEOREM 6.1. CES-APPROX. is in PPAD.

We use the definition of wmin, wmax, αmin, and αmax in Section 5. For convenience, we
assume without loss of generality that wmin ≤ wmax = 1 and 1 = αmin ≤ αmax, since
scaling the αi, j ’s and wi, j ’s does not change the set of ε-approximate market equilibria
(as the approximation here is multiplicative).

The following lemma implies that we may assume without loss of generality that
there is a trader in the market who owns a positive amount of all m goods and is
interested in all of them.

LEMMA 6.2. Let M be a market with n traders and m goods. For any ε : 0 < ε < 1,
we construct from M a market M′ by adding a new trader T ∗ who initially owns
εwmin/4 units of each good; and equally likes all the m goods with a CES function
of parameter ρ∗ = −1. Then any (ε/4)-approximate equilibrium of M′ is also an ε-
approximate equilibrium of M.

PROOF. Let p denote an (ε/4)-approximate equilibrium of M′. We let Zj(p) and Z′
j(p)

denote the excess demand of good j under pricing p in M and M′, respectively. By the
definition of approximate equilibria,

Z′
j(p) ≤ ε

4
·
(

n∑
i=1

wi, j + εwmin

4

)
= ε

4
·

n∑
i=1

wi, j + ε2wmin

16

for all j. At the same price vector p, all traders in M have the same demands as in M′
but trader T ∗ is not present anymore to provide εwmin/4 units of supply of each good
j. This implies that for each good j,

Zj(p) = Z′
j(p) − (demand of j from T ∗ in M′) + εwmin

/
4 ≤ Z′

j(p) + εwmin
/

4.

Combining the two inequalities, we have for each good j,

Zj(p) ≤ ε

4
·

n∑
i=1

wi, j + ε2wmin

16
+ εwmin

4
< ε

n∑
i=1

wi, j,

where the last inequality follows from
∑n

i=1 wi, j ≥ wmin, as the economy graph is
strongly connected and thus, at least one trader owns good j. It follows that p is an
ε-approximate equilibrium of M.

As a result, from now on, we always assume that there is a trader T ∗ in the input
market M, who owns wmin units of each good (notice that after adding T ∗ to M as
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described in Lemma 6.2, one needs to update wmin) and equally likes all the goods (i.e.,
all coefficients are 1) with a CES function of ρ∗ = −1. Let

ξ =
( wmin

4nm

)2
.

It is clear that ξ : 0 < ξ < 1 can be computed efficiently. Now we prove the following
useful lemma:

LEMMA 6.3. Given p with 1 ≤ ∑m
j=1 π j ≤ 2, if π� ≤ ξ for some � then Z�(p) > n.

PROOF. As T ∗ is equally interested in all the goods, by Equation (1) his demand for
good � is

1√
π�

·
∑m

k=1 wmin · πk∑m
k=1

√
πk

>
1

ξ1/2 · wmin

2m
= 2n,

where we used 1 ≤ ∑m
j=1 π j ≤ 2. The lemma follows as the supply of good � is no more

than nwmax = n.

Let S denote the unit simplex in the m-dimensional space and π̂ j = max(π j, ξ ), for
all j ∈ [m]. We are going to use the following continuous map F : S → S with

Fj(p) = π̂ j + max {0, Zj(p̂)}∑m
k=1(π̂k + max {0, Zk(p̂)}) . (33)

We need the following definition of approximate fixed points:

Definition 6.4 (Approximate Fixed Points). We say p ∈ S is a c-approximate fixed
point of F : S → S for some c ≥ 0, if ‖F(p) − p‖ ≤ c, where we use ‖·‖ to denote the L∞
norm of a vector.

We prove that every c-approximate fixed point of F, where c = ξ εwmin/2, is an
ε-approximate equilibrium of market M.

LEMMA 6.5. When 0 < ε < 1, any c-approximate fixed point p of F is an ε-approximate
equilibrium of M where c = ξ εwmin/2.

PROOF. First, we show that π j ≥ ξ for all j ∈ [m]. Assume for contradiction that
π� < ξ for some �.

We divide the traders into two groups: H = { j : π j > ξ } and L = { j : π j ≤ ξ }.
Then L is nonempty by our assumption, since � ∈ L. By Lemma 6.3, Zj(p̂) > n for all
j ∈ L, since

∑
j∈[m] π̂ j is between 1 and 1 + nξ < 2. On the other hand, because p is a

c-approximate fixed point, for each good j, we have

π̂ j + max {0, Zj(p̂)} ≥ (π j − c) ·
m∑

k=1

(π̂k + max {0, Zk(p̂)}). (34)

For each good j ∈ H, we have π̂ j = π j > ξ . Using
∑m

k=1 π̂k ≥ 1, we have for each j ∈ H:

max {0, Zj(p̂)} ≥ −c + (π j − c)
m∑

k=1

max{0, Zk(p̂)} > −c + (ξ − c)n > 0,

by the definition of c and the assumption that wmin ≤ wmax = 1. This contradicts Walras’
law.
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Now π j ≥ ξ for all j. Assume for contradiction p = p̂ is not an ε-approximate
equilibrium. Then, we have

m∑
k=1

max{0, Zk(p̂)} =
m∑

k=1

max{0, Zk(p)} > εwmin

Since p is a c-approximate fixed point of F, using Equation (34), we have for each good
j ∈ [m],

max{0, Zj(p)} ≥ −c + (π j − c)εwmin ≥ −c + (ξ − c)εwmin = c(1 − εwmin) > 0,

as ε < 1 and wmin ≤ 1. This again contradicts Walras’ law. The lemma follows.

