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Abstract

With applications in nearly every field of computer science, Communication Complex-

ity constitutes one of the most useful methods for proving unconditional lower bounds

- the holy grail of complexity theory. Developing tools in communication complexity

is a promising approach for making progress in other computational models such as

streaming, property testing, distributed computing, circuit complexity and data struc-

tures. One striking example of such tool is Shannon’s information theory, introduced in

the late 1940’s in the context of the one way data transmission problem. While revealing

the intimate connection between information and communication, Shannon’s work and

its classical extensions do not readily convert to interactive setups such as the communi-

cation complexity model, where two parties must engage in a multi-round conversation

to accomplish some desirable interactive task. The research presented in this monograph

aspires to extend Shannon’s theory, develop the right tools, and understand how informa-

tion behaves in interactive setups. The main measure if interest is the Interactive Informa-

tion Complexity of a function, which informally captures the least amount of information

the parties need to disclose each other about their inputs in order to solve the underlying

task. We develop information-theoretic tools with applications to some of the most fun-

damental questions in communication complexity, including the limits of parallel com-

putation, interactive compression, and the KRW conjecture. We then demonstrate the

power of information complexity beyond communication complexity, with applications

to various theoretical models, including data streaming, circuit lower bounds, privacy

and economics. Lurking beneath these results is the fascinating question about the role

of interaction and information in obtaining efficient outcomes, where efficiency may be

measured in terms of social welfare, space, privacy or communication, depending on the

model and context.
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Chapter 1

Introduction

The holy grail of complexity theory is proving lower bounds on different computational

models, thereby delimiting computational problems according to the resources they re-

quire for solving. One of the most useful abstractions for proving such lower bounds

is communication complexity. Since its introduction [154], this model has had a pro-

found impact on nearly every field of theoretical computer science, including streaming

algorithms, VLSI chip design, data structures, mechanism design and property testing

[149, 130, 61, 25] to mention a few, and constitutes one of the few known tools for proving

unconditional lower bounds. As such, developing new tools in communication complexity

is a promising approaches for making progress within computational complexity, and in

particular, for proving strong circuit lower bounds that appear viable (such as Karchmer-

Wigderson games and ACC lower bounds [100, 20]).

One striking example for such a tool is information theory, introduced by Shannon

in the late 1940s in the context of one-way communication problems [Sha48]. Shannon’s

noiseless coding theorem revealed the tight connection between communication and in-

formation, namely, that the amortized description length of a random one-way message

(M ) is equivalent to the amount of information it contains (its Entropy H(M)). In the

65 years that have passed since then, information theory has been widely applied and
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developed, and has become the primary mathematical tool for analyzing communication

problems.

Although classical information theory provides a complete understanding of the one-

way transmission setup (where only one party speaks), it does not readily convert to

interactive setups, such as the communication complexity model. Our research goal is to

extend Shannons theory, develop appropriate machinery and understand how informa-

tion behaves in interactive setups, where two (or more) parties must engage in a two-way

conversation in order to accomplish some desirable task (e.g. compute a joint function

f(x, y) of their respective inputs). Our main measure of interest is the Information Com-

plexity of a function ICµ(f, ε), which informally measures the average amount of informa-

tion the players need to reveal each other about their inputs in order to solve f with some

prescribed error under the input distribution µ.

From this perspective, communication complexity can be viewed as the extension of

transmission problems to general tasks performed by two (or more) parties over a chan-

nel. Surprisingly, it turns out that an analogue of Shannons noiseless coding theorem does

in fact hold for interactive computation, asserting that the amortized communication cost

of computing many independent instances of any function f scales as its information

complexity:

Theorem 1.0.1 ([35]). For any ε > 0 and any two-party communication function f(x, y), it

holds that

lim
n−→∞

Dµn(fn, ε)

n
= ICµ(f, ε).

This theorem, which plays a central role in this thesis, assigns an operational meaning to

ICµ(f, ε) (namely, one which is grounded in reality) and insinuates that information theory

is the “right” tool for studying communication problems. The results we present below

provide further evidence for this intuition (a notable one is asserts that Theorem 1.0.1 is

in fact a “sharp-threshold” characterization of amortized computation, see Chapter 3).
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Broadly speaking, Shannon’s information theory has two general benefits in address-

ing communication problems. Firstly, it gives us a set of simple yet powerful tools for

reasoning about transmission problems and more broadly about relationships between

interdependent random variables. Tools that include mutual information, the chain rule,

and the data processing inequality [58]. Indeed, a remarkable feature of information com-

plexity, which stems from these simple tools, is that it is a fully additive measure over

composition1 of tasks:

ICµ1×µ2(T1 ⊗ T2) = ICµ1(T1) + ICµ2(T2). (1.1)

It is this benefit that has been primarily used in prior works involving information-

theoretic tools in communication complexity [1, 52, 116, 49, 14, 96, 16]. Secondly, in the

context of transmission problems – starting with Shannon’s noiseless coding theorem

– information theory is known to give tight precise bounds on rates and capacities. In

fact, unlike computational complexity, where we often ignore linear, polylogarithmic,

and sometimes even polynomial factors, a large fraction of results in information theory

provide us with precise answers up to additive lower-order terms. For instance, we

know that a sequence of random digits would take exactly log2 10 ≈ 3.322 bits per digit,

and that the capacity of a binary symmetric channel with substitution probability 0.2 is

exactly 1 − H(0.2) ≈ 0.278 bits per symbol. A program which has emerged in the field

over the past few years is to understand whether such fundamental results translate into

the interactive setup. While this program is only at its preliminary stage, we provide

encouraging results in this direction – For example, the tools we developed enabled us

to determine the exact communication complexity of the Set-Disjointness function, which

turns out to be surprisingly low: CDISJ · n ≈ 0.48n (see Section 2.3). Such precise results

were beyond the reach of analytical techniques before the emergence of information

1T1⊗ T2 denotes the task composed of successfully performing both T1 and T2 on the respective inputs
(X1, Y 1) ∼ µ1 and (X2, Y 2) ∼ µ2.
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complexity.

One caveat is that mathematically striking characterizations such as Shannon’s noise-

less coding theorem only become possible in the limit, where the size of the message we

are trying to transmit over the channel – i.e. the block-length – grows to infinity. One

exception is Huffman coding [86], where it was shown that the expected number of bits

C(M) needed to transmit a single sample from M , is very close (yet not equal!) to the opti-

mal rate (H(M) ≤ C(M) ≤ H(M)+1). What happens for small block lengths is important

for obvious practical and theoretical reasons, and even more so in the interactive regime

(see e.g., [16, 40]). Indeed, this distinction between amortized and so called “one-shot”

results is one of the main distinguishing features of information complexity from classic

information theory. Another distinctive aspect is in that communication complexity of-

ten studies functions whose output is only a single bit or a small number of bits, thus

counting style direct lower bound proofs rarely apply.

Organization

The results of this dissertation are divided into two main categories. The first set of re-

sults (Part 1) concerns direct applications of information complexity to communication

complexity: New techniques for obtaining strong information and communication lower

bounds, with applications to some of the most well studied problems in the literature (the

Gap-Hamming,Inner-Product, Greater-Than,Set-Disjointness and Set Intersection prob-

lems); New advances on the Direct Sum and Direct Product conjectures and the closely

related interactive compression problem (a quest for an interactive analogue of Huffman

coding). A by-product of these results is the development of many new tools, frameworks

and understanding of how information behaves in interactive setups.

The second set of results (Part 2) describes applications of information complexity to

various fields and computational models, including circuit complexity, data streaming,
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security and economics. The common feature of these (seemingly disparate) models is

that they all involve an interactive system in which information is distributed among

multiple agents who are required to solve or optimize some objective function. These

agents may be honest, strategic or even adversarial (malicious). We explore the role of

information and interaction in obtaining efficient solutions for those various interactive

systems, where efficiency may be measured in terms of communication, social welfare,

revenue, space or privacy, depending on the context.

1.1 Preliminaries and Background

The following technical background contains basic definitions, notations and facts used

throughout this monograph. Additional notations with a specific scope are defined lo-

cally in each respective section. For a more thorough and detailed treatment of commu-

nication complexity and information theory, we refer the reader to the excellent texts by

Cover and Thomas [59] and by Kushilevits and Nisan [111].

1.1.1 Information Theory

Definition 1.1.1 (Entropy). The Shannon entropy of a random variable X is

H(X) :=
∑
x

Pr[X = x] log(1/Pr[X = x]).

The conditional entropy H(X|Y ) is defined to be Ey∈RY [H(X|Y = y)].

Fact 1.1.2 (Entropy Chain Rule). H(AB) = H(A) +H(B|A).

Definition 1.1.3 (Mutual Information). The mutual information between two random vari-

ables A,B, denoted I(A;B) is defined to be the quantity

H(A)−H(A|B) = H(B)−H(B|A).
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The conditional mutual information I(A;B|C) is H(A|C)−H(A|BC).

In analogy with the fact that H(AB) = H(A) +H(B|A),

Proposition 1.1.4 (Chain Rule). Let C1, C2, D,B be random variables. Then

I(C1C2;B|D) = I(C1;B|D) + I(C2;B|C1D).

We also use the notion of divergence (also known as Kullback-Leibler distance or rela-

tive entropy), which is a different way to measure the distance between two distributions:

Definition 1.1.5 (Kullback-Leiber Divergence). The informational divergence between two dis-

tributions is

D (p‖q) :=
∑
x

p(x) log(p(x)/q(x)).

By a slight abuse of notation, when A and B are two random variables, we write D (A‖B) :=∑
xA(x) log(A(x)/B(x)) to mean the divergence between the corresponding distribution of A

and B.

For example, if B is the uniform distribution on {0, 1}n then D (A‖B) = n−H(A).

Proposition 1.1.6. Let A,B,C be random variables in the same probability space. For every a in

the support ofA and c in the support ofC, letBa denoteB|A = a andBac denoteB|A = a, C = c.

Then I(A;B|C) = Ea,c∈RA,C [D (Bac‖Bc)].

1.1.2 Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we call Alice and Bob.

A private-coin protocol for computing a function f : X × Y → ZK is a rooted tree with the

following structure:

• Each non-leaf node is owned by Alice or by Bob.
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• Each non-leaf node owned by a particular player has a set of children that are owned

by the other player. Each of these children is labeled by a binary string, in such a

way that this coding is prefix free: no child has a label that is a prefix of another

child.

• Every node is associated with a function mapping X to distributions on children of

the node and a function mapping Y to distributions on children of the node.

• The leaves of the protocol are labeled by output values.

On input x, y, the protocol π is executed as in Figure 1.1.

Generic Communication Protocol

1. Set v to be the root of the protocol tree.

2. If v is a leaf, the protocol ends and outputs the value in the label of v. Otherwise,
the player owning v samples a child of v according to the distribution associated
with her input for v and sends the label to indicate which child was sampled.

3. Set v to be the newly sampled node and return to the previous step.

Figure 1.1: A communication protocol.

A public coin protocol is a distribution on private coins protocols, run by first using

shared randomness to sample a random string R and then running the corresponding

private coin protocol πR. Every private coin protocol is thus a public coin protocol (how-

ever, the distinction between private and public coin protocols will be crucial when deal-

ing with information complexity, as elaborated in Subsection 1.1.6). The protocol is called

deterministic if all distributions labeling the nodes have support size 1.

Definition 1.1.7 (Communication Complexity notation). For a function f : X × Y → Z ,

a distribution µ ∈ ∆X × Y supported on X × Y , and a parameter ε > 0, Dµ(f, ε) denotes the

communication complexity of the cheapest deterministic protocol computing f on inputs sampled

7



according to µ with error (at most) ε. We call this the distributional communication complex-

ity of f with respect to µ. R(f, ε) denotes the cost of the best randomized public coin protocol

for computing f with error at most ε over all possible inputs. We call this the randomized com-

munication complexity of f . When measuring the communication cost of a particular protocol

π, we sometimes use the notation ‖π‖ for brevity, to denote the maximum length of a path in

the protocol tree of π. When clear from context, we use the notation Dµ(f) for the deterministic

communication complexity of f .

The following theorem due to Yao, relates the randomized communication complexity

of a function to its distributional communication complexity:

Theorem 1.1.8 (Yao’s Min-Max). Rρ(f) = maxµD
µ
ρ (f).

Given a communication protocol π, π(x, y) denotes the concatenation of the public

randomness with all the messages that are sent during the execution of π (for information

purposes, this is without loss of generality, since the public string R conveys no informa-

tion about the inputs). We call this the transcript of the protocol. When referring to the

random variable denoting the transcript, rather than a specific transcript, we will use the

notation Π(x, y) — or simply Π when x and y are clear from the context.

1.1.3 Two-Party Information Complexity

This subsection introduces some of the central concepts used throughout this monograph.

For a more detailed overview of information complexity, we refer the reader to [28].

We begin by defining the information cost of a protocol, which informally captures the

(average) amount of additional information that Alice and Bob learn about each others

inputs from the protocol π:
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Definition 1.1.9. The (internal) information cost of a protocol ([14, 17]) over inputs drawn

from a distribution µ on X × Y , is given by:

ICµ(π) := I(Π;X|Y ) + I(Π;Y |X). (1.2)

Intuitively, the definition in (1.2) captures how much the two parties learn about each

other’s inputs from the execution transcript of the protocol π. The first term captures what

the second player learns about X from Π – the mutual information between the input X

and the transcript Π given the input Y . Another information measure which makes sense

at certain contexts is the external information cost of a protocol,

ICext
µ (π) := I(Π;XY ).

This definition captures what the first player learns about Y from Π. The second definition

captures what an external observer learns on average from the transcript of π, about the

inputs of both players. The latter quantity will be of minor interest in this writeup.

Note that the information of a protocol π depends on the prior distribution µ, as the

mutual information between the transcript Π and the inputs depends on the prior distri-

bution on the inputs. To give an extreme example, if µ is a singleton distribution, i.e. one

with µ({(x, y)}) = 1 for some (x, y) ∈ X × Y , then ICµ(π) = 0 for all possible π, as no pro-

tocol can reveal anything to the players about the inputs that they do not already know

a-priori. Similarly, ICµ(π) = 0 ifX = Y and µ is supported on the diagonal {(x, x) : x ∈ X}.

Since one bit of information can never reveal more than one bit of communication, the

communication cost ‖π‖ of π is always an upper bound on its information cost over any

distribution µ:

Lemma 1.1.10 ([35]). For any distribution µ, ICµ(π) ≤ ‖π‖.
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One can now define the information complexity of a function f with respect to µ and

error ε as the least amount of information the players need to disclose each other in order

to compute f with error at most ε:

Definition 1.1.11. The Information Complexity of f with respect to µ (and error ε) is

ICµ(f, ε) := inf
π: Prµ[π(x,y)6=f(x,y)]≤ε

ICµ(π).

1.1.4 General Useful Facts

We denote by |p−q| the total variation distance between the distributions p and q. Pinsker’s

inequality bounds statistical distance in terms of the divergence:

Lemma 1.1.12 (Pinsker’s inequality). |p− q|2 ≤ D (p‖q).

Lemma 1.1.13 (Mutual information in terms of Divergence).

I(A;B|C) = Eb,c [D ((A|bc)‖(A|c))] = Ea,c [D ((B|ac)‖(B|c))] .

Lemma 1.1.14 (Conditioning on independent variables increases information). Let

A,B,C,D be four random variables in the same probability space. If A and D are conditionally

independent given C, then it holds that I(A;B|C) ≤ I(A;B|CD).

Proof. We apply the chain rule twice. On one hand, we have

I(A;BD|C) = I(A;B|C) + I(A;D|CB) ≥ I(A;B|C)

since mutual information is nonnegative. On the other hand,

I(A;BD|C) = I(A;D|C) + I(A;B|CD) = I(A;B|CD)
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since I(A;D|C) = 0 by the independence assumption on A and D. Combining both

equations completes the proof.

Fact 1.1.15 (Divergence is Non-negative). D (p(a)‖q(a)) ≥ 0.

Fact 1.1.16 (Chain Rule). If a = a1, . . . , as, then

D (p(a)‖q(a)) =
s∑
i=1

E
p(a<i)

[D (p(ai|a<i)‖q(ai|a<i))] .

Fact 1.1.17 (Convexity of divergence). Let Q = Ex[Qx] , P be two distributions. Then

Ex [D (P‖Qx)] ≥ [D (P‖Q)] .

Fact 1.1.18 (Data Processing Inequality). Let X → Y → Z be a Markov Chain in the same

probability space (i.e., Z ⊥ X|Y ). Then I(X;Y ) ≥ I(X;Z).

The following lemma asserts that if a random variable Y = g(X) allows one to recon-

struct X with high probability, then Y must “consume” most of the entropy of X :

Lemma 1.1.19 (Fano’s Inequality). LetX be a random variable chosen from domain X according

to distribution µX , and Y be a random variable chosen from domain Y according to distribution

µY . Then for any reconstruction function g : Y −→ X with error εg, it holds that H(X|Y ) ≤

H(εg) + εg log(|X| − 1).

