Python Cheatsheet

Key Structures

Control Flow

Lists

Sequence

if EXPRESSION:

x = [1, 2, 3]

e Variables and Assignment indented block executed if EXPRESSION is True X.append(4) # [1, 2, 3, 4]
o Boolean and arithmetic expressions for elem in x:
(operators and comparators) Note that the indentation is required, print(elem)
e Control Flow and that EXPRESSION can represent more for i in range(len(x)):
o Looping than one individual expression x[i] = x[i] + 1
e Functions/Routines Program continues here print(x) # [2, 3, 4, 5]
Variables if EXPRESSION: append(item): add item to end
lvalue = rvalue indented block executed if EXPRESSION is True extend(items): add all items to end
1value is a name else: insert(pos, item):insertitem at position
indented block executed if EXPRESSION is False remove(item): remove item by value
rvalue is an expression Program continues here pop(index): remove item by position
Name should start with letter or if EXPRESSION: clear(): remove all items
underscore, can contain letters, indented block executed if EXPRESSION is True §ort()isorthst|n|ﬂag§
underscores, or digits B index(item): get position of item
Assignment indented block executed if EXPRESSION is False copy(): create a copy of the list
a =42 and EXPRESSION_2 is True Dicts
b = "fourtytwo" elif EXPRESSION_3:
c =123.1 indented block executed if EXPRESSION is False, X = ﬁua": 1, “bs 2, Scts 3}
a —> 42 EXPRESSION_2 is False, and EXPRESSION_3 is True ;([)r'dkiy=i‘r: X
sl print(x[key])
b — > "fourtytwo" indented block executed if all EXPRESSIONs for k, v in x.items():
are False, i.e. the "Default" case x[k] = v + 1
c —> 123.1 Program continues here print(x)
Objects Looping # {"a":2, "b":3, "c":4, "d":5}

Any piece of data is called an object,
stored in memory, and a variable is an
alias to that object.

All objects have:

Identity

Type

Attributes

0+ aliases (variables)

while (EXPRESSION):
if EXPRESSION is true, execute indented block
Repeat until the EXPRESSION evaluates to false
Program continues here

Expressions

42 Literal: a literal Python
X+ 2 |value hard coded in the
x > 4)code

Operator: An arithmetic or logical
operation

Comparator: A comparison operator,
usually resulting in a boolean

for item in ITERABLE:
item will be the next element in ITERABLE
on each subsequent loop

Program continues here

break Immediately exit the current loop

continue |!mmediately jump to the next iteration

items(): iterate through key, value

keys(): get keys

values(): get values

get(key, default): get value by key, return
default if missing

pop(key): pop value by key

update(dct): update with another dict

copy (): create copy of the dict

Sets

Types

type(<expression>)

Functions
def foo(a, b=1, *args, **kwargs):
print(args, kwargs, a+b)
foo(1) # (), {}, 2
foo(a=1) #(), {}, 2
foo(b=1, a=2) # (), {}, 3
foor(1, 2, 3, 4) # (3, 4), {}, 3

foo(a=1, b=2, c=3, d=4) # (), {“c”:3,”d”:4}, 3

x = {"a", "b", "c"}

x.add("a") # {"a", "b", "c"}
print(x.intersection({"a", "b"}))
{"a", "b"}

print(x.union({"d"})

{"a", "b", "c", "d"}

print(x - {"a", "b"})

{"c"}

Some basic types:
int: integers
float: floating point (decimal)
numbers
str: strings, a sequence of
characters
bool: boolean value True or False

Operators / Comparators

<’>’<:’>:‘::’!:
It, gt, Ite, gte, equal, not equal
+-%/

1Ty

Accept 0 or more arguments

Return 0 or more return values

Return immediately returns from function

Arguments passed by position or keyword

Arguments can have default values

Variable positional arguments defined with * “packed” into
a tuple

Variable keyword arguments defined with ** “packed” into a
dictionary

If no return, return value is None

add(item): add item to set
remove(item): remove item from set
union(s): union with set s
intersection(s): intersect with set s
difference(s): difference with s
copy (): make a copy of the set

Imports

add, subtract, multiply, divide

Global Functions

% modulus (remainder)
** exponentiation
I/l integer division (integer quotient)

None

None is a special type that means

type(expr): Get the type of the expression/variable/literal
id(expr): Get the identity of the expression/variable/literal
dir(expr): Get the attributes of the type of the
expression/variable/literal

print(str): Print the input

input(str): Print the input and prompt the user to type in

“nothing”

input (returns a str)

import math
print(math.sin(math.pi / 2))
import math as MATH

print (MATH.sin(MATH.pi / 2))
from math import sin, pi
print(sin(pi / 2))

from math import sin, pi as PI
print(sin(PI / 2))

Files
fp_in = open("in.txt", "r")
fp_out = open("out.txt", "w")

for line in fp_in:
fp_out.write(line)
fp_in.close()

fp out.close()