Thus, the approximate market equilibrium problem reduces to the approximate
fixed point computation problem for the functions in Equation (33) that arise from
CES markets.

Let F be a family of functions, where each function F in F is represented (encoded)
by a binary string. Denote by FI the function represented by string I, and assume that
every FI in the family F is a continuous function whose domain and range is a convex
polytope DI , described by a set of linear inequalities all with rational coefficients that
can be computed from the string I in polynomial time.

An example of such a family is the family FCES of functions in Equation (33), which
correspond to CES markets; every CES market (represented by its string encoding) in-
duces a corresponding function from the unit simplex S to itself given in Equation (33).

Given a function FI from F , we define its size, denoted size(FI), to be the length |I|
of the string I. As usual, we define also the size of a rational number r, denoted size(r),
to be the number of bits in the binary representation of r. We will show that the family
FCES has the following two crucial properties, and that for every family of functions
that has these properties, the problem of computing an approximate fixed point is in
PPAD. Theorem 6.1 will then follow.

Definition 6.6 (Polynomially Continuous Families). We say that a family of functions
F is polynomially continuous if there is a polynomial q such that for every FI ∈ F and
every rational c > 0, there is a rational δ such that log(1/δ) ≤ q(|I| + size(c)) and such
that ‖x − y‖ ≤ δ implies ‖FI(x) − FI(y)‖ ≤ c for any x, y ∈ DI .

Definition 6.7 (Approximately Polynomially Computable Families). We say that a
family of functions F is approximately polynomially computable if there is a polynomial
q and an algorithm that, given (the string encoding I of) a function FI ∈ F , a rational
vector x ∈ DI and a rational number c > 0, computes a vector y that satisfies ‖FI(x) −
y‖ ≤ c in time q(|I| + size(x) + size(c)).

It was shown in Etessami and Yannakakis [2010] that, if a family of functions is both
polynomially continuous and polynomially computable, then the following problem,
called the Weak Approximation problem, is in PPAD: Given (the string encoding I of)
a function FI ∈ F and a rational number c > 0 (in binary), compute a c-approximate
fixed point of F. We show that the same is true if F is approximately polynomially
computable.

THEOREM 6.8. If a family of functions F is polynomially continuous and approx-
imately polynomially computable, then the weak approximation problem for F (i.e.,
given rational c > 0 and F ∈ F compute a c-approximate fixed point of F) is in PPAD.

PROOF. The proof is similar to that of Proposition 2.2, Part 2, in Etessami and
Yannakakis [2010].
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First, from Lemma 2.1 of Etessami and Yannakakis [2010], the problem can be
reduced to the case where all the functions in F have a unit simplex as their domain
and range, so, we assume this is the case from now on.

Let F ∈ F be a given function (represented by its string encoding) that maps the
unit simplex S in Rm

+ to itself, and c > 0 a given rational number, where c < 1 without
loss of generality. By Definition 6.6, we can pick an integer N with polynomially many
bits in size(F) and size(c/3m) such that δ = 1/N satisfies both δ < c/(3m) and the
following condition:

‖F(x) − F(y)‖ < c/(3m), for all x, y ∈ S that satisfy ‖x − y‖ < δ.

We discretize S into a regular simplicial decomposition [Kuhn 1968] with the follow-
ing set of vertices T :

T = {p ∈ S : each pi is a multiple of 1/N }.
For each p ∈ T , we define g(p) to be the output of the algorithm from Definition 6.7,
given (the encoding I of) F, vector p and c/(9m2). We can assume, without loss of
generality, that g(p) ≥ 0. As g(p) may not lie on the unit simplex S, we scale it to a
vector f (p) = g(p)/

∑
k gk(p) that lies on S. We have

|Fi(p) − fi(p)| =
∣∣∣∣ Fi(p)(

∑
k gk(p)) − gi(p)∑

k gk(p)

∣∣∣∣ ≤ (m+ 1)c/(9m2)
1 − mc/(9m2)

≤ c
3m

,

for every i ∈ [m]. Therefore, ‖F(p) − f (p)‖ ≤ c/(3m) and f (p) ∈ S for all p ∈ T .
We consider the following m-coloring on T :

Vertex p is colored i ∈ [m] if f (p) �= p and i is the smallest coordinate such that
fi(p) < pi, or f (p) = p and i is the smallest coordinate such that pi = max j pj .