1.1.5 Additivity of Information Cost

Perhaps the single most remarkable property of information complexity is that it is a fully

additive measure over composition of tasks. This property is what makes information

complexity such a natural “relaxation” for addressing direct sum and product conjectures

in communication complexity. The main ingredient of the following lemma appeared first

in the works of [136, 134] and more explicitly in [17, 35, 28].
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Lemma 1.1.20 (Additivity of IC). ICµn(fn, ε) = n · ICµ(f, ε).

Proof. The (≤) direction of the lemma is easy, and follows from a simple argument that

applies the single-copy optimal protocol independently to each copy of fn, with inde-

pendent randomness. We leave the simple analysis of this protocol as an exercise to the

reader.

The (≥) direction is the main challenge. Will will prove it in a contra-positive fashion:

Let Π be an n-fold protocol for fn, such that ICµn(fn, ε) = I . We shall use Π to produce

a single-copy protocol for f whose information cost is ≤ I/n, which would complete the

proof. The guiding intuition for this is that Π should reveal I/n bits of information about

an average coordinate.

To formalize this intuition, let (x, y) ∼ µ, and denote X := X1 . . . Xn , X≤i := X1 . . . Xi,

and similarly for Y, Y≤i. Alice and Bob will “embed” their respective inputs (x, y) to a

(publicly chosen) random coordinate i ∈ [n] of Π. However, Π is defined over n input

copies, so in order to execute it, the players need to “fill in” the rest (n − 1) coordinates,

each according to µ. How should this step be done? The first attempt is for Alice and Bob

to try and complete X−i, Y−i privately. This approach fails if µ is a non-product distribu-

tion, since there’s no way the players can sample X and Y privately, such that (X, Y ) ∼ µ

if µ correlates the inputs. The other extreme – samplingX−i, Y−i using public randomness

only – would resolve the aforementioned correctness issue, but would leak too much in-

formation: An instructive example is where the first message of Π is the XOR of Alice’s

n-bit uniform input M = X1 ⊕ X2 ⊕ . . . ⊕ Xn. Conditioned on X−i, Y−i, M reveals 1 bit

of information about Xi to Bob, while we way to argue that in this case, only 1/n bits are

revealed about Xi. It turns out that the “right” way of breaking the dependence across

the coordinates is by sampling publicly the random variable

R := X<i, Y>i.
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Note that given R, Alice can complete all her missing inputs X>i privately according to µ,

and Bob can do the same for Y<i. Let us denote by θ(x, y) the protocol produced by run-

ning Π(X1, ..., Xi−1, x,Xi+1, ..., Xn , Y1, ..., Yi−1, y, Yi+1, ..., Yn) and outputting its answer on

the i’th coordinate.

By definition, Π computes fn with a per-copy error of ε, and thus in particular θ(x, y) =

f(x, y) with probability ≥ 1− ε. To analyze the information cost of θ, we write:

I(θ;x|y) = ER[I(θ;x|y,R)] =
n∑
i=1

1

n
· I(Π;Xi | Yi, R)

=
1

n

n∑
i=1

I(Π;Xi | Yi, X<iY>i) =
1

n

n∑
i=1

I(Π;Xi | X<iY≥i)

≤ 1

n

n∑
i=1

I(Π;Xi | X<iY) =
1

n
· I(Π;X | Y),

where the inequality follows from Lemma 1.1.14, since I(Y<i;Xi|X<i) = 0 by construction,

and the last transition is by the chain rule for mutual information. By symmetry of con-

struction, an analogues argument shows that I(θ; y|x) ≤ I(Π;Y | X)/n, and combining

these facts gives

ICµ(θ) ≤ 1

n
(I(Π;X | Y) + I(Π;Y | X)) =

I

n
. (1.3)

1.1.6 The importance of private randomness

A subtle but vital issue when dealing with information complexity, is understanding the

role of private vs. public coins. In randomized communication complexity, one often

ignores the usage of private coins in a protocol. This is justified by the fact that private

coins can be always simulated by public coins (on a “separate” part of the shared public

tape), and [Newman]. Moreover, in the distributional model, when inputs arrive from

some prior distribution µ, the averaging principle asserts that the communication cost can
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be minimized by some fixed choice of the public randomness (which is why we consider

only deterministic protocols in this model).

When dealing with information complexity, the situation is somewhat the opposite:

Public coins are essentially a redundant resource (as it can be easily show by the chain

rule that ICµ(π) = ER[ICµ(πR)]) while the usage of private coins is crucial for minimizing

the information cost of the protocol, and fixing these coins is prohibitive even when the

information is measured with respect to a specific distribution. Consider the simple exam-

ple where in the protocol π, Alice sends Bob her 1-bit input X , XORed with some random

bit Z. If Z is private, Alice’s message clearly reveals 0 bits of information to Bob about X .

However, for any fixing of Z, this message would reveal X! The general intuition is that a

protocol with minimum information cost requires the parties to reveal information about

their inputs “carefully”, and the usage of private coins serves to “conceal” parts of their

inputs. This is not a theorem (and in fact, quantifying the role of private coins in mini-

mizing information cost would essentially resolve the interactive compression problem ,

see e.g., [25]), but many known examples (e.g., [31]) support this intuition.

Thus, for the remainder of this article, communication protocols π are assumed to use

private coins (and thus in particular, they are randomized even conditioned on the inputs

x, y), while ICµ(π) = I(Π;X|Y R) + I(Π;Y |XR) is the information conditioned on the

public randomness R, but never on the private coins of π.
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Part I

Applications to Communication

Complexity
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Chapter 2

Information Lower Bounds: New

Techniques and Applications

The “Information=Amortized Communication” theorem (Theorem 1.0.1) asserts that

proving lower bounds on the information complexity of f is equivalent to proving

a lower bound on the amortized communication complexity of f . In particular, if f

satisfies IC(f) = Ω(CC(f)), i.e. that its information cost is asymptotically equal to its

communication complexity, then a strong direct sum theorem holds for f . In addition to

the intrinsic interest of understanding the amount of information exchange that needs to

be involved in computing f , direct sum and product theorems (see Chapter 3) motivate

the development of techniques for proving lower bounds on the information complexity

of functions.

Another important motivation for proving information lower bounds stems from pri-

vacy aspects and understanding the limits of security in two-party computation (more on

this in Chapter 7). In a celebrated result Ben-Or et al. [21] (see also [10]) showed how a

multi-party computation (with three or more parties) may be carried out in a way that

reveals no information to the participants except for the computation’s output. The pro-

tocol relies heavily on the use of random bits that are shared between some, but not all,
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parties. Such a resource can clearly not exist in the two-party setting. While it can be

shown that a perfect information security is unattainable by two-party protocols [53, 12],

quantitatively it is not clear just how much information must the parties “leak” to each

other to compute f . The quantitative answer depends on the model in which the leakage

occurs, and whether quantum computation is allowed [107]. Information complexity an-

swers this question in the strongest possible sense for classical protocols: the parties are

allowed to use private randomness to help them “hide” their information, and the infor-

mation revealed is measured on average. Thus an information complexity lower bound of

I on a problem implies that the average (as opposed to worst-case) amount of information

revealed to the parties is at least I .

As mentioned above, the information complexity is always upper bounded by the

communication complexity of f . The converse is not known to be true. Moreover,

lower bound techniques for communication complexity do not readily translate into

lower bound techniques for information complexity. The key difference is that a low-

information protocol is not limited in the amount of communication it uses (an extreme

example of this feature follows in Section 2.3 ), and thus rectangle-based communication

bounds do not readily convert into information lower bound. No general technique has

been known to yield sharp information complexity lower bounds. A linear lower bound

on the communication complexity of the disjointness function has been shown in [137].

An information-theoretic proof of this lower bound [14] can be adapted to prove a linear

information lower bound on disjointness [27]. One general technique for obtaining (weak)

information complexity lower bounds was introduced in [27], where it has been shown

that any function that has I bits of information complexity, has communication com-

plexity bounded by 2O(I). This immediately implies that the information complexity of a

function f is at least the log of its communication complexity (IC(f) ≥ Ω(log(CC(f)))).

In fact, this result easily follows from the stronger result we prove below (Theorem 2.1.6).
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In this section, we present general and specific techniques for proving informa-

tion lower bounds on functions, and use then to prove strong communication lower

bounds on several important functions: Gap-Hamming, Inner-Product, Greater-Than,

Set-Disjointness and Set Intersection.

2.1 A Discrepancy Lower Bound for Information Complex-

ity

Our first result is a general technique for proving information lower bounds on two-

party unbounded-rounds communication problems. We show that the discrepancy lower

bound, which applies to randomized communication complexity, also applies to informa-

tion complexity. More precisely, if the discrepancy of a two-party function f with respect

to a distribution µ is Discµf , then any two party randomized protocol computing f must

reveal at least Ω(log(1/Discµf)) bits of information to the participants.

The proof we shall see establishes a general relationship between “weak” interactive

compression results and information lower bounds, which has played a central role in the

recent breakthrough work of Kerenidis et al. [102], who showed that almost all known

lower bound techniques for communication complexity (and not just discrepancy) apply

to information complexity.

By proving that the discrepancy of the Greater-Than function is Ω(1/
√
n), we will

use the above tool as a corollary to reprove Viola’s [148] Ω(log n) lower bound on the

communication (and information) complexity of this well-studied function.

The Formal Result

The discrepancy of f with respect to a distribution µ on inputs, denoted Discµ(f), mea-

sures how “unbalanced” can f get on any rectangle, where the balancedness is measured
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with respect to µ:

Discµ(f)
∆
= max

rectangles R

∣∣∣∣Pr
µ

[f(x, y) = 0 ∧ (x, y) ∈ R]− Pr
µ

[f(x, y) = 1 ∧ (x, y) ∈ R]

∣∣∣∣.
A well-known lower bound (see e.g [112]) asserts that the distributional communication

complexity of f , denoted Dµ
1/2−ε(f), when required to predict f with advantage ε over a

random guess (with respect to µ), is bounded from below by Ω(log 1/Discµ(f)):

Dµ
1/2−ε(f) ≥ log(2ε/Discµ(f)).

Note that the lower bound holds even if we are merely trying to get an advantage of

ε =
√
Discµ(f) over random guessing in computing f . We prove that the information

complexity of computing f with probability 9/10 with respect to µ is also bounded from

below by Ω(log(1/Discµ(f))).

Theorem 2.1.1. [[39]] Let f : X ×Y → {0, 1} be a Boolean function and let µ be any probability

distribution on X × Y . Then

ICµ(f, 1/10) ≥ Ω(log(1/Discµ(f))).

Remark 2.1.2. The choice of 9/10 is somewhat arbitrary. For randomized worst-case protocols,

we may replace the success probability with 1/2 + δ for a constant δ, since repeating the protocol

constantly many times would yield the aforementioned success rate, while the information cost of

the repeated protocol differs only by a constant factor from the original one. In particular, using

prior-free information cost [28] this implies ICf1/2− δ ≥ Ωδ(log(1/Discµ(f))).

In particular, Theorem 2.1.1 implies a linear lower bound on the information complex-

ity of the inner product function IP (x, y) =
∑n

i=1 xiyi mod 2, and on a random boolean

function fr : {0, 1}n × {0, 1}n → {0, 1}, expanding the (limited) list of functions for which

nontrivial information-complexity lower bounds are known:
19



Corollary 2.1.3. The information complexity ICuniform(IP, 1/10) of IP (x, y) is Ω(n). The in-

formation complexity ICuniform(fr, 1/10) of a random function fr is Ω(n), except with probability

2−Ω(n).

We study the communication and information complexity of the Greater-Than func-

tion (GTn) on numbers of length n. This is a very well-studied problem [145, 124, 112].

Only very recently the tight lower bound of Ω(log n) in the public-coins probabilistic

model was given by Viola [148]. We show that the discrepancy of the GTn function is

Ω(1/
√
n):

Lemma 2.1.4. There exist a distribution µn on X × Y such that the discrepancy of GTn with

respect to µn satisfies

Discµn(GTn) <
20√
n
.

Due to space constrains, we omit the proof of this lemma and refer the reader to the

full version of the paper [39]. Lemma 2.1.4 provides an alternative (simpler) proof of

Viola’s [148] lower bound on the communication complexity of GTn. By Theorem 2.1.1,

Lemma 2.1.4 immediately implies a lower bound on the information complexity of GTn:

Corollary 2.1.5. ICµn(GTn, 1/10) = Ω(log n)

This settles the information complexity of the GT function, since this problem can

be solved by a randomized protocol with O(log n) communication (see [112]). This

lower bound is particularly interesting since it demonstrates the first tight information-

complexity lower bound that is not linear.

The key technical idea in the proof of Theorem 2.1.1 is a new simulation procedure that

allows us to convert any protocol that has information cost I into a (two-round) protocol

that has communication complexity O(I) and succeeds with probability > 1/2 + 2−O(I),

yielding a 2−O(I) advantage over random guessing. Combined with the discrepancy lower

bound for communication complexity, this proves Theorem 2.1.1.
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Comparison and connections to prior results

The most relevant prior work is an article by Lee, Shraibman, and Špalek [114]. Improv-

ing on an earlier work of Shaltiel [140], Lee et al. show a direct product theorem for

discrepancy, proving that the discrepancy of f⊗k — the k-wise XOR of a function f with

itself — behaves as Disc(f)Ω(k). This implies in particular that the communication com-

plexity of f⊗k scales at least as Ω(k · logDisc(f)). Using the fact that the limit as k → ∞

of the amortized communication complexity of f is equal to the information cost of f

[34], the result of Lee et al. “almost” implies the bound of Theorem 2.1.1. Unfortunately,

the amortized communication complexity in the sense of [34] is the amortized cost of k

copies of f , where each copy is allowed to err with some probability (say 1/10). Generally

speaking, this task is much easier than computing the XOR (which requires all copies to

be evaluated correctly with high probability. Thus the lower bound that follows from Lee

et al. applies to a more difficult problem, and does not imply the information complexity

lower bound.

Another generic approach one may try to take is to use compression results such as

[17] to lower bound the information cost from communication complexity lower bounds.

The logic of such a proof would go as follows: “Suppose there was a information-

complexity-I protocol π for f , then if one can compress it into a low-communication

protocol one may get a contradiction to the communication complexity lower bound f”.

Unfortunately, all known compression results compress π into a protocol π′ whose com-

munication complexity depends on I but also on CC(π). Even for external information

complexity (which is always greater than the internal information compelxity, the bound

obtained in [17] is of the form Iext(π) · polylog(CC(π)). Thus compression results of this

type cannot rule out protocols that have low information complexity but a very high (e.g.

exponential) communication complexity.

Our result can be viewed as a weak compression result for protocols, where a proto-

col for computing f that conveys I bits of information is converted into a protocol that

21



uses O(I) bits of communication and giving an advantage of 2−O(I) in computing f . This

strengthens the result in [27] where a compression to 2O(I) bits of communication has

been shown. We still do not know whether compression to a protocol that uses O(I)

bits of communication and succeeds with high probability (as opposed to getting a small

advantage over random) is possible.

Proof of Theorem 2.1.1

To establish the correctness of Theorem 2.1.1, we prove the following “weak simulation”

theorem, which is the central result of [39]:

Theorem 2.1.6. Suppose that ICµ(f, 1/10) = Iµ. Then there exist a protocol π′ such that

• CC(π′) = O(Iµ).

• Pr(x,y)∼µ[π′(x, y) = f(x, y)] ≥ 1/2 + 2−O(Iµ)

We first show how Theorem 2.1.1 follows from Theorem 2.1.6:

Proof of Theorem 2.1.1. Let f, µ be as in theorem 2.1.1, and let ICµ(f, 1/10) = Iµ. By theo-

rem 2.1.6, there exists a protocol π′ computing f with error probability 1/2− 2−O(Iµ) using

O(Iµ) bits of communication. Applying the discrepancy lower bound for communication

complexity we obtain

O(Iµ) ≥ Dµ

1/2−2−O(Iµ)(f) ≥ log(2 · 2−O(Iµ)/Discµ(f)) (2.1)

which after rearranging gives Iµ ≥ Ω(log(1/Discµ(f))), as desired.

We now turn to prove Theorem 2.1.6. The main step is the following sampling lemma.
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Lemma 2.1.7. Let µ be any distribution over a universe U and let I ≥ 0 be a parameter

that is known to both A and B. Further, let νA and νB be two distributions over U such

that D (µ‖νA) ≤ I and D (µ‖νB) ≤ I . The players are each given a pair of real functions

(pA, qA), (pB, qB), pA, qA, pB, qB : U → [0, 1] such that for all x ∈ U , µ(x) = pA(x) · pB(x),

νA(x) = pA(x) · qA(x), and νB(x) = pB(x) · qB(x). Then there is a (two round) sampling protocol

Π1 = Π1(pA, pB, qA, qB, I) which has the following properties:

1. at the end of the protocol, the players either declare that the protocol “fails”, or output xA ∈ U

and xB ∈ U , respectively (“success”).

