
append(item): add item to end
extend(items): add all items to end
insert(pos, item): insert item at position
remove(item): remove item by value
pop(index): remove item by position
clear(): remove all items
sort(): sort list in place
index(item): get position of item
copy(): create a copy of the list

Python Cheatsheet

Global Functions
type(expr): Get the type of the expression/variable/literal
id(expr): Get the identity of the expression/variable/literal
dir(expr): Get the attributes of the type of the
expression/variable/literal
print(str): Print the input
input(str): Print the input and prompt the user to type in
input (returns a str)

Control Flow
if EXPRESSION:
 indented block executed if EXPRESSION is True

 Note that the indentation is required,
 and that EXPRESSION can represent more
 than one individual expression
Program continues here

if EXPRESSION:
 indented block executed if EXPRESSION is True
else:
 indented block executed if EXPRESSION is False
Program continues here

while (EXPRESSION):
 if EXPRESSION is true, execute indented block
 Repeat until the EXPRESSION evaluates to false
Program continues here

for item in ITERABLE:
 item will be the next element in ITERABLE
 on each subsequent loop
Program continues here

 Immediately exit the current loop
 Immediately jump to the next iteration

break

continue

Operators / Comparators

<,>,<=,>=,==,!=
 lt, gt, lte, gte, equal, not equal
+,-,*,/
 add, subtract, multiply, divide
% modulus (remainder)
** exponentiation
// integer division (integer quotient)

Key Structures
Sequence
Variables and Assignment
Boolean and arithmetic expressions

(operators and comparators)
Control Flow
Looping
Functions/Routines

Variables

lvalue is a name

rvalue is an expression

Name should start with letter or
underscore, can contain letters,
underscores, or digits

lvalue = rvalue

a = 42
b = "fourtytwo"
c = 123.1

Objects
Any piece of data is called an object,
stored in memory, and a variable is an
alias to that object.
All objects have:

Identity
Type
Attributes
0+ aliases (variables)

 Literal: a literal Python
 value hard coded in the
 code

Operator: An arithmetic or logical
operation
Comparator: A comparison operator,
usually resulting in a boolean

42
x + 2
x > 4

Types

Some basic types:
int: integers
float: floating point (decimal)
numbers
str: strings, a sequence of
characters
bool: boolean value True or False

type(<expression>)

42

"fourtytwo"

123.1

a

b

c

Expressions

Functions

Accept 0 or more arguments
Return 0 or more return values
Return immediately returns from function
Arguments passed by position or keyword
Arguments can have default values
Variable positional arguments defined with * “packed” into
a tuple
Variable keyword arguments defined with ** “packed” into a
dictionary
If no return, return value is None

def foo(a, b=1, *args, **kwargs):
 print(args, kwargs, a + b)
foo(1) # (), {}, 2
foo(a=1) # (), {}, 2
foo(b=1, a=2) # (), {}, 3
foor(1, 2, 3, 4) # (3, 4), {}, 3
foo(a=1, b=2, c=3, d=4) # (), {“c”:3,”d”:4}, 3

None
None is a special type that means
“nothing”

Assignment

Looping

if EXPRESSION:
 indented block executed if EXPRESSION is True
elif EXPRESSION_2:
 indented block executed if EXPRESSION is False
 and EXPRESSION_2 is True
elif EXPRESSION_3:
 indented block executed if EXPRESSION is False,
 EXPRESSION_2 is False, and EXPRESSION_3 is True
else:
 indented block executed if all EXPRESSIONs
 are False, i.e. the "Default" case
Program continues here

Lists
x = [1, 2, 3]
x.append(4) # [1, 2, 3, 4]
for elem in x:
 print(elem)
for i in range(len(x)):
 x[i] = x[i] + 1
print(x) # [2, 3, 4, 5]

Dicts

x = {"a": 1, "b": 2, "c": 3}
x["d"] = 4
for key in x:
 print(x[key])
for k, v in x.items():
 x[k] = v + 1
print(x)
{"a":2, "b":3, "c":4, "d":5}

items(): iterate through key, value
keys(): get keys
values(): get values
get(key, default): get value by key, return
default if missing
pop(key): pop value by key
update(dct): update with another dict
copy(): create copy of the dict

Sets

x = {"a", "b", "c"}
x.add("a") # {"a", "b", "c"}
print(x.intersection({"a", "b"}))
{"a", "b"}
print(x.union({"d"})
{"a", "b", "c", "d"}
print(x - {"a", "b"})
{"c"}

add(item): add item to set
remove(item): remove item from set
union(s): union with set s
intersection(s): intersect with set s
difference(s): difference with s
copy(): make a copy of the set

Imports
import math
print(math.sin(math.pi / 2))
import math as MATH
print(MATH.sin(MATH.pi / 2))
from math import sin, pi
print(sin(pi / 2))
from math import sin, pi as PI
print(sin(PI / 2))

Files
fp_in = open("in.txt", "r")
fp_out = open("out.txt", "w")
for line in fp_in:
 fp_out.write(line)
fp_in.close()
fp_out.close()