Note that for any p ∈ T , if f (p) �= p then at least one of the coordinates satisfies
fi(p) < pi, since p and f (p) are both in S and their coordinates sum to 1. Hence, the
coloring rule above is well defined. Note also that the m unit vectors ei, i ∈ [m], at
the corners of the unit simplex S are labeled i, and all the vertices of T on the facet
pi = 0 are labeled with a color �= i. Hence, this m-coloring of T satisfies the conditions
of Sperner’s Lemma and therefore a panchromatic simplex of diameter 1/N must exist,
that is, a simplex whose m vertices have different colors.

It is known that finding a panchromatic simplex of the regular simplicial decomposi-
tion of S in such an m-coloring that satisfies Sperner’s Lemma is in PPAD, for example,
using the method described in Etessami and Yannakakis [2010]. Now it suffices to
prove that one of the vertices of a panchromatic simplex is a c-approximate fixed point
of F.

For this purpose, consider a panchromatic simplex with the following m vertices
p1, . . . , pm. Assume, without loss of generality, that pi is colored i for all i. We next
prove that any point p ∈ {p1, . . . , pm} is a c-approximate fixed point of F. First notice
that fi(pi) ≤ pi

i for all i ∈ [m], since pi is colored i. Since ‖pi − p‖ ≤ δ, we have

Fi(p) − pi = Fi(p) − Fi(pi) + Fi(pi) − fi(pi) + fi(pi) − pi
i + pi

i − pi ≤ c
m

,

and hence, Fi(p) ≤ pi + c/m for every i ∈ [m].
On the other hand, as

∑
i Fi(p) = ∑

i pi = 1, if we sum the previous inequalities for
all i �= j, we get 1 − Fj(p) ≤ 1 − pj + c and thus, Fj(p) ≥ pj − c for all j ∈ [m]. It follows
that p is a c-approximate fixed point of F.

We show now that the family FCES for the CES markets satisfies the two conditions
of Theorem 6.8.
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LEMMA 6.9. The family FCES is polynomially continuous.

PROOF. Let M be a given CES market and F ∈ FCES the corresponding function given
in Equation (33). First, we let r be the largest positive ρi in the market, with r = 0
when all ρi ’s are negative. Since each trader can only use a nonzero ρi < 1, we have
r < 1.

Let p, p′ ∈ S denote two vectors with ‖p − p′‖ ≤ δ for some parameter δ > 0 with

h = δ

ξ (1 − r)
<

1
4

(35)

but to be specified later. Let y = p̂ and z = p̂′. Then yj, zj ≥ ξ for all j and ‖y − z‖ ≤ δ.
Let xi, j and x′

i, j denote the demand of good j from trader i at y and z, respectively.
For any δ > 0 satisfying Equation (35), we will prove the following inequality:∣∣xi, j − x′

i, j

∣∣ ≤ q, where q = 5m2h · ξ
r−4
1−r · (αmax)

2
1−r . (36)

Assume this inequality holds. Notice that

∣∣Zj(y) − Zj(z)
∣∣ =

∣∣∣∣∣
n∑

i=1

(xi, j − x′
i, j)

∣∣∣∣∣ ≤
n∑

i=1

∣∣xi, j − x′
i, j

∣∣ ≤ nq.

Recall the definition of the function F. For each j, we have

Fj(p) = yj + max {0, Zj(y)}∑m
k=1(yk + max {0, Zk(y)}) .

Replacing p, y with p′, z, the change in the numerator is at most δ + nq. The change in
the denominator is at most mδ + nmq. Now, we show that if δ is small enough so that
Equation (35) and the following hold:

δ + nq ≤ cξ/3 and mδ + nmq ≤ c/3, (37)

then ‖F(p) − F(p′)‖ ≤ c. To see this, assume without loss of generality that Fj(p′) >
Fj(p), for some j. Since the numerator of Fj(p) is at least ξ and the denominator of
Fj(p) is at least 1, we have

Fj(p′) − Fj(p) < Fj(p) · 1 + c/3
1 − c/3

− Fj(p) ≤ Fj(p) · c ≤ c.

Because all ρi ’s are given in unary, 1/(1 − r) can be bounded from above by size(M).
It is now clear that δ satisfies Equations (35) and (37) when log(1/δ) is polynomi-
ally large in size(M) + size(c), for some large enough polynomial. We now prove
inequality (36).

By Equation (1), we obtain an explicit form of |xi, j − x′
i, j | (we let ρ denote ρi for

convenience):

α
1

1−ρ

i, j ·

∣∣∣∣( ∑m
k=1 wi,k · yk

) (
z

1
1−ρ

j
∑m

k=1 α
1

1−ρ

i,k · z
−ρ

1−ρ

k

)
−

( ∑m
k=1 wi,k · zk

) (
y

1
1−ρ

j
∑m

k=1 α
1

1−ρ

i,k · y
−ρ

1−ρ

k

)∣∣∣∣(
y

1
1−ρ

j
∑m

k=1 α
1

1−ρ

i,k · y
−ρ

1−ρ

k

) (
z

1
1−ρ

j
∑m

k=1 α
1

1−ρ

i,k · z
−ρ

1−ρ

k

) .