2. let suc be the event that the players output “success”. Then suc⇒ xA = xB, and

0.9 · 2−50(I+1) ≤ Pr[suc] ≤ 2−50(I+1).

3. if µ1 is the distribution of xA conditioned on suc, then |µ− µ1| < 2/9.

Furthermore, Π1 can be “compressed” to a protocol Π2 such that CC(Π2) = 211I+1, whereas |Π1−

Π2| ≤ 2−59I (by an abuse of notation, here we identify Πi with the random variable representing

its output).

We will use the following technical fact about the information divergence of distribu-

tions.

Claim 2.1.8 (3). [Claim 5.1 in [27]] Suppose that D (µ‖ν) ≤ I . Let ε be any parameter. Then

µ
{
x : 2(I+1)/ε · ν(x) < µ(x)

}
< ε.

For completeness, we repeat the short proof in the appendix.

Proof of Lemma 2.1.7 . Throughout the execution of Π1, Alice and Bob interpret

their shared random tape as a source of points (xi, αi, βi) uniformly distributed in

U × [0, 250(I+1)] × [0, 250(I+1)]. Alice and Bob consider the first T = |U| · 2100(I+1) · 60I
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such points. Their goal will be to discover the first index τ such that ατ ≤ pA(xτ ) and

βτ ≤ pB(xτ ) (where they wish to find it using a minimal amount of communication, even

if they are most likely to fail). First, we note that the probability that an index t satisfies

αt ≤ pA(xt) and βt ≤ pB(xt) is exactly 1/|U|250(I+1)250(I+1) = 1/|U|2100(I+1). Hence the

probability that τ > T (i.e. that xτ is not among the T points considered) is bounded by

(
1− 1/|U|2100(I+1)

)T
< e−T/|U|2

100(I+1)

= e−60I < 2−60I (2.2)

Denote by A the following set of indices A := {i ≤ T : αi ≤ pA(xi) and βi ≤ 250(I+1) ·

qA(xi)}, the set of potential candidates for τ from A’s viewpoint. Similarly, denote B :=

{i ≤ T : αi ≤ 250(I+1) · qB(xi) and βi ≤ pB(xi)}.

The protocol Π1 is very simple. Alice takes her bet on the first element a ∈ A and

sends it to Bob. Bob outputs a only if (it just so happens that) βτ ≤ pB(a). The details are

given in Figure 1.1 in the appendix.

We turn to analyze Π1. Denote the set of “Good” elements by

G ∆
= {x : 250(I+1) · νA(x) ≥ µ(x) and 250(I+1) · νB(x) ≥ µ(x)}}.

Then by Claim 2.1.8, µ(G) ≥ 48/50 = 24/25. The following claim asserts that if it succeeds,

the output of Π1 has the “correct” distribution on elements in G.

Claim 2.1.9. Assume A is nonempty. Then for any xi ∈ U , the probability that Π1 outputs xi is

at most µ(xi) · 2−50(I+1). If xi ∈ G, then this probability is exactly µ(xi) · 2−50(I+1).

Proof. Note that if A is nonempty, then for any xi ∈ U , the probability that xi is the first

element in A (i.e, a = xi) is pA(xi)qA(xi) = νA(xi). By construction, the probability that
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βi ≤ pB(a) is min{pB(xi)/(2
50(I+1)qA(xi)), 1}, and thus

Pr[Π1 outputs xi] ≤ pA(xi)qA(xi) ·
pB(xi)

250(I+1)qA(xi)
= µ(xi) · 2−50(I+1).

On the other hand, if xi ∈ G, then we know that pB(xi)/qA(xi) = µ(xi)/νA(xi) ≤

250(I+1), and so the probability that βi ≤ pB(a) is exactly pB(xi)/(2
50(I+1)qA(xi)). Since

Pr[Π1 outputs xi] = Pr[a = xi] Pr[βi ≤ pB(a)] (assuming A is nonempty), we conclude

that:

xi ∈ G =⇒ Pr[Π1 outputs xi] = pA(xi)qA(xi) ·
pB(xi)

250(I+1)qA(xi)
= µ(xi) · 2−50(I+1).

We are now ready to estimate the success probability of the protocol.

Proposition 2.1.10. Let suc denote the event that A 6= 0 and a ∈ B (i.e, that the protocol

succeeds). Then

0.9 · 2−50(I+1) ≤ Pr[suc] ≤ 2−50(I+1).

Proof. Using Claim 2.1.9, we have that

Pr[suc] ≤ Pr[a ∈ B | A 6= ∅] =
∑
i∈U

Pr[a = xi] Pr[βi ≤ pB(a)] ≤ (2.3)

≤
∑
i∈U

µ(xi) · 2−50(I+1) = 2−50(I+1)

For the lower bound, we have
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Pr[suc] ≥ Pr[βi ≤ pB(a) | A 6= ∅] · Pr[A 6= ∅] ≥

≥ (1− 2−60I)

(∑
i∈U

Pr[a = xi] Pr[βi ≤ pB(a)]

)
≥

≥ (1− 2−60I)

(∑
i∈G

Pr[a = xi] Pr[βi ≤ pB(a)]

)
=

= (1− 2−60I)

(
2−50(I+1)

∑
i∈G

µ(xi)

)
= (1− 2−60I)

(
2−50(I+1)µ(G)

)
≥

≥ 24

25
(1− 2−60I)2−50(I+1) ≥ 0.9 · 2−50(I+1) (2.4)

where the equality follows again from claim 2.1.9. This proves the second claim of

Lemma 2.1.7.

The following claim asserts that if suc occurs, then the distribution of a is indeed close

to µ.

Claim 2.1.11 (4). Let µ1 be the distribution of a|suc. Then |µ1 − µ| ≤ 2/9.

Proof. The claim follows directly from proposition 2.1.10. We defer the proof to the

appendix.

We turn to the “Furthermore” part of of Lemma 2.1.7. The protocol Π1 satisfies the

premises of the lemma, except it has a high communication cost. This is due to the fact

that Alice explicitly sends a to Bob. To reduce the communication, Alice will instead send

O(I) random hash values of a, and Bob will add corresponding consistency constraints to

his set of candidates. The final protocol Π2 is given in Figure 2.1.

Let E denote the event that in step 4 of the protocol, Bob finds an element xi 6= a (that

is, the probability that the protocol outputs “success” but xA 6= xB). We upper bound the

probability of E . Given a ∈ A and xi ∈ B such that a 6= xi, the probability (over possible

choices of the hash functions) that hj(a) = hj(xi) for j = 1..d is 2−d ≤ 2−211I . For any t,
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Information-cost sampling protocol Π2

1. Alice computes the set A. Bob computes the set B.

2. If A = ∅, the protocol fails. Otherwise, Alice finds the first element a ∈ A and
sets xA = a. She then computes d = d211Ie random hash values h1(a), . . . , hd(a),
where the hash functions are evaluated using public randomness.

3. Alice sends the values {hj(a)}1≤j≤d to Bob.

4. Bob finds the first index τ such that there is a b ∈ B for which hj(b) = hj(a) for
j = 1..d (if such an τ exists). Bob outputs xB = xτ . If there is no such index, the
protocol fails.

5. Bob outputs xB (“success”).

6. Alice outputs xA.

Figure 2.1: The sampling protocol Π2 from Lemma 2.1.7

Pr[t ∈ B] ≤ 1
|U|
∑

xi∈U pB(xi)qB(xi) ·250(I+1) = 1
|U|
∑

xi∈U νB(xi) ·250(I+1) = 250(I+1)/|U|. Thus,

by a union bound we have

Pr[E ] ≤ Pr[∃xi ∈ B s.t xi 6= a ∧ hj(a) = hj(xi) ∀ j = 1, . . . , d] ≤

≤ T · 250(I+1) · 2−d/|U| = 2150(I+1) · 60I · 2−211I � 2−60I . (2.5)

By a slight abuse of notation, let Π2 be the distribution of Π2’s output. Similarly, denote

by Π1 the distribution of the output of protocol Π1. Note that if E does not occur, then the

outcome of the execution of Π2 is identical to the outcome of Π1. Since Pr[E ] ≤ 2−60I , we

have

|Π2 − Π1| = Pr[E ] · |[Π2|E ]− [Π1|E ]| ≤ 2 · 2−60I � 2−59I

which finishes the proof of the lemma.
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Using the above lemma, we are now ready to prove our main theorem.

Proof of Theorem 2.1.6 . Let π be a protocol that realizes the value Iµ := ICµ(f, 1/10). In

other words, π has an error rate of at most 1/10 and information cost of at most Iµ with

respect to µ. Denote by πxy the random variable that represents that transcript π given

the inputs (x, y), and by πx (resp. πy) the protocol conditioned on only the input x (resp.

y). We denote by πXY the transcripts where (X, Y ) are also a pair of random variables. By

Claim 2.1.8, we know that

Iµ = I(X; πXY |Y ) + I(Y ; πXY |X) = E(x,y)∼µ[D (πxy‖πx) + D (πxy‖πy)]. (2.6)

Let us now run the sampling algorithm Π1 from Lemma 2.1.7, with the distribution µ

taken to be πxy, the distributions νA and νB taken to be πx and πy respectively, and I taken

to be 20Iµ.

At each node v of the protocol tree that is owned by player X let p0(v) and p1(v) =

1 − p0(v) denote the probabilities that the next bit sent by X is 0 and 1, respectively. For

nodes owned by player Y , let q0(v) and q1(v) = 1 − q0(v) denote the probabilities that

the next bit sent by Y is 0 and 1, respectively, as estimated by player X given the input x.

For each leaf ` let pX(`) be the product of all the values of pb(v) from the nodes that are

owned by X along the path from the root to `; let qX(`) be the product of all the values of

qb(v) from the nodes that are owned by Y along the path from the root to `. The values

pY (`) and qY (`) are defined similarly. For each ` we have Pr[πxy = `] = pX(`) · pY (`),

Pr[πx = `] = pX(`) · qX(`), and Pr[πy = `] = pY (`) · qY (`). Thus we can apply Lemma 2.1.7

so as to obtain the following protocol π′ for computing f :

• If Π1 fails, we return a random unbiased coin flip.

• If Π1 succeeds, we return the final bit of the transcript sample T . Denote this bit by

Tout.
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To prove the correctness of the protocol, let Z denote the event that both D (πxy‖πx) ≤

20Iµ and D (πxy‖πy) ≤ 20Iµ. By (2.6) and Markov inequality, Pr[Z] ≥ 19/20 (where the

probability is taken with respect to µ). Denote by δ the probability that Π1 succeeds. By

the assertions of Lemma 2.1.7, δ ≥ 0.9 · 2−50(I+1). Furthermore, if Π1 succeeds, then we

have |T − πxy| ≤ 2/9, which in particular implies that Pr[Tout = πout] ≥ 7/9. Finally,

Pr[πout = f(x, y)] ≥ 9/10, since π has error at most 1/10 with respect to µ. Now, let W

denote the indicator variable whose value is 1 iff π′(x, y) = f(x, y). Putting together the

above,

E[W | Z] = (1− δ) · 1

2
+ δ ·

(
7

9
− 1

10

)
>

1

2
+ δ · 1

6
>

1

2
+

1

8
· 2−50(I+1). (2.7)

On the other hand, note that by lemma 2.1.7 the probability that Π1 succeeds is at most

2−50(I+1) (no matter how large D (πxy‖πx) and D (πxy‖πy) are!), and so E[W | ¬Z] ≥ (1 −

2−50(I+1))/2.

Hence we conclude that

E[W ] = E[W | Z] · Pr[Z] + E[W | ¬Z] · Pr[¬Z] ≥
(

1

2
+

1

8
· 2−50(I+1)

)
· 19

20
+

+
(
1− 2−50(I+1)

)
· 1

2
· 1

20
≥ 1

2
+

1

12
· 2−50(I+1) >

1

2
+

1

12
· 2−1000(Iµ+1).

Finally, Lemma 2.1.7 asserts that |Π1 − Π2| < 2−59I . Thus if we replace Π1 by Π2 in the

execution of protocol π′, the success probability decreases by at most 2−59I � 1
12
·2−50(I+1).

Furthermore, the amount of communication used by π′ is now

211I = 4220Iµ = O(Iµ).

Hence we conclude that with this modification, π′ has the following properties:

• CC(π′) = 4220 · Iµ;
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• Pr (x, y) ∼ µ[π′(x, y) = f(x, y)] ≥ 1/2 + 2−1000(Iµ+1)−4;

which completes the proof.

Remark 2.1.12. Using similar techniques, it was recently shown in [27] that any function f

whose information complexity is I has communication cost at most 2O(I) 1, thus implying that

IC(f) ≥ Ω(log(CC(f))). We note that this result can be easily derived (up to constant factors)

from Theorem 2.1.6. Indeed, applying the “compressed” protocol 2O(I) log(1/ε) independent times

and taking a majority vote guarantees an error of at most ε (by a standard Chernoff bound2), with

communication O(I) · 2O(I) = 2O(I). Thus, our result is strictly stronger than the former one.

2.2 Information Lower Bounds via Self Reducibility

In this short section we illustrate a more specific technique for deriving strong informa-

tion complexity lower bounds for “self-reducible” functions. This approach is somewhat

opposite to the standard one, in that the information lower bounds are obtained from

postulated (known) communication complexity lower bounds. We note that such informa-

tion lower bounds are valuable even if a communication bound is already known, since

they imply strong direct sum (and product) theorems for such functions (See Chapter 3),

and also an inherent limit on the privacy required to solve such functions, as noted in the

introduction of this chapter. Due to space constraints, we only outline our main results

and techniques, and refer the reader to the full version of this paper [32] for the complete

proofs.

The technique we present works for functions that exhibit a “self-reducible structure”.

Informally speaking f has a self-reducible structure, if for large enough inputs, solving

fnk essentially amounts to solving fkn (fnk denotes the function f under inputs of length

nk, while fkn denotes k independent copies of f under inputs of size n). Our depart-

ing point is a communication complexity lower bound for fnk (that may be obtained by

1More precisely, it shows that for any distribution µ, Dµ
ε+δ(f) = 2O(1+ICµ(f,ε)/δ

2).
2See N.Alon and J. Spencer, ”The Probabilistic Method” (Third Edition) ,Corollary A.1.14, p.312.
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any means). Assuming self-reducibility, the same bound applies to fkn , which through

the “Information= Amortized Communication” theorem [35], implies a lower bound on

the information complexity of fn. In the following work we develop tools to make this

reasoning go through.

We use the self-reducibility technique to prove results about the information complex-

ity of Gap Hamming Distance and Inner Product. We prove that the information com-

plexity of the Gap Hamming Distance problem with respect to the uniform distribution is

linear. This was explicitly stated as an open problem by Chakrabarti et al. [50]. Formally,

let ICµ(GHDn,t,g, ε) denote the information cost of the Gap Hamming promise problem,

where inputs x, y are n-bit strings distributed according to µ, and the players need to de-

termine whether the Hamming distance between x and y is at least t+ g, or at most t− g,

with error at most ε under µ. We prove

Theorem 2.2.1 ([32]). There exists an absolute constant ε > 0 for which

ICU(GHDn,n/2,
√
n, ε) = Ω(n)

where U is the uniform distribution.

For the Inner Product problem, where the players need to compute∑n
i=1 xiyi(mod 2), we prove a stronger bound on its information complexity. Formally

Theorem 2.2.2 ([32]). For every constant δ > 0, there exists a constant ε > 0, and n0 such that

∀ n ≥ n0, ICUn(IPn, ε) ≥ (1− δ)n. Here Un is the uniform distribution over {0, 1}n × {0, 1}n.

Note that ICUn(IPn, ε) ≤ (1− 2ε)(n+ 1), since the parties can always output a random

value ∈ {0, 1} with probability 2ε, and have one of the parties send its entire input with

probability 1 − 2ε (Indeed, this protocol has error (1/2) · 2ε + (1 − 2ε) · 1 = 1 − ε, and

information cost (1/2) · 0 + (1 − 2ε) · (n + 1) = (1 − 2ε) · (n + 1)). Also it is known that

ICUn(IPn, ε) ≥ Ω(n), for all ε ∈ [0, 1/2) [38]. We prove that the information complexity of
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IPn can be arbitrarily close to the trivial upper bound n as we keep decreasing the error

(though keeping it a constant).

We refer the reader to [32] for a broader discussion and the full proofs of Theorems

2.2.1 and 2.2.2.