We start with some bounds that work for both positive and negative ρ. By 1/(1−ρ) > 0,

α
1/(1−ρ)
i, j ≥ α1/(1−ρ)

min = 1,
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as αmin = 1; and α
1/(1−ρ)
i, j ≤ (αmax)1/(1−r). Let β denote a number in [ξ, 1], then

β1/(1−ρ) ≤ 1 and β1/(1−ρ) ≥ ξ1/(1−ρ) ≥ ξ1/(1−r).

Note that this holds even when r = 0. Finally, we have

β−ρ/(1−ρ) ≤ ξ−r/(1−r) and β−ρ/(1−ρ) ≥ ξ.

The first one uses β ≤ 1 and β−ρ/(1−ρ) ≤ 1 when ρ < 0. The second follows similarly.
We will now bound the numerator. For this purpose, we use∣∣∣∣∣

m∑
k=1

wi,k · yk −
m∑

k=1

wi,k · zk

∣∣∣∣∣ ≤ δm (38)

and ∣∣∣∣∣ z
1

1−ρ

j

m∑
k=1

α
1

1−ρ

i,k · z
−ρ

1−ρ

k − y
1

1−ρ

j

m∑
k=1

α
1

1−ρ

i,k · y
−ρ

1−ρ

k

∣∣∣∣∣ ≤ 4mh · (αmax)
1

1−r · ξ
−r
1−r , (39)

which we prove later. Using Inequalities (38), (39), and

|ab − cd| ≤ |(b − d)a| + |(a − c)d|, (40)

the numerator is at most

(αmax)
1

1 −r ·
(

4mh · (αmax)
1

1 −r · ξ
−r

1 −r ·
m∑

k=1

wi,k · yk + δm · z
1

1 −ρ

j ·
m∑

k=1

α
1

1 −ρ

i,k · zk
−ρ

1 −ρ

)
. (41)

Using ξ ≤ yk, zk ≤ 1, wi,k ≤ wmax = 1 and αi,k ≤ αmax, the last expression is at most

(αmax)
1

1 −r ·
(
4m2h · (αmax)

1
1 −r · ξ

−r
1 −r + δm2 · (αmax)

1
1 −r · ξ

−r
1 −r

)
≤ 5m2h · (αmax)

2
1 −r · ξ

−r
1 −r

using Equation (35). The inequality (36) follows, since the denominator is at least(
ξ

1
1 −r · ξ

)2
= ξ

4−2r
1 −r .

It remains to prove the two inequalities (38) and (39). For Inequality (38), we have∣∣∣∣∣
m∑

k=1

wi,k · yk −
m∑

k=1

wi,k · zk

∣∣∣∣∣ ≤
m∑

k=1

wi,k · |yk − zk| ≤ δm.

For Inequality (39), we first bound |γ 1/(1−ρ) − β1/(1−ρ) |, where β + δ ≥ γ ≥ β ≥ ξ and
γ ≤ 1:

γ
1

1−ρ − β
1

1−ρ ≤ β
1

1−ρ

((
1 + δ

β

) 1
1−ρ

− 1

)
≤

(
1 + δ

β

) 1
1−ρ

− 1,

as β ≤ γ ≤ 1 and 1/(1−ρ) > 0. By Equation (35), we have δ/(ξ (1−ρ)) ≤ δ/(ξ (1−r)) ≤ 1/4
and (

1 + δ

β

) 1
1−ρ

− 1 ≤
(

1 + δ

ξ

) 1
1−ρ

− 1 ≤ e
δ

ξ (1−ρ) − 1 ≤ 2δ

ξ (1 − ρ)
≤ 2δ

ξ (1 − r)
= 2h,

where we used ex ≥ 1 + x ≥ ex/2, for all 0 ≤ x ≤ 1, and 1 − ρ ≥ 1 − r > 0.
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We also need to give an upper bound for |γ −ρ/(1−ρ) − β−ρ/(1−ρ) |. When ρ > 0, we have

∣∣γ −ρ

1−ρ − β
−ρ

1−ρ

∣∣ = γ
−ρ

1−ρ

∣∣∣∣∣1 −
(

γ

β

) ρ

1−ρ

∣∣∣∣∣ ≤ ξ
−r

1−r ·
((

1 + δ

β

) ρ

1−ρ

− 1

)
.

By Equation (35), we have δρ/(β(1 − ρ)) ≤ δr/(ξ (1 − r)) < 1/4 and, thus, by the same
argument, ∣∣γ −ρ

1−ρ − β
−ρ

1−ρ

∣∣ ≤ ξ
−r

1−r · 2δr
ξ (1 − r)

< 2h · ξ
−r
1−r .

On the other hand, when ρ < 0, we have

∣∣γ −ρ

1−ρ − β
−ρ

1−ρ

∣∣ = β
−ρ

1−ρ

((
γ

β

) −ρ

1−ρ

− 1

)
≤

(
1 + δ

β

) −ρ

1−ρ

− 1 ≤ 2δ

β
≤ 2δ

ξ
≤ 2h,

since 0 < −ρ/(1 − ρ) < 1. Thus, for both cases, 2h · ξ−r/(1−r) is a valid upper bound.
Using the second bound, we immediately have∣∣∣∣∣

m∑
k=1

α
1

1−ρ

i,k · z
−ρ

1−ρ

k −
m∑

k=1

α
1

1−ρ

i,k · y
−ρ

1−ρ

k

∣∣∣∣∣ ≤
m∑

k=1

α
1

1−ρ

i,k ·
∣∣∣∣z −ρ

1−ρ

k − y
−ρ

1−ρ

k

∣∣∣∣ ≤ 2mh · (αmax)
1

1−r · ξ
−r

1−r . (42)

Using the inequality and Equation (40) again, the left side of Inequality (39) is at most

z
1

1−ρ

j · 2mh · (αmax)
1

1−r · ξ
−r

1−r + 2h ·
m∑

k=1

α
1

1−ρ

i,k · y
−ρ

1−ρ

k .

Plugging in z
1

1−ρ

j ≤ 1 and y−ρ/(1−ρ)
k ≤ ξ−r/(1−r), we can upperbound it by

2mh · (αmax)
1

1−r · ξ
−r

1−r + 2mh · (αmax)
1

1−r · ξ
−r

1−r = 4mh · (αmax)
1

1−r · ξ
−r

1−r ,

and Inequality (39) follows. The lemma is now proven.

We now show that FCES satisfies the second condition of Theorem 6.8.

LEMMA 6.10. The family FCES is approximately polynomially computable.

PROOF. Let M be a CES market and F be the corresponding function in Equation (33).
Let p ∈ S be a given rational vector in the unit simplex, and c > 0 be a given rational
number, where c < 1 without loss of generality.

First, we can clearly compute ξ and p̂ in polynomial time. From the definition of F
and the fact that the denominator of Fj is at least 1, it suffices to approximate the
demand xi, j(p̂) of each trader within (additive) precision of, for example, c/(2nm2). An
easy calculation shows then that the approximate values for the Fj that we derive will
have error at most c.

For each xi, j , we use the explicit form in Equation (1), applied to p̂. Because all
the prices in p̂ are at least ξ , we have lower bounds for both the denominator and
numerator of xi, j (e.g., see the proof of Lemma 6.9). With these lower bounds it then
suffices to approximate the rational powers of π̂k’s and αi,k’s in Equation (1) to sufficient
precision. This can be done efficiently, because the exponents are either 1/(1 − ρi) or
−ρi/(1 − ρi) and ρi is encoded in unary.

Theorem 6.1 now follows from Lemma 6.5, Theorem 6.8, Lemma 6.6, and Lemma 6.7.
Using Lemma 6.5, to compute an ε-approximate equilibrium of a market M, it suffices to
compute a c-approximate fixed point of the corresponding function F in Equation (33),

Journal of the ACM, Vol. 64, No. 3, Article 20, Publication date: June 2017.



The Complexity of Non-Monotone Markets 20:49

where c = ξ εwmin/2. By Lemmas 6.6 and 6.7, the family FCES of functions in Equa-
tion (33), corresponding to CES markets, is polynomially continuous and approximately
polynomially computable. Theorem 6.8 then implies that the problem of computing a
c-approximate fixed point of F is in PPAD and, hence, so is the problem of computing
an ε-approximate equilibrium of a CES market M.

7. PPAD-COMPLETENESS OF TWO-STRATEGY POLYMATRIX GAMES

In this section, we prove Theorem 2.23. Membership in PPAD for the exact equilibrium
problem (and thus the approximation as well) was shown in Etessami and Yannakakis
[2010], Corollary 5.3. The proof of its PPAD-hardness below follows the techniques
developed in Daskalakis et al. [2009] and Chen et al. [2009b].

7.1. Generalized Circuits and Their Assignment Problem

Syntactically, a generalized circuit S is a pair (V, T ), in which V is a set of nodes, and
T is a set of gates. Every gate T ∈ T is a 5-tuple T = (G, v1, v2, v, α) in which

(1) G ∈ {Gζ , G×ζ , G=, G+, G−, G<, G∧, G∨, G¬} is the type of the gate. Among the nine
types of gates, Gζ , G×ζ , G=, G+ and G− are arithmetic gates implementing arith-
metic constraints. G< is called a brittle comparator: it only distinguishes two values
that are properly separated. Finally, G∧, G∨ and G¬ are logic gates.

(2) v1, v2 ∈ V ∪ {nil} are the first and second input nodes of the gate.
(3) v ∈ V is the output node, and α ∈ R≥0 ∪ {nil}.
The set T of gates must satisfy the following important property:

No Conflict: For any gates T = (G, v1, v2, v, α) �= T ′ = (G′, v′
1, v

′
2, v

′, α′) in T , we
have v �= v′.