2.3 From Information to Exact Communication

Traditional communication complexity lower bound techniques were combinatorial in

nature and most of them rely on studying the combinatorial and analytic properties of

the communication matrix Mf corresponding to the function f (notable examples are

the rank, Discrepancy, corruption and “smooth rectangle” lower bounds). While most

existing state-of-the-art communication lower bounds were proved this way (including

recently ones such as the lower bound for Gap Hamming Distance [48, 143]), such tech-

niques often lose constants by design, and are too crude to give exact communication

bounds.

In contrast, information theory is known to give precise bounds on rates and capacities.

This important feature essentially stems from the additivity property of information com-

plexity (see equation 1.1), which can be viewed as a generalization of Shannon’s noiseless

coding theorem to the interactive setup. For example, we know that a sequence of ran-

dom digits would take exactly log2 10 ≈ 3.322 bits per digit, and that the capacity of a

binary symmetric channel with substitution probability 0.2 is exactly 1 − H(0.2) ≈ 0.278

bits per symbol. Generally speaking, prior to this work, this benefit has not been fully

realized in an interactive communication complexity scenario.

In this section, we present a framework for proving exact (zero-error) information

lower bounds, thereby bringing tight bounds into the realm of communication complex-

ity: We develop a new local characterization of the zero-error information complexity

function for two-party communication problems, and use it to compute the exact internal
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and external information complexity of the 2−bit AND function: IC(AND, 0) = C∧ ≈

1.4923 bits, and ICext(AND, 0) = log2 3 ≈ 1.5839 bits. We shall see that this leads to a tight

(upper and lower bound) characterization of the communication complexity of the set in-

tersection problem (where players are required to compute the intersection of their sets),

whose randomized communication complexity tends to C∧ ·n± o(n) as the error tends to

zero.

The information-optimal protocol we present has an infinite number of rounds. We

shall see that this tradeoff is necessary by proving that the rate of convergence of the

r−round information cost of AND to IC(AND, 0) = C∧ behaves like Θ(1/r2), i.e. that the

r-round information complexity of AND is C∧ + Θ(1/r2).

We will then leverage the tight analysis obtained for the information complexity of

AND to calculate and prove the exact communication complexity of the set disjointness

function Disjn(X, Y ) = ¬ ∨ni=1 AND(xi, yi) with error tending to 0, which turns out to be

= CDISJ · n ± o(n), where CDISJ ≈ 0.4827. Our rate of convergence results imply that

an asymptotically optimal protocol for set disjointness will have to use ω(1) rounds of

communication, since every r-round protocol will be sub-optimal by at least Ω(n/r2) bits

of communication.

In a similar spirit, we obtain a tight bound of 2
ln 2
k ± o(k) on the communication com-

plexity of disjointness of sets of size ≤ k, sharpening the asymptotic bound of Θ(k) previ-

ously shown by Håstad and Wigderson.

2.3.1 Main Results

Let π be a communication protocol attempting to solve some two-party function f(x, y)

with zero error where inputs are sampled according to a joint distribution µ. Our first

contribution is a characterization of the zero-error information cost function ICµ(f, 0) in

terms of certain local concavity constrains. A related – but more abstract – characteriza-
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tion was given in the information theory literature by Ma and Ishwar [120]. Let ∆(X ×Y)

denote the set of distributions over X × Y .

Lemma 2.3.1. For any function f : X × Y → Z there exists a family C(f) of functions C :

∆(X × Y)→ R+ satisfying certain local concavity constraints, such that for any distribution µ,

and any protocol π solving f with zero error under µ, it holds that

∀ C ∈ C(f) C(µ) ≤ ICµ(π).

Furthermore, ICµ(f, 0) is the point-wise maximum of C(f).

This lemma gives a very general technique for proving information-complexity lower

bounds, and plays a central role in one of our main results: the exact information com-

plexity of the 2-bit AND function f(x, y) = x∧ y. Since the inputs of the parties consist of

only 2 bits, the information complexity of this function is trivially bounded by 2. By fix-

ing x = 1, it is also easy to see that 1 is a lower bound on the information complexity. We

present a zero-error “clocked” protocol which has an infinite number of rounds and com-

putes the AND function, under any input distribution µ, with information cost at most

C∧ ≈ 1.4923. The maximum external information cost of our protocol is log2 3 ≈ 1.58496.

While the analysis itself is nontrivial, the main bulk of effort is proving this protocol is in

fact optimal, both in the internal and external sense:

Theorem 2.3.2.

IC(AND, 0) = C∧ ≈ 1.4923

Theorem 2.3.3.

ICext(AND, 0) = log2 3 ≈ 1.58496

We also analyze the rate of convergence to the optimal information cost, as the num-

ber r of permitted rounds increases. We view this result as a step towards proving that

information complexity of functions is computable.
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Theorem 2.3.4. For all µ ∈ ∆({0, 1} × {0, 1}) with full support we have

ICrµ(AND, 0) = ICµ(AND, 0) + Θµ

(
1

r2

)
.

In the second part of our work we show how tight information bounds may lead to

exact communication bounds.

We leverage our in-depth information analysis of AND to prove the exact randomized

communication complexity of the Disjn function, with error tending to zero. For the

general disjointness function we get:

Theorem 2.3.5. For all ε > 0, there exists δ = δ(ε) > 0 such that δ → 0 as ε→ 0 and

(CDISJ − δ) · n ≤ R(DISJn, ε) ≤ CDISJ · n+ o(n).

where CDISJ ≈ 0.4827 bits.

For the case of disjointness DISJkn of sets of size ≤ k we get

Theorem 2.3.6. Let n, k be such that k = ω(1) and n/k = ω(1). Then for all constant ε > 0,

(
2

ln 2
−O(

√
ε)

)
· k − o(k) ≤ R(DISJkn , ε) ≤

2

ln 2
· k + o(k).

We also observe that Theorem 2.3.2 leads to the exact (randomized) communication

complexity of the Set Intersection problem, which turns out to be C∧ · n ≈ 1.492 · n.

Our results rely on new insights for understanding communication protocols from an

informational point of view, as functionals on the space of distributions. This requires fur-

ther development of new properties of the information cost function. One such property

is the continuity of the information complexity function at ε = 0:

Theorem 2.3.7. For all f : X × Y → Z and µ ∈ ∆(X × Y) we have

lim
ε→0

ICµ(f, ε) = ICµ(f, 0), (2.8)
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lim
ε→0

ICext
µ (f, ε) = ICext

µ (f, 0). (2.9)

Preliminaries

Notation

For random variables A and Bi (i ∈ [n]) and elements bi ∈ rangeBi (i ∈ [n]) we write

Ab1b2···bn to denote the random variable A conditioned on the event “B1 = b1, B2 =

b2, . . . , Bn = bn”.

For notational convenience, in this section we shall sometimes view a probability

distribution µ on a sample space X × Y as a |X | × |Y| matrix, where the rows are in-

dexed by elements of X and columns are indexed by elements of Y in some standard

order (e. g., lexicographic order when X and Y are sets of binary strings). For exam-

ple, we shall often write distribution µ on {0, 1} × {0, 1} as µ =
α β

γ δ
meaning that

µ(0, 0) = α, µ(0, 1) = β, µ(0, 1) = γ, and µ(1, 1) = δ.

For a particular distribution µ on X × Y we use µT to denote the probability distribu-

tion on Y × X that is given by the transpose of the matrix representation of µ.

In this section we will be interested in the information revealed by protocols under

the“worst distribution”. To capture this, we use the notion of prior-free information com-

plexity (or simply, the information cost of f ) with error ε is defined as

IC(f, ε) := inf
π

max
µ∈∆(X×Y)

ICµ(π).

where the infimum is over protocols that work correctly for each input, except with prob-

ability ε. The external prior-free information cost is defined analogously.

The special case IC(f, 0) is referred to as the zero error information complexity of f , and

will be of primary interest in this paper. It turns out that for this special case (ε = 0), we

may reverse the order of quantifiers:
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Theorem 2.3.8. [29]

IC(f, 0) = max
µ

inf
π correct on support of µ

ICµ(π),

i.e, we can choose the protocol dependent on the distribution and yet the information cost doesn’t

decrease.

For r ∈ N, the r-round information complexity of a function f is defined as

ICrµ(f, ε) := inf
π
ICµ(π),

where the infimum ranges over all r-round protocols π solving f with error at most ε

when inputs are sampled according to µ. The r-round external information cost is defined

analogously.

2.3.4 Optimal Information-Theoretic Protocol for AND

The information complexity of a function is the infimum over protocols of the informa-

tion cost of the protocol. Therefore the information complexity may not be achieved by

any single protocol. This is indeed the case for the AND function, as we will see in Sec-

tion 2.3.7. Nevertheless if we allow slightly more powerful protocols we can find a single

optimal protocol for the AND function. In this section we present a “protocol with a clock”

(see Protocol 1) whose information cost is exactly equal to the information cost of the AND

function. The inputs (X, Y ) to AND are distributed according to a prior µ =
α β

γ δ
.

Protocol 1 consists of two parts. In the first part (steps 1 and 2), Alice and Bob check

to see if their prior is symmetric, and if it is not they communicate “a bit” to make it

symmetric. During this communication one of the players may reveal that his or her

input is 0, in which case the protocol terminates, as the answer to AND can be deduced

by both players. In the second part (steps 3−6), Alice and Bob privately generate random

numbersNA ∈ [0, 1] andNB ∈ [0, 1] and observe the clock as it increases from 0 to 1. When
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1. If β < γ then Bob sends bit B as follows

B =


1 if y = 1
0 with probability 1− β/γ if y = 0
1 with probability β/γ if y = 0

If B = 0 the protocol terminates and players output 0.

2. If β > γ then Alice sends bit B as follows

B =


1 if x = 1
0 with probability 1− γ/β if x = 0
1 with probability γ/β if x = 0

If B = 0 the protocol terminates and players output 0.

3. If x = 0 then Alice samples NA ∈R [0, 1) uniformly at random. If x = 1 then Alice
sets NA = 1.

4. If y = 0 then Bob samples NB ∈R [0, 1) uniformly at random. If y = 1 then Bob sets
NB = 1.

5. Alice and Bob monitor the clock C, which starts at value 0.

6. The clock continuously increases to 1. If min(NA, NB) < 1, when the clock reaches
min(NA, NB) the corresponding player sends 0 to the other player, the protocol
ends, the players output 0. If min(NA, NB) = 1, once the clock reaches 1, Alice
sends 1 to Bob, the protocol ends, and the players output 1.

Protocol 1: Protocol π for the AND-function

some player’s private number is reached by the clock, the player immediately notifies the

other player. The rules for picking a private number ensure that the number is less than

1 if and only if the owner of the number has 0 as input. Therefore once one of the players

speaks in the second part, both players can deduce the answer to AND, so the protocol

terminates.

From the description of Protocol 1, it is clear that it correctly solves AND on all inputs.

The proof of the optimality of the information cost of this protocol proceeds in two steps.

The first step is to analyze the information cost of Protocol 1. The result of this analysis

is a precise and simple formula for I(µ) := ICµ(π) in terms of α, β, γ, δ. In addition, we
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conclude that I(µ) ≥ ICµ(AND, 0). For the second step, we need a new technique to prove

exact information lower bounds. This technique relies on the new characterization of the

information cost presented in Section 2.3.5. In that section we show that any function

satisfying certain local concavity constraints is a lower bound on the information cost. To

complete the proof that I(µ) = ICµ(AND, 0) we simply check that I(µ) satisfies those local

concavity constraints, and indeed it does.

We attempt to demystify the steps of this protocol by presenting the intuition behind

optimality of its information cost. To this end, we may view any protocol as a random

walk on the space of distributions on X × Y . We observe that for the AND function the

space of distributions µ on {0, 1}2 may be divided into three regions:

Alice’s region consists of all distributions µ with β > γ, i. e., those distributions µ, for

which Alice has greater probability of having 0 than Bob.

Bob’s region consists of all distributions µ with β < γ, i. e., those distributions µ, for

which Bob has greater probability of having 0 than Alice.

Diagonal region consists of symmetric distributions µ, i. e., β = γ and both players are

equally likely to have 0 as input.

We note that a protocol in which Alice talks in Bob’s region and then the players play

optimally, reveals more information about the inputs than a protocol in which Bob talks

in Bob’s region and then players play optimally ( and Similarly for Alice’s region). A

formalization of this argument appears in the full version of this paper. Therefore in an

optimal protocol, each player should speak only in his own region. The interesting scenario

is when the protocol finds itself in the diagonal region. Suppose that players want to

convince each other that they are more likely to have 1 as input. If Bob makes a random

step, he will step into Alice’s region with some probability revealing suboptimal amount

of information. The same goes for Alice. What we’d like them to do is to walk “along

the diagonal region”. This can be accomplished without revealing suboptimal amount of
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information only if we allow the players to take infinitesimal steps. This is precisely what

the clock from our protocol achieves. As the clock increases from 0 to 1, the distribution

stays symmetric, but gets modified simultaneously by increasing its mass on (1, 1)-entry.

Remark 2.3.9. It turns out that Protocol 1 achieves both internal and external information

costs. The analysis reveals that the internal and external information costs are different for the

AND function.

We refer an interested reader to the full version of the paper for the details on how

to make the above intuition precise, and for a careful analysis of the information cost of

Protocol 1. In the rest of this section we present a summary of results (omitting the proofs)

that we were able to achieve using the above techniques.

Observe that since AND is a symmetric function ICµ(AND, 0) = ICµT (AND, 0), there-

fore it suffices to compute the information cost for the AND function only for distributions

with β ≤ γ.

Theorem 2.3.10 ([31]). For a symmetric distribution ν =
α β

β δ
we have

ICν(AND, 0) =
β

ln 2
+ 2δ log

β + δ

δ
+

+ 2β log
β + δ

β
+
β2

α
log

β

β + α
+ α log

α + β

α
. (2.10)

For a distribution µ =
α β

γ δ
, where β < γ, we have

ICµ(AND, 0) = I(Y ;B|X) + tICν̃(π)
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where t = δ + 2β + αβ
γ

, ν̃ =

βα
γt

β
t

β
t

δ
t

and

I(Y ;B|X)

= (α + β)H

(
β

γ
· α + γ

α + β

)
+ (γ + δ)H

(
δ + β

γ + δ

)
−

− (α + γ)H

(
β

γ

)
.

Theorem 2.3.11 ([31]). (Theorem 2.3.2 restated)

IC(AND, 0) = C∧ = 1.49238 . . .

The distribution that achieves this maximum is

µ =
0.0808931 . . . 0.264381 . . .

0.264381 . . . 0.390346 . . .
.

Remark 2.3.12. Observe that the maximum of IC(AND, 0) is achieved for a symmetric distribu-

tion. This is not a coincidence. Let f be a symmetric function and µ be an arbitrary distribution

on the inputs of f . Then ICµ(f, 0) = ICµT (f, 0) and it is easy to see that the information com-

plexity is a concave function in µ. Thus for µ′ = µ/2 + µT/2, which is symmetric, we have

ICµ′(f, 0) ≥ ICµ(f, 0)/2 + ICµT (f, 0)/2 = ICµ(f, 0).

Theorem 2.3.13 ([31]). (Theorem 2.3.3 restated)

ICext(AND, 0) = log 3 = 1.58396 . . .
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The distribution that achieves this maximum is

µ =
0 1/3

1/3 1/3
.

In Section 2.3.5 on communication complexity results, distributions µ that place 0 mass

on (1, 1) entry play a crucial role. Note that for such distributions we still insist that the

protocol solving AND has 0 error on all inputs.

Theorem 2.3.14 ([31]). For symmetric distributions µ =
α β

β 0
we have

ĪCµ(AND, 0) =
β

ln 2
+
β2

α
log

β

α + β
+ α log

α + β

α
.

Theorem 2.3.15 ([31]). For distributions µ =
α β

γ 0
we have

ĪCµ(AND, 0) = (α + β)H

(
β

γ

α + γ

α + β

)
− αH

(
β

γ

)
+

+ tĪCν(AND, 0),

where t = 2β + αβ
γ

and ν =

βα
γt

β
t

β
t

0
.

Theorem 2.3.16 ([31]).

max
µ:µ(1,1)=0

ĪCµ(AND, 0) = 0.482702 . . . .

The distribution that achieves this maximum is

µ =
0.36532 . . . 0.31734 . . .

0.31734 . . . 0
.
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2.3.5 A Local Characterization of the Information Cost Function

In this section we prove Lemma 2.3.1, a local characterization of the zero-error informa-

tion cost function. More precisely, for an arbitrary function f : X ×Y → Z we shall define

a family C(f) of functions ∆(X × Y) → Z satisfying certain local concavity constraints.

Then we show that each member of C(f) is a lower bound on the zero-error information

cost function I(µ) := ICµ(f, 0) of f . It will be evident that I(µ) itself satisfies the local

concavity constraints, i. e., I(µ) ∈ C(f). Thus the zero-error information cost of a function

f is a point-wise maximum over all functions in the family C(f). This technique is used

to prove that the information cost of Protocol 1 is exactly ICµ(AND, 0).