Suppose T = (G, v1, v2, v, α) in T , then

(1) If G = Gζ , then the gate has no input node and v1 = v2 = nil.
(2) If G ∈ {G×ζ , G=, G¬}, then the gate has one input node: v1 ∈ V and v2 = nil.
(3) If G ∈ {G+, G−, G<, G∧, G∨}, then the gate has two input nodes: v1 �= v2 ∈ V .

The parameter α is only used in Gζ and G×ζ gates. If G = Gζ or G×ζ , then α ∈ [0, 1].
Semantically, we associate each node v ∈ V with a real variable x[v]. Each gate T

requires the variables of its input and output nodes to satisfy a certain constraint,
logical or arithmetic, depending on the type of T (see Table 6 for the details of the
constraints). Here, the notation b = a ± ε means b ∈ [a − ε, a + ε] and the notation = ε

B
is defined as follows. Given an assignment (x[v] : v ∈ V ) to the variables, we say the
value of x[v] represents Boolean 1 with precision ε, denoted by x[v] = ε

B 1 if

1 − ε ≤ x[v] ≤ 1 + ε;

it represents Boolean 0 with precision ε, denoted by x[v] = ε
B 0 if 0 ≤ x[v] ≤ ε. One

can see that the logic constraints required by the three logic gates G∧, G∨ and G¬ are
defined similarly to the classical ones.

Definition 7.1. Suppose S = (V, T ) is a generalized circuit, where K = |V |. For ε ≥ 0,
an ε-approximate solution to S is an assignment (x[v] : v ∈ V ) to the variables such
that 0 ≤ x[v] ≤ 1 + ε for all v ∈ V ; and for each gate T = (G, v1, v2, v, α) ∈ T , the values
of x[v1], x[v2] and x[v] must satisfy the constraint P[T , ε] defined in Table 6.

We use POLY-GCIRCUIT to denote the following problem: given a generalized circuit
S with K nodes, find an ε-approximate solution, where ε = 1/K. It is known that:

THEOREM 7.2. POLY-GCIRCUIT. is PPAD-hard.
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Fig. 6. Constraints P[T , ε], where T = (G, v1, v2, v, α) and K = |V |.

7.2. PPAD-Hardness of Two-Strategy Polymatrix Games

We present a polynomial-time reduction from POLY-GCIRCUIT to POLYMATRIX.
Let S = (V, T ) be a generalized circuit with K = |V |. Let C be an arbitrary bijection

from V to {1, 3, . . . , 2K − 3, 2K − 1}. Let n = 2K. We construct from S a 2n× 2n matrix

P =
(

0 B
A 0

)
,

where A, B ∈ [0, 1]n×n, as follows:

A = ∑
T ∈T L[T ] and B = ∑

T ∈T R[T ].

The construction of L[T ] and R[T ] can be found in Table 7. For each T ∈ T , it is easy
to check that L[T ] and R[T ] defined in Table 7 satisfy the following property.

LEMMA 7.3. Let T = (G, v1, v2, v, α), L[T ] = (Li, j) and R[T ] = (Ri, j). If C(v) = 2k − 1,
then we have

j �∈ {2k, 2k − 1} ⇒ Li, j = Ri, j = 0, ∀i ∈ [2K];

j ∈ {2k, 2k − 1} ⇒ 0 ≤ Li, j, Ri, j ≤ 1, ∀i ∈ [2K].

COROLLARY 7.4. A, B ∈ [0, 1]n×n and P ∈ [0, 1]2n×2n.

We denote an ε-well-supported Nash equilibrium of P, where ε = 1/n < 1/K, by a
pair of n-dimensional vectors (x, y), instead of a single 2n-dimensional vector. For each
node v ∈ V , we let x[v] = x2k−1 where 2k − 1 = C(v). As ε < 1/K, PPAD-hardness of
POLYMATRIX follows from the following lemma:
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Fig. 7. Matrices L[T ] and R[T ].

LEMMA 7.5. (x[v] : v ∈ V ) is an ε-approximate solution to the generalized circuit S.

It is clear that 0 ≤ x[v] ≤ 1 for all v ∈ V just because x2k−1 + x2k = 1 for all k ∈ [K].
So it suffices to show that (x[v] : v ∈ V ) satisfies all the constraints P[T , ε].

LEMMA 7.6 (CONSTRAINTS P[T , ε]). Let (x, y) be an ε-well-supported Nash equilibrium
of P, then for each T ∈ T , (x[v] : v ∈ V ) satisfies the constraint P[T , ε] in Table 6.

PROOF. Let T = (G, v1, v2, v, α) be a gate in T with C(v) = 2k − 1. Let Ai, Li, Bi, Ri
denote ith column vector of A, B, L[T ], R[T ], respectively. From Property 7.3, L[T ]
and R[T ] are the only two gadget matrices that modify the entries in columns A2k−1,
A2k or columns B2k−1, B2k. Thus, we have

A2k−1 = L2k−1, A2k = L2k, B2k−1 = R2k−1 and B2k = R2k. (43)

We start with the addition gate G = G+. Let C(v1) = 2k1 − 1 and C(v2) = 2k2 − 1. We
need to show that x[v] = min(x[v1] + x[v2], 1) ± ε. From Equation (43) and Table 7, we
have

x · B2k−1 − x · B2k = x · R2k−1 − x · R2k = x[v1] + x[v2] − x[v], (44)

y · A2k−1 − y · A2k = y · L2k−1 − y · L2k = y2k−1 − y2k. (45)

In a proof by contradiction, we consider two cases. First, assume

x̄[v] > min(x[v1] + x[v2], 1) + ε.

Since x̄[v] ≤ 1, it implies x̄[v] > x̄[v1]+ x̄[v2]+ ε. From Equation (44) and the definition
of ε-well-supported equilibria, we have y2k−1 = 0 and y2k = 1. Combining this with
Equation (45), we get x̄[v] = x2k−1 = 0, contradicting our assumption of x̄[v] > x̄[v1] +
x̄[v2] + ε > 0.

Next, we assume that

x̄[v] < min(x̄[v1] + x̄[v2], 1) − ε ≤ x̄[v1] + x[v2] − ε.
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Then, Equation (44) implies that y2k = 0 and y2k−1 = 1. From Equation (45), x2k = 0 and
x[v] = x2k−1 = 1, contradicting our assumption that x[v] < min(x[v1] + x[v2], 1) − ε ≤
1 − ε.

PROOF FOR Gζ GATES. From Equation (43) and Table 7, we have

x · B2k−1 − x · B2k = x · R2k−1 − x · R2k = x[v] − α,

y · A2k−1 − y · A2k = y · L2k−1 − y · L2k = y2k − y2k−1.

If x̄[v] > α + ε, then by the first equation, y2k = 0 and y2k−1 = 1. But from the second
equation, x̄[v] = x2k−1 = 0, which contradicts our assumption that x̄[v] > α + ε > 0.

If x̄[v] < α − ε, then from the first equation, we have y2k−1 = 0 and y2k = 1. But the
second equation implies x2k = 0 and x[v] = x2k−1 = 1, which contradicts the assumption
that x̄[v] < α − ε and α ≤ 1.

PROOF FOR G×ζ GATES. From Equation (43) and Table 7, we have

x · B2k−1 − x · B2k = x · R2k−1 − x · R2k = α · x[v1] − x[v],

y · A2k−1 − y · A2k = y · L2k−1 − y · L2k = y2k−1 − y2k.

If x̄[v] > min(αx̄[v1], 1) + ε, then x̄[v] > αx̄[v1] + ε as x̄[v] = x2k−1 ≤ 1. From the first
equation, we have y2k−1 = 0 and y2k = 1. The second one implies that x̄[v] = x2k−1 = 0,
which contradicts the assumption that x̄[v] > min(αx̄[v1], 1) + ε > 0.

If x̄[v] < min(αx̄[v1], 1) − ε ≤ αx̄[v1] − ε, then the first equation implies that y2k = 0
and y2k−1 = 1. From the second equation we have x2k = 0 and x̄[v] = x2k−1 = 1, which
contradicts the assumption that x̄[v] < min(α x̄[v1], 1) − ε ≤ 1 − ε.

PROOF FOR G= GATES. G= is a special case of G×ζ with parameter α = 1.

PROOF FOR G− GATES. From Equation (43) and Table 7, we have

x · B2k−1 − x · B2k = x · R2k−1 − x · R2k = x[v1] − x[v2] − x[v],

y · A2k−1 − y · A2k = y · L2k−1 − y · L2k = y2k−1 − y2k.

If x̄[v] > max(x̄[v1] − x[v2], 0) + ε ≥ x̄[v1] − x̄[v2] + ε, then the first equation shows that
y2k−1 = 0 and y2k = 1. But from the second equation, we have x̄[v] = x2k−1 = 0, which
contradicts with the assumption that x̄[v] > max(x̄[v1] − x̄[v2], 0) + ε > 0.

If x̄[v] < min(x̄[v1]−x̄[v2], 1)−ε ≤ x̄[v1]−x̄[v2]−ε, then by the first equation, we have
y2k = 0 and y2k−1 = 1. By the second equation, we have x2k = 0 and x̄[v] = x2k−1 = 1,
contradicting the assumption that x̄[v] < min(x̄[v1] − x̄[v2], 1) − ε ≤ 1 − ε < 1.

PROOF FOR G< GATES. From Equation (43) and Table 7, we have

x · B2k−1 − x · B2k = x · R2k−1 − x · R2k = x[v1] − x[v2],

y · A2k−1 − y · A2k = y · L2k−1 − y · L2k = y2k − y2k−1.