It turns out that the number of local concavity constraints that are used to define C(f)

can be greatly reduced if we assume that every bit sent in a protocol π, nearly achieving

the information cost of f , is uniformly distributed from an external point of view. In other

words, for each node u in a protocol π we have

P (owner of u sends 0|Π reaches u) = 1/2.

We say that such a protocol is in normal form. The proof that the normal form assumption

can be made without loss of generality is straightforward and appears in the full version

of the paper. Now we proceed to define the family C(f).

Definition 2.3.17. Let f : X ×Y → Z be a given function. Define a family C(f) of all functions

C : ∆(X × Y)→ R+ satisfying the following constraints:

• (∀µ ∈ ∆(X × Y))(f |supp(µ) is constant⇒ C(µ) = 0),

• ∀µ, µA0 , µA1 ∈ ∆(X × Y) if Alice can send bit B (that is a randomized function of Alice’s

input x) from µ s. t. P (B = 0) = P (B = 1) = 1/2 and µAi (x, y) = P (X = x, Y = y|B =

i) for i ∈ {0, 1} then

C(µ) ≤ C(µA0 )/2 + C(µA1 )/2 + I(X;B|Y ),
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Here (X, Y ) ∼ µ.

• ∀µ, µB0 , µB1 ∈ ∆(X ×Y) if Bob can send bit B (that is a randomized function of Bob’s input

y) from µ s. t. P (B = 0) = P (B = 1) = 1/2 and µBi (x, y) = P (X = x, Y = y|B = i) for

i ∈ {0, 1} then

C(µ) ≤ C(µB0 )/2 + C(µB1 )/2 + I(Y ;B|X),

Remark 2.3.18. The notation f |supp(µ) ≡ Constant means that both parties can determine the

function’s output under µ by looking at their own input - We do not consider the player’s output as

part of the protocol transcript, so the latter condition need not imply that the function is determined

under µ from an external point of view. The example f(0, 0) = 0, f(1, 1) = 1, µ(0, 0) =

µ(1, 1) = 1/2 illustrates this point.

Lemma 2.3.19. Let f : X ×Y → Z be a given function. Let π be a protocol that solves f correctly

on all inputs. Then for all C ∈ C(f) and all µ ∈ ∆(X × Y) we have C(µ) ≤ ICµ(π).

Proof by induction on c := CC(π). When c = 0 the claim is clearly true, since then

f |supp(µ) is constant and hence C(µ) = 0. Also ICµ(π) = 0.

Assume the claim holds for all c-bit protocols where c ≥ 0. Consider a c+1-bit protocol

π. As discussed prior to the proof, we may assume that π is in normal form. Assume

that Alice sends the first bit B. If this bit is 0 then Alice and Bob end up with a new

distribution on the inputs µA0 , otherwise they end up with distribution µA1 . After the first

bit, the protocol π reduces to a c-bit protocol π0 if 0 was sent and π1 if 1 was sent. Since

Alice’s bit is uniformly distributed we have

I(π;X|Y ) = I(π1;X|Y ) + I(π≥2;X|Y π1)

= I(B;X|Y ) + I(π0;X|Y )/2 + I(π1;Y |X)/2.
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Similarly for I(π;Y |X). Thus we obtain

ICµ(π) = ICµA0 (π0)/2 + ICµA1 (π1)/2 + I(X;B|Y )

≥ C(µA0 )/2 + C(µA1 )/2 + I(X;B|Y ) (by induction)

≥ C(µ) (by properties of C)

Corollary 2.3.20. For all f : X × Y → Z we have

1. ICµ(f, 0) ∈ C(f),

2. for all µ ∈ ∆(X × Y) and for all C ∈ C(f) we have ICµ(f, 0) ≥ C(µ).

3. for all µ ∈ ∆(X × Y) we have ICµ(f, 0) = maxC∈C(f) C(µ).

2.3.6 The Exact Communication Complexity of Set Disjointness

In this section we leverage our in-depth analysis of the information complexity of the

AND function to compute the exact randomized communication complexity of three

well-studied problems in the communication complexity literature: Set-Intersection

(Intn(X, Y ) = {i : Xi ∧ Yi = 1}), Disjointness (Disjn(X, Y ) = ¬
∨n
i=1(Xi ∧ Yi)) and

k-Disjointness (Disjkn(X, Y ) = ¬
∨n
i=1(Xi ∧ Yi) where |X| = |Y | = k).

While the AND function “embeds” to all three communication problems, they differ

in their difficulty. It turns out that solving each of the three problems above is equivalent

to solving n independent copies of the AND function, albeit under a different subset of

distributions on {0, 1}2.

The Set-Intersection problem corresponds to solving n independent copies of AND

under the “worst” possible distribution µ =
α β

γ δ
.
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because of “information equals amortized communication” ([29]), Thus Theorem 2.3.2

(along with continuity of information cost at error = 0) implies that

Corollary 2.3.21. For all ε > 0, there exists δ = δ(ε) > 0 such that δ → 0 as ε→ 0 and

(C∧ − δ) · n ≤ R(Intn, ε) ≤ C∧ · n+ o(n),

where C∧ ≈ 1.492.

For the Set Disjointness problem, we show that solving

Disjn(X, Y ) is equivalent to solving n independent copies of AND under the “worst”

distribution µ on {0, 1}2 satisfying µ(1, 1) = 0. This distribution therfore has the form:

µ =
α β

γ 0
.

The intuition as to why the above quantity captures the communication required to

solve Disjn is as follows: Since solving Disjointness is equivalent to solving
∨n
i=1(Xi∧Yi),

then if the (marginal) distribution of a coordinate µi(Xi, Yi) satisfies µi(1, 1) ≥ ω(1/n), the

parties can simply exchange a small (sublinear) number of random coordinates, and finish

the job with very small communication (since with very high probability they will find

an overlapping coordinate). Thus, the above set of distributions captures the hardness of

this task. In fact, our result for the Set Disjointness problem follows from a more general

theorem we prove, which characterizes the exact randomized communication complexity

of “
∨

”-type functions with error tending to zero, in terms of the informational quantity

IC0(f, 0), which informally measures the information complexity of f under the “worst”

distribution supported on f−1(0)3:

Theorem 2.3.22 ([31]). For any Boolean function f : {0, 1}k × {0, 1}k → {0, 1}, let g(x̄, ȳ) :=

∨ni=1f(xi, yi), where x̄ = {xi}ni=1, ȳ = {yi}ni=1 and xi, yi ∈ {0, 1}k. Then for all ε > 0, there exists
3An analogous result holds for “

∧
”-type functions.
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δ = δ(f, ε) > 0 such that δ → 0 as ε→ 0 and

(IC0(f, 0)− δ) · n ≤ R(gn, ε) ≤ IC0(f, 0) · n+ o(n · k),

where IC0(f, 0) := maxµ:µ(1,1)=0 ĪCµ(f, 0).4

The formal proof is given in the full version of this paper. Here we only present the

main ideas. The high-level idea for the upper bound is to produce a low information pro-

tocol for computing gn and then use the fact that information = amortized communication

to obtain a low communication protocol. To this end, we exploit the self-reducible struc-

ture of
∨

-type functions. For the lower bound, we show that a low-error protocol for gn

which uses < IC0(f, 0) · n communication, can be used to produce a low-error protocol

for a single copy of f , whose information under any distribution supported on f−1(0) is

< IC0(f, 0). Now by using continuity of information cost at error = 0 (Theorem 2.3.7), we

get a contradiction.

Theorem 2.3.5 now follows from Theorem 2.3.22. For convenience, we restate it below

Corollary 2.3.23 (Theorem 2.3.5 restated). For all ε > 0, there exists δ = δ(ε) > 0 such that

δ → 0 as ε→ 0 and

(CDISJ − δ) · n ≤ R(Disjn, ε) ≤ CDISJ · n+ o(n).

where CDISJ ≈ 0.4827 bits.

Proof. Since randomized communication complexity is closed under complementation,

R(Disjn, ε) = R(
∨n
i=1(Xi ∧ Yi), ε), and thus Theorem 2.3.22 (with f = AND and k = 1)

implies that

(IC0(AND, 0)− δ) · n ≤ R(Disjn, ε) ≤ IC0(AND, 0) · n+ o(n).

4Note that this quantity is not zero, since our definition of ĪCµ(f, 0) ranges only over protocols which
solve f for all inputs.
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But Theorem 2.3.16 asserts that maxµ:µ(1,1)=0 ĪCµ(AND, 0) = 0.4827 . . ., which completes

the proof.

The communication complexity of the k-Disjointness problem is known to be Θ(k)

[80]. We are able to determine the exact constant in this regime as well.

Theorem 2.3.24 ([31]). (Theorem 2.3.6 restated) Let n, k be such that k = ω(1) and n/k = ω(1).

Then for all constant ε > 0,

(
2

ln 2
−O(

√
ε)

)
· k − o(k) ≤ Rε(DISJ

k
n) ≤ 2

ln 2
· k + o(k).

To this end, we consider the set of distributions taking the form:

µk =
1− 2k/n− o(k/n) k/n

k/n o(k/n)
.

The formula in Theorem 2.3.10 implies that ICµk(AND, 0) = 2
ln 2

k
n
± o( k

n
). The proof of

Theorem 2.3.24 follows the ideas of Theorem 2.3.22, but is considerably more complicated,

mainly due to the fact that ICµk(AND, 0) is now tiny. We need to use a more nuanced

approach to get similar bounds, and in particular strengthen the rate of convergence of

continuity of the information complexity of AND at ε = 0, using a recursive application

of our optimal protocol from section 2.3.4. For a formal proof see the full version of this

paper.

2.3.7 Rate of Convergence

In this section we prove that for most distributions µ the rate at which ICrµ(AND, 0) con-

verges to ICµ(AND, 0) is Θ(1/r2). We also present implications that this result has in com-

munication complexity. The empirical evidence that the rate of convergence is Θ(1/r2)

has appeared in the information theory literature prior to our work. In [121], Ishwar and
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Ma consider the task f of computing AND when only Bob is required to learn the an-

swer. They derive an explicit formula for ICµ(f) for product distributions µ and design

an algorithm that computes ICrµ(f) to within a desired accuracy. Ishwar and Ma gener-

ously provided their scripts, which we used to generate Figure 2.2 (it is a variant of Figure

4(a) from [121]). Figure 2.2 demonstrates that maxµ - product IC
r
µ(f) − ICµ(f) asymptotically

behaves like Θ(1/r2).

Figure 2.2: Empirical evidence that rate of convergence is Θ(1/r2). The log-log scale fig-
ure shows the graph of maxµ - product IC

r
µ(f) − ICµ(f) for a range of values r together with

the line 1/(16r2). The x-axis is the number of rounds r. The y-axis is the change in the
information cost maxµ - product IC

r
µ(f)− ICµ(f).

Our proof of the rate of convergence consists of two parts: (1) the lower bound Ω(1/r2)

on the rate of convergence and (2) a matching upper bound O(1/r2).

Theorem 2.3.25 ([31]). For all µ =
α β

γ δ
with {α, β, γ} ⊆ supp(µ) we have

ICrµ(AND, 0) = ICµ(AND, 0) + Ωµ

(
1

r2

)
.

We present the high-level idea of the proof of Theorem 2.3.25. Let π be an r-round

protocol that solves AND with 0-error on all inputs. We may view π as a random walk

on ∆({0, 1}2). Each round is a random step made by either Alice or Bob. Suppose that
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the statistical distance traveled by a player in the wrong region during ith message (see

Section 2.3.4 for the definition of Alice’s, Bob’s and diagonal regions) is εi. Then the first

observation is that such a step wastes Ω(ε3i ) information as compared to an optimal pro-

tocol. The second observation is that any feasible protocol must travel a total distance of

Ω(1) in the wrong region, thus
∑r

i=1 εi = Ω(1). Then the overall wastage Ω(
∑r

i=1 ε
3
i ) is

minimized for εi = 1/r, and hence the total extra information leaked is Ω(1/r2).

Theorem 2.3.26 ([31]).

ICrµ(AND, 0) = ICµ(AND, 0) +Oµ

(
1

r2

)
.

The upper bound on the rate of convergence is obtained by analyzing a family (πr)
∞
r=1

of 2r-round protocols. Protocol πr is a discretization of our infeasible Protocol 1, where

Alice and Bob are allowed to generate their random numbers NA and NB only from

a finite set
{

0
r
, 1
r
, · · · , r−1

r

}
. The most natural way to discretize our continuous AND

protocol would be to sample numbers NA and NB uniformly at random from the set

{0
r
, . . . , r−1

r
} when the corresponding player(s) have 0 as input. While analyzing this op-

tion, we discovered that this discretization wastes increasing amounts of information in

later rounds as the counter C approaches r. This leads to a total information wasted

≈ 1
r2

∑r
i=1

1
i

= Θ
(

log r
r2

)
. A natural remedy is to select numbersNA andNB non-uniformly,

assigning less probability mass to the later rounds. Indeed, our discretized protocol πr

assigns probability 2r−2i−1
r2

to the ith value of NA and NB leading to the correct O( 1
r2

)

bound on the total information wasted. Theorem 2.3.26 follows from a careful analysis

and calculation of round-by-round information cost difference between the discretized

and continuous protocols.

The full proofs of the above theorems appear in the full version of the paper.

From the Θ(1/r2)-bound on the rate of convergence of r-round information cost of

AND function together with results from Section 2.3.5 we can derive conclusions about
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the utility of rounds in the communication complexity problems discussed earlier. The

rate of convergence result implies that both for set intersection and for set disjointness an

r-round protocol will we suboptimal by Θ(n/r2) bits. Thus for both problems a protocol

that is optimal up to lower-order terms will need to use ω(1) rounds of communication.

It is quite possible that a similar statement holds for size-k disjointness, but our rate of

convergence results do not imply this.
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Chapter 3

Direct Sums and Products and the

Interactive Compression Problem
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3.1 The Direct Sum and Product Conjectures

Direct sum and direct product theorems assert a lower bound on the complexity of solv-

ing n copies of a problem f in parallel, in terms of the cost of a single copy. Let fn denote

the function which maps the tuple ((x1, . . . , xn), (y1, . . . , yn)) to (f(x1, y1), . . . , f(xn, yn))),

and C(f) denote the cost of solving f (in some arbitrary computational model). The ob-

vious solution to fn is to apply the single-copy optimal solution n times sequentially and

independently to each coordinate, yielding a linear scaling of the resources, so clearly

C(fn) ≤ n · C(f). The strong direct sum conjecture postulates that this naive solution is

essentially tight. When the computational model is randomized (as in randomized com-

munication complexity), a direct sum theorem aims to give a lower bound (ideally, linear

in n) on the resources for computing fn with some fixed overall error ε > 0 in terms of the

cost of computing a single copy of f with the same (or comparable) error ε. In the context

of communication complexity, the strong direct sum conjecture informally asks whether

Dµn(fn, ε) = Ω(n) · Dµ(f, ε) ? (3.1)

A direct product theorem further asserts that unless sufficient resources are provided, the

probability of successfully computing all n copies of f will be exponentially small, po-

tentially as low as (1− ε)Ω(n). This is intuitively plausible, since the naive solution which

applies the best protocol for one copy of f independently to each of the n coordinates,

would succeed in solving fn probability (1− ε)n. Can one do better?

To make this more precise, let us denote by suc(µ, f, C) the maximum success prob-

ability of a protocol with communication complexity ≤ C in computing f under input

distribution µ. A direct product theorem asserts that any protocol attempting to solve fn

(under µn) using some fixed number T of communication bits (ideally T = Ω(n ·C)), will

succeed only with exponentially small probability: suc(µn, fn, T ) . (1−ε)Ω(n). Informally,

the strong direct product question asks whether
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suc(µn, fn, o(n · C)) . (suc(µ, f, C))Ω(n) ? (3.2)

The difference between a direct sum theorem and the (stronger) direct product theorem

can be put as follows: A direct sum result fixes the success probability (of both the single-

copy and parallel computation), and focuses on the increase in resources; A direct product

result fixes the resources T for the parallel computation, and focuses on the decay of

success probability (hence the terms “sum” and “product”).

Classic direct product results in complexity theory are Raz’s Parallel Repetition The-

orem [134, 133] and Yao’s XOR Lemma [155]. The value of such results to complexity

theory is clear: direct sum and product theorems, together with a lower bound on the

(easier-to-reason-about) sub-problem, yield a lower bound on the composite problem

in a “black-box” fashion (a method also known as hardness amplification). For example,

the Karchmer-Raz-Wigderson program for separating P from NC1 can be completed

via a (currently open) direct sum conjecture for Boolean formulas [99] (after more

than a decade, some progress on this conjecture was recently made using information-

complexity machinery [72]). Other fields in which direct sums and products have played

a central role in proving tight lower bounds are streaming [14, 138, 125, 77] and dis-

tributed computing [84].

Can we always hope for such strong lower bounds to hold? It turns out that the va-

lidity of these conjectures highly depends on the underlying computational model, and

the short answer is no1. What about the communication complexity model? This ques-

tion has had a long history and was answered positively for several restricted models of

communication [108, 141, 115, 144, 94, 125, 128] (For a broader overview of direct sums
1In the context of circuit complexity, for example, this conjecture fails (at least in its strongest form):

Multiplying an n × n matrix by a (worst case) n-dimensional vector requires n2 operations, while (deter-
ministic) multiplication of n different vectors by the same matrix amounts to matrix-multiplication of two
n× n matrices, which can be done in n2.37 � n3 operations [151].
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and products and their importance in communication complexity we refer the reader

to [94, 36] and references therein). In the determistic communication complexity model,

Feder et al. [64] showed that D(fn) ≥ n ·Ω
(√

D(f)
)

. In the (unbounded-round) random-

ized communication model, however, there is a tight connection between the direct sum

question for the (2-party) function f and its information complexity. By now, this should

come as no surprise: The “Information=Amortized Communication” theorem (Theorem

1.0.1) asserts that, for large enough n, it holds that Dµn(fn, ε) & n · ICµ(f, ε), and hence the

direct sum question (3.1) boils down to understanding the relationship between Dµ(f, ε)

and ICµ(f, ε). Note this question is in fact a question about the ability to compress inter-

active communication protocols in the “one-shot” regime:

Problem 3.1.1 (Interactive compression problem 2, [16]). Given a protocol π over inputs

x, y ∼ µ, with ‖π‖ = C, ICµ(π) = I (I � C), what is the smallest amount of communica-

tion of a protocol τ which (approximately) simulate π (i.e., |τ(x, y) − π(x, y)|1 ≤ δ for a small

constant δ)?

In particular, if one could compress any protocol into O(I) bits, Corollary 3.1.2 would

have implied the strong direct sum conjecture. In fact, the additivity of information cost

implies the following general quantitative relationship between (possibly weaker) inter-

active compression results and direct sum theorems in communication complexity:

Claim 3.1.2 (One-Shot Compression implies Direct Sum). Suppose that for any given protocol

π for which ICµ(π) = I , ‖π‖ = C, there is a compression scheme that δ-simulates3 π using

gδ(I, C) bits of communication. Then

gδ

(
Dµn(fn, ε)

n
,Dµn(fn, ε)

)
≥ Dµ(f, ε+ δ).

2One could argue that the requirement in Problem 3.1.1 is too harsh as it requires a simulation of the
entire transcript of (an arbitrary) protocol, while in the direct sum context we are merely interested in the
output of f . This is a valid point, but all known compression schemes satisfy the stronger condition, and
therefore this became the standard problem formulation. (a more formal equivalence argument between
compression and direct sum theorems appears in [35])

3The simulation here is in an internal sense.
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Proof. Let Π be an optimal n-fold protocol for fn under µn, i.e., ‖Π‖ = Dµn(fn, ε) := Cn.

By Lemma 1.1.20 (equation (1.3)), there is a single-copy protocol θ whose information cost

is at most ICµn(Π)/n ≤ Cn/n (since communication always upper bounds information).

But the premise of the claim guarantees that θ can now be δ-simulated using gδ(Cn/n, Cn)

communication, so as to produce a single-copy protocol with error ≤ ε + δ for f , and

therefore Dµ(f, ε+ δ) ≤ gδ(Cn/n , Cn).

The first general interactive compression result was proposed in the seminal work

of Barak, Braverman, Chen and Rao [16], who showed that any protocol π can be δ-

simulated using gδ(I, C) = Õδ(
√
C · I) communication. Plugging this compression result

into Claim 3.1.2, this yields the following weaker direct sum theorem:

Theorem 3.1.3 (Weak Direct Sum, [16]). For every Boolean function f , distribution µ, and any

positive constant δ > 0,

Dµn(fn, ε) ≥ Ω̃(
√
n · Dµ(f, ε+ δ)).

Later, Braverman [28] showed that it is always possible to simulate π using 2Oδ(I) bits

of communication, thereby exhibiting the first interactive compression scheme which de-

pends solely on the information cost of π. Notice that the last two compression results

are indeed incomparable, since the communication of π could be arbitrarily larger than

its information complexity (e.g., C ≥ 222
I

). The current state of the art for the general

problem can be therefore summarized as follows: Any protocol with communication C

and information cost I can be compressed to

gδ(I, C) ≤ min
{

2Oδ(I) , Õδ(
√
I · C)

}
. (3.3)

Can we hope to compress all the way down to O(I)? Unfortunately, this task turns

out to be too ambitious: In a recent breakthrough, Ganor, Kol and Raz [71] showed that

gδ(I, C) ≥ max
{

2Ω(I) , Ω̃(I · logC)
}
. (3.4)
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More specifically, they exhibit a Boolean function f which can be solved using a protocol

with information cost I , but cannot be simulated by a protocol π′ with communication

cost < 2O(I). Since the communication of their low information protocol is 22I , this also

rules out a compression to I · o(logC), or else such compression would have produced

a too good to be true (2o(I) communication) protocol. Though the margin of this text is

too narrow to contain their proof, we remark that this result was particularly challeng-

ing in light of another line of work which showed that essentially all previously known

techniques for proving communication lower bounds apply to information complexity as

well [39, 103], and hence could not be used to separate information complexity and com-

munication complexity. Using Claim 3.1.2, the compression lower bound in (3.4) refutes

the strongest possible direct sum, but leaves open the following gap

O

(
n

log n

)
≥ min

f

Dµn(fn, ε)

Dµ(f, ε+ δ)
≥ Ω̃

(√
n
)
. (3.5)

Notice that this still leave a huge gap in the direct sum question, which has yet to be

resolved. It is still conceivable that improved compression to gδ(I, C) = I · Co(1) is in fact

possible, and the quest to beat the compression scheme of [16] remains open (we discuss

a potential approach in Section 3.4).

Despite the lack of progress in the general regime, several works showed that it is in

fact possible to obtain near-optimal compression results in restricted models of commu-

nication: When the input distribution µ is a product distribution, [16] show a near-optimal

compression result, namely that π can be compressed into O(I · polylog(C)) bits. Once

again, using Claim 3.1.2 this yields the following direct sum theorem

Theorem 3.1.4 ([16]). For every product distribution µ and any δ > 0,

Dµn(fn, ε) = Ω̃(n · Dµ(f, ε+ δ)).
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Near optimal compression results were recently proven for public-coin protocols (un-

der arbitrary distributions) [45, 18], and for bounded-round protocols, leading to near-

optimal direct sum theorems in corresponding communication models. We summarize

these results in Table 5.1.

Reference Regime Communication Complexity

[35, 37] r-round protocols I +O
(√

r · I
)

+O(r log 1/δ)

[18] (improved [45]) Public coin protocols O(I2 · log log(C)/δ2)
[16] Product distributionsa O(I · poly log(C)/δ)

[28, 16] General protocols min{2O(I/δ) , O(
√
I · C · log(C)/δ)}

[71] Best lower bound max{2Ω(I) , Ω(I · log(C))

Table 3.1: Best to date compression schemes, for various regimes.

aThis result in fact holds for general (non-product) distributions as well, when the compression is with
respect to Iext, the external information cost of the original protocol π.

3.1.1 From Direct Sum to Direct Product

Note that Theorem 3.1.3 and Theorem 3.1.4 can be rephrased as stating that suc(µn, fn,

o(
√
n · C)) ≤ ε (in the general case) and suc(µn, fn, o(n · C)) ≤ ε (in the product case),

where ε is constant (say, 2/3). Our first result in this line of research is converting those

direct sum results into direct product results, thus proving the first exponentially small upper

bounds on the success probability of parallel computation in the two-party unbounded

communication complexity model:

Theorem 3.1.5 (([36], [37] informally stated). There are universal constants α, β > 0 such that

for any two-party function f the following holds:

• If suc(µ, f, C) = 2
3

and T log3/2 T ≤ αC ·
√
n, then suc(µn, fn, T ) ≤ exp (−Ω(n)).

• For product distributions µ, we show that if suc(µ, f, C) ≤ 2
3

and T log2 T ≤ βCn, then

suc(µn, fn, T ) ≤ exp(−Ω(n)).
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• For bounded-round protocols using only r rounds, we show that if suc7r(µ, f, C) ≤ 2
3

and

T ≤ (C − Ω(r log r)) · n then sucr(µ
n, fn, T ) ≤ exp(−Ω(n)) (where sucr(µ, f, C) denotes

the maximum success probability of an r-round communication protocol using ≤ C bits).

We prove the above theorem in the next section (Section 3.2). Notice that the last two

propositions essentially close the direct product conjecture in the bounded-round and

product regimes.

3.1.2 Strong Direct Product in Terms of Information Complexity

In the same spirit as above, the “Information=Amortized Communication” theorem (The-

orem 1.0.1 [35]) is merely a direct sum theorem: It asserts that any protocol for fn under µn

using oε(n · Iµ) communication must fail with overall error ε simultaneously on all copies,

namely

suc(µn, fn, o(n · I)) ≤ ε.

In contrast, the upper bound in Theorem 1.0.1 guarantees that Oε(n · Iµ) communication

suffice to compute fn only with per-copy error of ε. Indeed, the upper bound is proved

by executing independent copies (of the information-optimal protocol) in parallel, and

therefore the overall success probability of this parallel protocol on all copies simultane-

ously is only ≈ (1− ε)n. Therefore, one could hope to prove the following direct product

theorem: “a protocol which uses � n · IC(f, µ, ε) communication to solve n copies of f

cannot succeed with probability more than (1 − ε)Ω(n)”. In this section we (essentially)

prove this result.

Several prior works (e.g [92, 94, 36]) aim to get a generic direct product theorem for

communication complexity. Other works prove a direct product theorem in terms of

weaker complexity measures of the underlying function, such as the discrepancy discµ(f)

of the function ([115]) or the (stronger) smooth rectangle bound [93]. More precisely,

Jain and Yao [95] show that any protocol attempting to compute fn under µn using �
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n · srectµ(f) communication, will succeed with probability only 2−Ω(n), where srectµ(f) de-

notes the smooth rectangle bound of f under µ. Our direct product theorem implies all

previous results in this category, since it has been shown that ICµ(f) ≥ srectµ(f) ≥ discµ(f)

(see [102]). Moreover, the discussion in the previous paragraph asserts that our direct

product result (Theorem 3.1.6) is asymptotically tight (as communication and informa-

tion are asymptotically equal), while such guarantee is not known to hold for the previous

measures.

To turn the direct product result of [36] into a direct product theorem in terms of infor-

mation complexity, one needs a generic way of turning a protocol that is statistically close

to a low-information one into a low information protocol (this will become clearer in the

proof of Theorem 3.1.5 in Section 3.2). Prior to the present paper, no such way was known.

To do so, we introduce a primitive that allows for such conversion (we call this an “in-

formation odometer”). Combining this tool together with [36], we obtain an essentially

optimal direct product theorem for communication complexity in terms of information

complexity (Theorem 3.1.6 below).

To state the result more formally, let us denote by suci(µ, f, I) the maximum success

probability of a protocol with information cost (at most) I in computing f under µ. We

prove:

Theorem 3.1.6 ([40], informally stated). There is a global constant α > 0 such that for any

two-party function f the following holds: If suci(µ, f, I)) ≤ 2/3 and T log(T ) < αn · I, it holds

that suc(µn, fn, T ) ≤ exp (−Ω(n)) .

This theorem is tight (up to polylogarithmic factors), as mentioned above, since The-

orem 1.0.1 proves that O(n · I) communication suffice to succeed on fn under µn with

probability ≈ (1− ε)n. Thus, the above theorem can be viewed as a sharpening of the cel-

ebrated “Information = amortized communication” theorem. In fact, Result 3 shows that

direct product theorems in two-party communication complexity are equivalent to direct

sum theorems, and are both equivalent to the interactive compression Problem 3.1.1 (in
60



the sense that if one can prove that for a T -bit protocol for fn, suc(µn, fn, T ) ≤ 3/4, then in

fact suc(µn, fn, Ω̃(T )) ≤ exp(−Ω(n))). The proof of Theorem 3.1.6 appears in Section 3.4.

3.2 Proof of the Direct Product Result

Here we present the proof of Theorem 3.1.5. Our formal results are as follows:

Theorem 3.2.1 (General Direct Product [36]). There is a universal constant α > 0 such that if f

is boolean4, γ = 1−suc(µ, f, C), T ≥ 2, and T log3/2 T < αγ5/2(C−1)
√
n, then suc(µn, fn, T ) ≤

exp (−αγ2n).

For product distributions, we obtain the following stronger result:

Theorem 3.2.2 (Strong Direct Product for Product Distributions [36]). There is a universal

constant α > 0 such that for every product distribution µ, if γ = 1 − suc(µ, f, C), T ≥ 2, and

T log2 T ≤ αγ6Cn , then suc(µn, fn, T ) ≤ exp (−αγ2n).

Finally, for bounded-round protocols, we improve on the work of [94] and show a

near-optimal direct product theorem:

Theorem 3.2.3 (Strong Direct Product for Bounded-Round Protocols [37]). Let sucr(µ, f, C)

denote the largest success probability of a protocol using at most r rounds in predicting f under

µ. Then if suc7r(µ, f, C) ≤ 2
3

and T ≤ (C − Ω(r log r)) · n then sucr(µ
n, fn, T ) ≤ exp(−Ω(n))

(where sucr(µ, f, C) denotes the maximum success probability of an r-round communication pro-

tocol using ≤ C bits).

Due to space constraints, here we only present the proofs of the main arguments.

For missing proofs and a broader introduction, we refer the reader to the full ver-

sion of this paper. The proof of Theorem 3.2.3 is based on Theorem 3.2.1, combined

4We remark that when f is a function that has a k-bit output, the above theorem is true with (C − 1)
replaced by (C − k). For simplicity, we focus on the case k = 1 throughout this paper. When µ is a product
distribution, we prove an almost optimal result. We show that if suc(µ, f, C) ≤ 2

3 and T log2 T � Cn, then
suc(µn, fn, T ) ≤ exp(−Ω(n)).
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with a new compression result for bounded-round protocols, which allows a better

round/communication tradeoff than [35]. We omit this result and refer the reader to the

full paper [37].

Overview of the Proof

Our proof follows the logic of the direct sum theorem of Barak et. al. [17] (Theorems 3.1.3

and 3.1.4 above).Let T denote the communication complexity of the best n-fold protocol

for fn under µn. The first step of [17]’s proof gives a protocol with internal information

cost bounded by∼ T/n and communication bounded by T . In the second step, they show

that any protocol with internal information I and communication N can be compressed

to get a protocol with communication ∼
√
I ·N . Thus one obtains a protocol with com-

munication ∼ T/
√
n for computing f . When µ is a product distribution, the first step of

the reduction gives a protocol with external information cost bounded by ∼ T/n. They

show how to compress any protocol with small external information almost optimally,

and so obtain a protocol with communication ∼ T/n for computing f . In both cases, the

intuition for the first step of the reduction is that the T bits of the messages can reveal at

most ∼ T/n bits of information about an average input coordinate.

To prove our direct product theorems, we modify the approach above using ideas in-

spired by the proof of the parallel repetition theorem [134]. Let E be the event that π

correctly computes fn. For i ∈ [n], let Wi denote the event that the protocol π correctly

computes f(xi, yi). Let π(E) denote the probability of E, and let π(Wi|E) denote the con-

ditional probability of the event Wi given E. We shall prove that if π(E) is not very small,

then (1/n)
∑

i π(Wi|E) < 1, which is a contradiction (since π(Wi|E) = 1 ∀ i). In fact, we

shall prove that this holds for an arbitrary event W , not just E.

Lemma 3.2.4 (Main Lemma). There is a universal constant α > 0 so that the following holds.

For every γ > 0, and event W such that π(W ) ≥ 2−γ
2n, if ‖π‖ ≥ 2, and ‖π‖ log3/2 ‖π‖ <

αγ5/2(C − 1)
√
n, then (1/n)

∑
i∈[n] π(Wi|W ) ≤ suc(µ, f, C) + γ/α.
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Lemma 3.2.5 (Main Lemma for Product Distributions). There is a universal constant α > 0

such that if µ is a product distribution, the following holds. For every γ > 0, and event W such

that π(W ) ≥ 2−γ
2n, if ‖π‖ ≥ 2, and ‖π‖ log2 ‖π‖ ≤ αγ6Cn, then (1/n)

∑
i∈[n] π(Wi|W ) ≤

suc(µ, f, C) + γ/α.

The proofs of the lemmas proceed by reduction, and can be broken up into two steps

as in [17]. However there are substantial differences in our proof, which are discussed

in detail below. First let us see how Lemma 3.2.4 implies Theorem 3.2.1. Theorem 3.2.2

follows from Lemma 3.2.5 in the same way.