If x̄[v1] < x̄[v2] − ε, then we have y2k−1 = 0 and y2k = 1, from the first equation. But the
second equation implies that x2k = 0 and x̄[v] = x2k−1 = 1 and, thus, x̄[v] = ε

B 1.
If x[v1] > x[v2] + ε, then y2k = 0 and y2k−1 = 1 according to the first equation. By the

second one we have x[v] = x2k−1 = 0 and, thus, x[v] = ε
B 0.

PROOF FOR G∨ GATES. From Equation (43) and Table 7, we have

x · B2k−1 − x · B2k = x · R2k−1 − x · R2k = x[v1] + x[v2] − (1/2),

y · A2k−1 − y · A2k = y · L2k−1 − y · L2k = y2k−1 − y2k.

If x̄[v1] = ε
B 1 or x̄[v2] = ε

B 1, then x̄[v1] + x̄[v2] ≥ 1 − ε. By the first equation, y2k = 0 and
y2k−1 = 1. By the second equation, x2k = 0 and x̄[v] = x2k−1 = 1 and, thus, x̄[v] = ε

B 1.

Journal of the ACM, Vol. 64, No. 3, Article 20, Publication date: June 2017.



The Complexity of Non-Monotone Markets 20:53

If x̄[v1] = ε
B 0 and x̄[v2] = ε

B 0, then we have x̄[v1]+ x̄[v2] ≤ 2ε. From the first equation,
we must have y2k−1 = 0 and y2k = 1. The second equation implies x̄[v] = x2k−1 = 0 and,
thus, x̄[v] = ε

B 0.

PROOF FOR G∧ GATES. From Equation (43) and Table 7, we have

x · B2k−1 − x · B2k = x · R2k−1 − x · R2k = x[v1] + x[v2] − (3/2),

y · A2k−1 − y · A2k = y · L2k−1 − y · L2k = y2k−1 − y2k.

If x̄[v1] = ε
B 0 or x̄[v2] = ε

B 0, then x̄[v1] + x̄[v2] ≤ 1 + ε. From the first equation, we have
y2k−1 = 0 and y2k = 1. By the second equation, x̄[v] = x2k−1 = 0 and, thus, x̄[v] = ε

B 0.
If x̄[v1] = ε

B 1 and x̄[v2] = ε
B 1, then x̄[v1]+ x̄[v2] ≥ 2−2ε. The first equation shows that

y2k = 0 and y2k−1 = 1. By the second one, x2k = 0 and x̄[v] = x2k−1 = 1. So, x̄[v] = ε
B 1.

PROOF FOR G¬ GATES. From Equation (43) and Table 7, we have

x · B2k−1 − x · B2k = x · R2k−1 − x · R2k = x[v1] − (1 − x[v1]) = 2x[v1] − 1,

y · A2k−1 − y · A2k = y · L2k−1 − y · L2k = y2k − y2k−1.

If x̄[v1] = ε
B 1, then by the first equation, y2k = 0 and y2k−1 = 1. The second one implies

x[v] = x2k−1 = 0 and, thus, x̄[v] = ε
B 0. If x̄[v1] = ε

B 0, then the first one implies y2k−1 = 0
and y2k = 1. By the second one, x2k = 0 and x̄[v] = x2k−1 = 1 and, thus, x̄[v] = ε

B 1.

8. CONCLUSIONS

This article is a first step toward a systematic understanding of what features make
the equilibrium analysis of markets computationally hard. We introduced the notion
of non-monotone utilities, which covers a wide variety of important utility functions.
We then showed that for any family U of non-monotone utilities, it is PPAD-hard to
compute an approximate equilibrium for a market with utilities that are drawn from
U or are linear. Using our general approach, and a further, customized analysis, we
resolved the long-standing open problem on the complexity of CES markets when the
parameter ρ is less than −1, showing that for any fixed value of ρ < −1, the problem
of computing an approximate equilibrium is PPAD-complete.

This work raises many questions. First, regarding CES markets, we showed that
computing an actual equilibrium (to desired precision) is in FIXP; is the problem
FIXP-complete?

Second, regarding our general results for arbitrary non-monotone utilities, can we
dispense with the linear functions in the general theorem, that is, is it true that for any
family U of non-monotone utilities, the approximate equilibrium problem is PPAD-hard
for markets that use utilities from U only? For the important class of CES utilities with
(any) ρ < −1, we were able to show this, using a deeper analysis of the class of CES
utilities, and appropriate adaptations of the construction. Can a similar approach work
in general for all non-monotone utilities?

Third, what other general features of utilities (if any) are there that make the market
equilibrium problem hard? Non-monotonicity is connected with markets that can have
disconnected sets of market equilibria for which, currently, we do not have any efficient
algorithmic methods to deal with. Convexity has been critical essentially in all tractable
cases so far, whether the set of market equilibria itself is convex or whether a convex
formulation can be obtained after a change of variables.

Most ambitiously, can we obtain a complexity dichotomy theorem that allows us
to classify any family of utility functions (under standard, generally acceptable, mild
assumptions for utilities) into those that can be solved efficiently and those that are
apparently intractable (PPAD-hard and/or FIXP-hard)? The present article takes a
first step toward this goal.
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