Proof of Theorem 3.2.1. Let E denote the event that π computes f correctly in all n coordi-

nates. So, (1/n)
∑

i∈[n] π(Wi|E) = 1. Set γ = α(1−suc(µ, f, C))/2 so that suc(µ, f, C)+γ/α <

1. Then by Lemma 3.2.4, either ‖π‖ < 2, ‖π‖ log3/2 ‖π‖ ≥ α7/22−5/2(1−suc(µ, f, C))5/2C
√
n,

or π(E) < 2−γ
2n.

Due to space constraints, we leave out the formal proofs of the main lemmas (these can

be found in Section 3 in the full version of this paper [36]). At a high level, the proofs of the

lemmas are quite similar to each other, though there are some technical differences. We

discuss Lemma 3.2.5 first, which avoids some complications that come from the fact that

the inputs are correlated under µ. We give a protocol with communication complexity C

that computes f correctly with probability at least (1/n)
∑

i π(Wi|W )−O(γ). Letm denote

the messages of π, and π(xiyim) denote the joint distribution of xi, yi,m. For fixed xi, yi,

let π(m|xiyiW ) denote the conditional distribution of m.

Using standard subadditivity based arguments, one can show that for average i,

π(xiyi|W )
γ
≈ π(xiyi) = µ(xiyi), where here the approximation is in terms of the `1 distance

of the distributions. Intuitively, since W has probability 2−γ
2n, it cannot significantly alter

all n of the inputs. We can hope to obtain a protocol that computes f(x, y) by picking a

random i, setting xi = x, yi = y and simulating the execution of π conditioned on the

event W . There are two challenges that need to be overcome:
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1. The protocol must simulate π(m|xiyiW ). In the probability space of π conditioned

on W , the messages sent by the first party can become correlated with the input of

the second party, even though they were initially independent. Thus (unlike in [17]),

π(m|xiyiW ) is no longer distributed like the messages of a communication protocol,

and it is non-trivial for the parties to sample a message from this distribution.

2. The protocol must communicate at most C � |m| bits. To prove the lemma, the

parties need to samplem using communication that is much smaller than the length

of m.

To solve the first challenge, we design a protocol θ. The parties publicly sample a

uniformly random coordinate i in [n] and set xi = x, yi = y. They also publicly sample

a variable ri that contains a subset of the variables x1, . . . , xn, y1, . . . , yn. Each message

mj sent by the first party in π is sampled according to the distribution π(mj|m<jxiriW ),

and each message sent by the second party is sampled according to the distribution

π(mj|m<jyiriW ) (the aforementioned notation is formally defined in the subsequent pre-

liminaries section). We prove that for average i, θ(xiyirim)
γ
≈ π(xiyirim|W ). [94] analyzed

a different protocol θ, which used a different definition of ri, and showed that for average

i, θ(xiyirim)
γt
≈ π(xiyirim|W ), where here t is the number of rounds of communication in

π. Our bound is independent of t, a feature that is essential to our results. A crucial techni-

cal feature of our protocol is the definition of ri, which allows us to split the dependencies

between inputs to π in a new way. This allows us to control the effect of the dependencies

introduced by W using a bound that is independent of the number of rounds in π.

To solve the second challenge, we need to come up with a way to compress the protocol

θ. To use the compression methods of [17], we need to bound the external information cost

of θ. We did not succeed in bounding this quantity, and so cannot apply the compression

methods of [17] directly. Instead, we are able to bound Iπ(XiYi;M |W ) for average i, the

corresponding quantity for the variables in the probability space of π.
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This does not show that the information cost of θ is small, even though the distribution

of the variables in θ is close in `1 distance to the distribution of the corresponding variables

of π conditioned on W . For example, suppose θ is such that with small probability the

first party sends her own input, and otherwise she sends a random string. Then θ is close

to a protocol that reveals 0 information, but its information cost may be arbitrarily large.

In Section 3.4, we exhibit an interactive technique for converting such a protocol to a

protocol which actually has low information . Of course, the major challenge is doing so in

a way that does not increase (by much) the information cost of the original protocol. We

obtain the following result:

Theorem 3.2.6 (Conditional abort theorem, [40]). Let θ be an alternatingprotocol with inputs

x, y ∼ µ, public randomness r, and messages m, and suppose q is another distribution on these

variables such that θ(xyrm)
ε
≈ q(xyrm). Denote Iq := Iq(X;M |Y R) + Iq(Y ;M |XR). Then,

there exists a protocol π that 15ε-simulates θ with ‖π‖ ≤ O(‖θ‖ log(‖θ‖)) and

ICµ(π) ≤ O

(
Iq + log(‖θ‖+ 1)

ε2

)
.

As mentioned above, we outline the (highly nontrivial) proof of the above theorem in

Section 3.4. For simplicity, let us argue how this “conversion” can be easily done, with-

out interaction (!), for the external information cost measure (or alternatively, under product

distributions). Indeed, in our example from above, the first party can simulate the pro-

tocol θ bit by bit and decide to abort it if she sees that her transmissions has significantly

exceeded the typical amount of information (the crucial observation is that, under prod-

uct distributions, this quantity can be privately estimated by any party, while for general

(correlated) distributions this is impossible without interaction. See Section 3.4 for fur-

ther discussion). This procedure does not change the protocol most of the time, but does

significantly reduce the amount of information that is revealed. Our general solution is
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very similar to this. The parties simulate θ and abort the simulation if they find that they

are revealing too much information.

With Theorem 3.2.6 in hand, the final protocol computing f is obtained by compress-

ing τ using the methods of [17]. Indeed, for our choice of parameters, this compression

would yield a single-copy protocol for f under µ, with success probability > suc(µ, f, C)

and communication ≤ C, which is a contradiction.

We start by preparing our working horses for the proof of Lemmas 3.2.4 and 3.2.5,

These tools and properties will enable us to sample and analyze the conditional “pro-

tocol” π(m|xiyiW ), and will also be used in Section 3.4, where we prove a strong direct

product theorem in terms of information complexity. In Section 3.2 we present the proof

of Lemma 3.2.4 (and outline the proof of Lemma 3.2.5). As noted above, the full proof of

Theorems 3.2.1 and 3.2.2 can be found in the full version of the paper [36].

Preliminaries and Useful Inequalities

Notation

In what follows, random variables are denoted by capital letters and values they attain

are denoted by lower-case letters (For example, A may be a random variable and then a

denotes a value A may attain and we may consider the event A = a).

We use the notation p(a) to denote both the distribution on the variable a, and the

number Prp[A = a]. The meaning will usually be clear from context, but in cases where

there may be confusion we shall be more explicit about which meaning is being used. We

write p(a|b) to denote either the distribution of A conditioned on the event B = b, or the

number Pr[A = a|B = b]. Again, the meaning will usually be clear from context. Given

a distribution p(a, b, c, d), we write p(a, b, c) to denote the marginal distribution on the

variables a, b, c (or the corresponding probability). We often write p(ab) instead of p(a, b)
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for conciseness of notation. If W is an event, we write p(W ) to denote its probability

according to p. We denote by Ep(a) [g(a)] the expected value of g(a) with respect to a ∼ p.

For two distributions p, q, we write p
ε
≈ q if |p− q|1 ≤ ε. Given distributions p1, . . . , pn

and q1, . . . , qn, we sometimes say “in expectation over i sampled according to η(i), pi
γ
≈ qi”

when we mean that Eη(i) [|pi − qi|1] ≤ γ.

In the above terminology, the mutual information betweenA,B conditioned on C in the

joint probability space p(·) is

Ip(A;B|C) = E
p(cb)

[D (p(a|bc)‖p(a|c))] =

= E
p(ca)

[D (p(b|ac)‖p(b|c))] =
∑
a,b,c

p(abc) log
p(a|bc)
p(a|c)

.

In this section, we will often analyze information terms conditioned on events W . In this

case, we denote Ip(A;B|CW ) = Iq(A;B|C) where q(abc) = p(abc|W ).

Internal Simulation

Given a protocol π that operates on inputs x, y drawn from a distribution µ using public

randomness5 r and messagesm, we write π(xymr) to denote the joint distribution of these

variables. For an an (arbitrary) distribution q(x, y, a) in the same probability space of π,

we say that π δ-simulates q, if there is a function g and a function h such that

π(x, y, g(x, r,m), h(y, r,m))
δ
≈ q(x, y, a, a),

where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where (x, y, a) are distributed

according to q. Thus if π δ-simulates q, the protocol allows the parties to sample a ac-

5In our paper we define protocols where the public randomness is sampled from a continuous (i.e. non-
discrete) set. Nevertheless, we often treat the randomness as if it were supported on a discrete set, for
example by taking the sum over the set rather than the integral. This simplifies notation throughout our
proofs, and does not affect correctness in any way, since all of our public randomness can be approximated
to arbitrary accuracy by sufficiently dense finite sets.
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cording to q(a|xy). If in addition g(x, r,m) does not depend on x, we say that π strongly

δ-simulates q. Thus if π strongly simulates q, then the outcome of the simulation is appar-

ent even to an observer that does not know x or y.

If λ is a protocol with inputs x, y, public randomness r′ and messages m′, we say

that π δ-simulates λ if π δ-simulates λ(x, y, (r′,m′)). Similarly, we say that π strongly

δ-simulates λ if π strongly δ-simulates λ(x, y, (r′,m′)). We say that π computes f with

success probability 1− δ, if π strongly δ-simulates π(x, y, f(x, y)).

Useful inequalities

Missing proofs of the following simple facts can be found in [58].

Fact 3.2.7 (Projection minimizes divergence). Let T,X, Y ∼ p(txy) be (correlated) random

variables in the same probability space. Then for any random variable Z = Z(y) ∼ q, it holds that

∀y Ex|y [D (T |xy‖T |y)] ≤ Ex|y [D (T |xy‖Z)] .

Proof. Fix any y and denote T ′ := T |y, T ′|x := T |xy and p′(tx) := p(tx|y). Then

Ex|y [D (T |xy‖T |y)]− Ex|y [D (T |xy‖Z)] = E [D (T ′|x‖T ′)]− E [D (T ′|x‖Z)]

=
∑
xt

p′(xt)

[
log

p′(tx)

p′(t)
− log

p′(tx)

q(t)

]
=
∑
xt

p′(xt) log
q(t)

p′(t)
= −D (p′(t)‖q(t)) ≤ 0

where the last transition is by Fact 1.1.15. Rearranging completes the proof.

Proposition 3.2.8 (Properties of binary entropy). For any x ∈ [0, 1], the binary entropy func-

tion H(x) satisfies the following properties:

1. H(x) ≤ 2
√
x(1− x).

2. For any y ∈ [0, 1], y ·H(x) ≤ H(yx).

3. For any y ≥ 1, y ·H(x) ≥ H(yx).
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4. If |x− y| ≤ ε, |H(x)−H(y)| ≤ H(ε).

All the above facts essentially follow from concavity of entropy (H(x/2+y/2) ≥ H(x)/2+

H(y)/2). For detailed proofs see [58].

Proposition 3.2.9 (`2
1 approximates divergence). For any p, q ∈ [1/3, 2/3], it holds that

2(p− q)2 ≤ D (p‖q) ≤ 9

2
· (p− q)2.

Proof. The left hand side is Pinsker’s inequality. To prove the right hand side, we have:

D (p‖q) = p log
p

q
+ (1− p) log

1− p
1− q

= p log
q − (q − p)

q
+ (1− p) log

1− q + (q − p)
1− q

= p log

(
1 +

p− q
q

)
+ (1− p) log

(
1 +

q − p
1− q

)
≤ p · p− q

q
+ (1− p) · q − p

1− q

(since log(1 + x) ≤ x)

= (p− q)
(
p

q
− 1− p

1− q

)
= (p− q)

(
p− pq − q + pq

q(1− q)

)
=

(p− q)2

q(1− q)
≤ 9

2
· (p− q)2

where the last inequality follows from the assumption that q ∈ [1/3, 2/3], which implies

that q(1− q) ≥ 2/9.

The following lemma upper bounds the probability of getting a large term in the di-

vergence:

Lemma 3.2.10 (Reverse Pinsker). Let S =
{

(a, b) : log p(a|b)
q(a|b) > 1

}
. Then, p(S) < 2|p(a, b) −

q(a, b)|.

The following bounds the contribution of the negative terms to the divergence:

Lemma 3.2.11. Let S = {a : p(a) < q(a)}. Then,
∑

a∈S p(a) log p(a)
q(a)
≥ −1/(e ln 2).
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Inequalities that Involve Conditioning

The following lemmas upper bound the increase in divergence when extra conditioning

is involved. Due to lack of space we omit all proofs. We note that these claims are central

to the proof of theorem 3.1.5, and are used in a subtle way, and we encourage the reader

to consult [36] for the complete proofs.

Lemma 3.2.12. Let W be an event and A,B,M be random variables in the probability space p.

Then,

E
p(bm|W )

[D (p(a|bmW )‖p(a|b))] ≤ log
1

p(W )
+ Ip(A;M |BW ).

Lemma 3.2.13 (Conditioning does not decrease divergence).

E
p(b)

[D (p(a|b)‖q(a))] ≥ D (p(a)‖q(a)) .

The following lemma gives a key estimate that is used crucially in our proof. It al-

lows us to remove the effect of conditioning on an event W on the second argument of a

divergence expression. The lemma states that, on average, D (p(a|brW )‖p(a|rW )) cannot

be larger than D (p(a|brW )‖p(a|r)). Intuitively this is true because in both cases the first

distribution is conditioned on W , but in the second case the second distribution is not

conditioned on W . The second part of the lemma shows that conditioning on an event

W of probability 2−s can create a mutual information of up to s between two formerly

independent random variables.

Lemma 3.2.14. Let W be an event and A,B,R be random variables. Then,

Ip(A;B|RW ) ≤ E
p(br|W )

[D (p(a|brW )‖p(a|r))] .
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If in addition p(abr) = p(r)p(a|r)p(b|r), then

Ip(A;B|RW ) ≤ E
p(br|W )

[D (p(a|brW )‖p(a|br))] ≤ log
1

p(W )
.

The following lemma will be useful in our simulation protocols. It shows that mes-

sages sent by each party remain independent of the other party’s input even after some

part of the input is fixed.

Lemma 3.2.15. Let x, y be inputs to a protocol π with public randomness r and let r′ be a vari-

able such that π(xy|rr′) = π(x|rr′)π(y|rr′). Let m1, . . . ,mj be messages in π such that mj is

transmitted by Alice. Then π(mj|m<jrr
′) = π(mj|m<jrr

′y).

Proof sketch. Conditioned on rr′, the variables x, y are independent. Since m<j defines a

rectangle over x, y, even conditioned on m<jrr
′, the variables x, y are independent. Since

Alice sends the j’th message, π(mj|m<jrr
′xy) = π(mj|m<jrr

′x). Thus:

π(mj|m<jrr
′) =

∑
x

π(x|m<jrr
′) · π(mj|m<jrr

′x)

=
∑
x

π(x|m<jrr
′y) · π(mj|m<jrr

′xy)

=
∑
x

π(xmj|m<jrr
′y) = π(mj|m<jrr

′y).

Useful Protocols

The following lemma was proved by Holenstein [82].

Lemma 3.2.16 (Correlated Sampling). Suppose Alice is given a distribution p and Bob a dis-

tribution q over a common universe. Then there is a randomized sampling procedure that allows

Alice and Bob to use shared randomness to jointly sample elements A,B such that A is distributed

according to p, B is distributed according to q, and Pr[A 6= B] = |p− q|.
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The following compression theorem from [17] will be useful:

Theorem 3.2.17. For every protocol π, and every ε > 0, there exists a protocol λ that strongly

ε-simulates π with

‖λ‖ ≤ O

(
Iπ(XY ;M |R) · log(‖π‖/ε)

ε2

)
.

Proof of the Main Result – Lemma 3.2.4

In this section we give a more detailed outline of the proof of Lemma 3.2.4, though still

leaving out most of the technical proofs. Lemma 3.2.5 is proved in a similar fashion. The

formal proofs of all the claims written below can be found in the full version of this paper.

We write M = M1,M2, . . . ,M2t to denote the messages in π. Let (X1, Y1), . . . , (Xn, Yn)

be the inputs. We write X = X1, . . . , Xn and Y = Y1, . . . , Yn. Without loss of generality,

we assume that n is even.

Consider the protocol η in Figure 3.1. We show that η computes f with good probabil-

ity, although with a lot of communication. The protocol η has public randomness i,g,h

and runs protocol θi,g,h given in Figure 3.2 as a subroutine with inputs (xi, r
′
i,g,h), (yi, r

′′
i,g,h).

Eventually, we shall argue that in expectation over i,g,h sampled according to η(igh),

η
(
(xi, r

′
i,g,h), (yi, r

′′
i,g,h)

) O(γ)
≈

θi,g,h((xi, r
′
i,g,h), (yi, r

′′
i,g,h)),

and that, on average, θi,g,h is statistically close to having small internal information, and

statistically close to having small external information in the case that µ is product. We

shall apply Theorem 3.2.6 + the compression of [17] to compress the communication so

as to obtain our final protocol for computing f and conclude the proof of Lemma 3.2.4

(Similarly, an analogues (yet much easier) theorem for external information (Theorem 5

in [36]) + Theorem 3.2.17 are used to obtain the protocol that proves Lemma 3.2.5).

72



Our first goal is to show that conditioning on the event W does not change the distri-

bution in a typical coordinate. The following lemma is rather standard and follows from

subadditivity of divergence and its relation to the `1 norm (Pinsker’s inequality):

Lemma 3.3.18. In expectation over i sampled according to η(i), π(xiyi)
γ
≈ π(xiyi|W ).

Next we eliminate a corner case:

Lemma 3.3.19. If ‖π‖ ≤ γ2n, then in expectation over i sampled according to η(i), π(mxiyi|W )

√
2γ
≈

π(m|W ) · π(xiyi).

The proof of Lemma 3.3.19 is also a straightforward application of subadditivity.

Lemma 3.3.19 implies that if ‖π‖ ≤ γ2n, then a protocol with 0 communication can

approximate the messages of π conditioned on W , and so compute f with 1 additional

bit of communication. So

(1/n)
n∑
i=1

π(Wi|W )− γ/
√

2 ≤ suc(µ, f, 1) ≤ suc(µ, f, C),

which completes the proof. The more interesting case is when ‖π‖ ≥ γ2n, and so we

assume that this holds in the rest of this section.

Given subsets g,h ⊂ [n], let Xh and Yg denote X and Y projected on to the relevant

coordinates. Define

Ri,g,h = Xh\{i},Yg\{i}.

The random variable Ri,g,h helps to break the dependencies between Alice and Bob.

It turns out that choosing the right distribution for i,g,h in η is crucial to our proofs.

We need the distribution to be symmetric in g,h. It is important that g ∪ h = [n] so that

xi, yi, ri,g,h split the dependences between x, y. In the analysis we shall repeatedly use the

fact that for every fixing of h, η(ig|h) has the property that i is distributed uniformly over

a large set, and i ∈ g∩h. This allows us to apply the chain rule. For more intuition on the

choice of the variables ri,g,h, see Section 3.3 in [36].
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Protocol η for computing f(x, y) when inputs are sampled according to µ.

1. Let sh, sg be uniformly random numbers from the set {n/2 + 1, . . . , n}. Let κ :
[n] → [n] be a uniformly random permutation. Set h = κ([sh]) and g = κ({n −
sg + 1, . . . , n}). Let i be a uniformly random element of g ∩ h (which must be
non-empty by the choice of sg, sh).

2. Alice sets xi = x and Bob sets yi = y.

3. Alice and Bob use Lemma 3.2.16 to sample ri,g,h: Alice uses the distribution
π(ri,g,h|xiW ) and Bob uses the distribution π(ri,g,h|yiW ). Write r′i,g,h to denote
Alice’s sample and r′′i,g,h to denote Bob’s sample.

4. Alice and Bob run protocol θi,g,h from Figure 3.2 with inputs (xi, r
′
i,g,h) and

(yi, r
′′
i,g,h).

Figure 3.1: Protocol for computing f .

Protocol θi,g,h for computing f(xi, yi) when inputs (xi, r
′
i,g,h), (yi, r

′′
i,g,h) are sampled

according to π((xi, ri,g,h), (yi, ri,g,h)|W ).

Alice sends each message Mj , j odd, according to the distribution π(mj|xir′i,g,hm<jW ).
Bob sends each message Mj , j even, according to the distribution π(mj|yir′′i,g,hm<jW ).

Figure 3.2: Simulation in the i’th coordinate.

Now we argue that η(igh) has the properties we need. Observe that we can sample

η(igh) by the following different yet equivalent process. Let h be distributed as in η. For

fixed h, let κh : [n] → [n] be a permutation sampled uniformly from the set of permuta-

tions that map [|h|] to h. Let ` be a uniformly random element of [n/2]. Given h, κh, `, set

i = κh(`) and g = κh({`, ` + 1, . . . , n}). Then note that g,h, i are distributed as defined in

the protocol η. Further, note that (i, xi, ri,g,h) and (κh(`), xh, yκh({`+1,...,n})) determine each

other.

The following lemma asserts that the distribution of the public randomness Ri,g,h of π

doesn’t change much when conditioning on W :
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Lemma 3.3.20. In expectation over i,g,h sampled according to η(igh),

π(xiyi)π(ri,g,h|xiW )
3γ
≈ π(xiyiri,g,h|W )

3γ
≈ π(xiyi)π(ri,g,h|yiW ).

The following claim is the heart of the proof. It asserts that indeed the distribution

(π|W ), on an average coordinate i, is well approximated by the protocol θ.

Claim 3.3.21. In expectation over i,g,h sampled according to η(igh),

θi,g,h(xiyiri,g,hm)
2γ
≈ π(xiyiri,g,hm|W ).

Proof. Consider

E
η(igh)

[
E

π(xiyiri,g,h|W )
[D (π(m|xiyiri,g,hW )‖θi,g,h(m|xiyiri,g,h))]

]
=

2t∑
j=1

Eη(igh)

[
E

π(m<jxiyiri,g,h|W )
[D (π(mj|xiyiri,g,hm<jW )‖θi,g,h(mj|xiyiri,g,hm<j))]

]
(3.6)

The odd j’s correspond to the cases when Alice speaks. These terms contribute:

∑
odd j

E
η(igh)

[Iπ(Mj;Yi|XiRi,g,hM<jW )] .

As in the proof of Lemma 3.3.20, we can express this as

2

n

∑
odd j

Eη(hκh)

[
Iπ(Mj;Yκh([n/2])|XhYκh({n/2+1,...,n})M<jW )

]

by the chain rule. By Lemma 3.2.14, we can upper bound this by

≤ 2

n

∑
odd j

Eη(hκh)

[
E

π(m<jxhy|W )

[
D
(
π(mj|m<jxhyW )‖π(mj|m<jxhyκh({n/2+1,...,n}))

)]]
.
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Conditioned on xhyκh({n/2+1,...,n}), the inputs x, y are independent. Thus Lemma 3.2.15

gives

π(mj|m<jxhyκh({n/2+1,...,n})) = π(mj|m<jxhy),

and we can continue to bound

=
2

n

∑
odd j

Eη(hκh)

[
E

π(m<jxhy|W )
[D (π(mj|m<jxhyW )‖π(mj|m<jxhy))]

]
.

Since the divergence is always non-negative, we can add in the even terms in the sum

over j to bound

≤ 2

n

2t∑
j=1

Eη(hκh)

[
E

π(m<jxhy|W )
[D (π(mj|m<jxhyW )‖π(mj|m<jxhy))]

]

=
2

n
E

η(hκh)

[
E

π(xhy|W )
[D (π(m|xhyW )‖π(m|xhy))]

]
(by the chain rule)

≤ 2

n
E

η(hκh)

[
γ2n
]

= 2γ2,

by Lemma 3.2.12. Repeating the same argument for even j gives (3.6) ≤ 4γ2. We apply

Lemma 1.1.12 to conclude the proof.

Completing the Proof of Lemma 3.2.4

Claim 3.3.22. The expected value of the expression for the internal information cost according to

π conditioned on W can be bounded:

Eη(igh)[(Iπ(Xi;M |YiRi,g,hW ) + Iπ(Yi;M |XiRi,g,hW ))] ≤ 4‖π‖/n.

In the probability space of π, let i,g,h be independent of all other variables, and dis-

tributed as in η. Let x′ = (i,g,h, xi, ri,g,h) and y′ = (i,g,h, yi, ri,g,h). Define the protocol

θ that gets inputs (i,g,h, xi, r
′
i,g,h) and (i,g,h, yi, r

′′
i,g,h), where the inputs are distributed
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according to

π((i,g,h, xi, ri,g,h), (i,g,h, yi, ri,g,h)|W ),

and executes θi,g,h((xi, r
′
i,g,h), (yi, r

′′
i,g,h)).

By Lemma 3.2.16 and Lemma 3.3.20, Prη[R
′
i,g,h 6= R′′i,g,h] ≤ O(γ). Thus in expectation

over i,g,h sampled according to η(igh),

η((xi, r
′
i,g,h), (yi, r

′′
i,g,h))

O(γ)
≈ η((xi, r

′
i,g,h), (yi, r

′
i,g,h)),

where here η((xi, r
′
i,g,h), (yi, r

′
i,g,h)) denotes the distribution where Bob’s sample for r′′i,g,h

is set to be the same as Alice’s sample. By Lemma 3.3.20 and Lemma 3.3.18,

η(ighxyr′i,g,h)
O(γ)
≈ π(ighxiyiri,g,h|W ).

Therefore the protocol η can be viewed as executing θ as a subroutine with inputs that

are O(γ)-close to θ(x′, y′). Claim 3.3.21 implies that θ(x′y′m)
O(γ)
≈ π(x′y′m|W ). Claim 3.3.22

implies that

Iπ(X ′;M |Y ′W ) + Iπ(Y ′;M |X ′W )

= E
η(igh)

[Iπ(Xi;M |YiRi,g,hW ) + Iπ(Yi;M |XiRi,g,hW )]

≤ 4‖π‖/n (since ‖π‖ ≥ γ2n).

To prove Lemma 3.2.4, we apply Theorem 3.2.6 to conclude that there exists a protocol

that O(γ)-simulates θ with information cost at most

≤ O

(
(4‖π‖/n) + log(‖π‖+ 1)

γ2

)
.

We can now compress the resulting protocol using the compression scheme of [17],

which for the choice of α in the statement of Lemma 3.2.4, gives a protocol with overall
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communication complexity

O

(
log ‖π‖

√
(4‖π‖/n+ 1 + log ‖π‖)‖π‖

γ3/2

)
< O

(
‖π‖ · log3/2 ‖π‖√

nγ5/2

)
< C − 1.

The proof of Lemma 3.2.4 is complete, since with one additional bit of communication

to send the value of f , the protocol η computes f with probability of success at least

(1/n)
∑n

i=1 π(Wi|W )−O(γ).

3.4 Proof of Theorem 3.1.6 (DP in Terms of IC)

As promised, in this Section we prove Theorems 3.2.6 and 3.1.6, which together complete

the proof of Theorem 3.1.6. The main ingredient of the proof is a construction of an “in-

formation odometer”: An interactive procedure which allows Alice and Bob to keep an

online estimate of the information of their conversation, and “abort” the protocol when

too much information was revealed. Constructing such a primitive is highly non-trivial

task, and is the main content of this section. We will see that such a primitive has further

applications to direct products, to the interactive compression problem (Subsection 3.5.2)

and to privacy (Chapter 7).

Overview of the Odometer Construction

The “information odometer” problem can be put as follows. Alice and Bob are given

inputs x, y ∼ µ, and are executing a communication protocol π. During the course of the

execution of π they wish to maintain an information odometer — an online estimate (say,

within a factor of 2) of the amount of information they have revealed to each other about

their inputs. In more technical terms, they wish to maintain an estimate on the internal

information cost of the protocol π so far. Moreover, since applications of this primitive

involve limiting the amount of information revealed, they wish to implement it without

78



revealing too much additional information about their inputs in the process. Ideally, the

information overhead of implementing it up to any point in time should scale with the

information cost of π so far. In this paper, we introduce a technique that enables such an

implementation.

Before discussing applications, let us discuss the challenges in implementing such an

information odometer. Firstly, we note that even if the original protocol π does not involve

interaction, estimating information revealed requires interaction. Consider the following

simple scenario. Alice is given a sequence of blocks X1, X2, . . . , Xk and a subset S ⊂

{1, . . . , k}. Bob is also given a sequence of blocks Y1, . . . , Yk and a subset T ⊂ {1, . . . , k}

for i ∈ T , Xi = Yi, and for i /∈ T , Xi and Yi are statistically independent. In the protocol

π, Alice performs the following action: For each i ∈ [k] she sends the block Xi if i ∈ S,

and sends a random block Ri otherwise. Thus π is a one-round protocol. The amount

of information revealed by π is proportional to |S \ T |, and the amount of information

revealed by the first t blocks is proportional to at := |(S \ T ) ∩ {1, . . . , t}|. Note that

maintaining an estimate on at requires the parties to compute S \T , which would require

Alice and Bob to interact.

The fact that interaction is required means that no “simple” unilateral solution (where

Alice and Bob keep some counters separately) is possible, and makes a generic infor-

mation odometer more difficult to construct. Luckily, while the protocol π can be quite

complex, we can always break it down into the individual bits that are being transmitted.

Therefore, we can focus on estimating the amount of information transmitted in a single

bit sent, say, from Alice to Bob. The distribution of Alice’s message M in this case is de-

scribed by one number p = Pr[M = 1|history, X = x] ∈ (0, 1), such that her message is

given by the Bernoulli distribution Bp: 1 with probability p and 0 with probability 1 − p.

For technical convenience, we will only focus on the case when p ∈ (1/3, 2/3) — this can

be done essentially without loss of generality, since the sending of a highly-biased bit can

be simulated by the majority of several, slightly-biased bits, without increasing the infor-
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mation cost of the protocol (see Section 6.1 in the full version of this result [40]). Note that

the value of the probability p depends on Alice’s input x, as well as on the transcript so

far. The actual sampling of M ∼ Bp is done using Alice’s private randomness.

What does Bob learn about x from a message M ∼ Bp? Not surprisingly, the answer

depends on what Bob already knows. More specifically, it is given by the KullbackLeibler

divergence between the actual distribution of M , and Bob’s belief about this distribution.

Note that sinceM ∈ {0, 1} is a binary message, Bob’s belief is given by a Bernoulli variable

Bq (where q = Pr[M = 1|history, Y = y]). Since p ∈ (1/3, 2/3), we must also have

q ∈ (1/3, 2/3). The amount of information learned by Bob is given by D (Bp‖Bq). For

p, q ∈ (1/3, 2/3) it is the case that D (Bp‖Bq) = Θ((p−q)2). In particular, Bob learns nothing

if q = p (i.e. if he already knows p). Therefore, the odometer problem reduces to the task

of estimating I := (p − q)2, while revealing not much more than I bits of information to

the players in the process. More specifically, we show how to sample a Bernoulli random

variable B(p−q)2 , while revealing at most O(H((p − q)2)) = O((p − q)2 log 1/(p − q)2) bits

of information. While this quantity is more than (p− q)2 by a log 1/(p− q) factor, this will

be sufficient for most applications. Our test produces an (essentially) unbiased estimator

on the amount of information revealed in a given round. By running this estimator on

a subsample of the rounds, rather than on all the rounds of π, we can keep the overhead

below the information cost of π itself, while maintaining a good unbiased estimate of the

amount of information revealed so far.

We have therefore reduced the odometer problem to the following scenario. Alice

and Bob are given numbers p ∈ (1/3, 2/3) and q ∈ (1/3, 2/3), respectively. Their goal

is to sample B(p−q)2 , while revealing at most O(H(B(p−q)2)) information to each other.

The simplest strategy that clearly doesn’t work is to have Alice send Bob p and have

Bob sample B(p−q)2 (or vice versa). This does not work since p may reveal many bits of

information about x (and q may reveal many bits of information about y). A slightly

less naı̈ve approach is based on the idea of correlated sampling of [82]. We can sample
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a number Z ∈U [0, 1] uniformly at random. Alice and Bob then exchange information

on whether p < Z and q < Z, respectively. If the answers do not match, they output

1, otherwise they output 0. It is not hard to see that this procedure produces a sample

from the distribution B|p−q|. By repeating it twice and outputing the conjunction of the

two answers, we can get a sample from B|p−q|2 . Unfortunately, it is not hard to see that

this procedure may reveal as much as Ω(H(B|p−q|)) = Ω(|p− q| log 1/|p− q|) to the parties,

which is prohibitively high.

Our approach is based on the correlated sampling above. Instead of Z being chosen

using public randomness, Z is chosen by Alice from a distribution Zp which depends

on the value of p. Alice then sends Zp to Bob. The distribution Zp is designed to meet

the following two conditions: (1) a sample Z ∼ Zp reveals at most O((p − q)2) bits of

information about p (and thus about x) to someone who knows q; (2) the probability that

Z falls between p and q is∼ (p−q)2 (note that for Z ∈U [0, 1] this probability was∼ |p−q|).

Satisfying these two conditions allow us to sample from B(p−q)2 by seeing whether Z falls

between p and q (using condition (2)). Condition (1) ensures that the value of Z does not

reveal too much information to Bob about x in the process.

As discussed above, we primarily apply this basic primitive as follows. At each step i

of π we execute the protocol above with some probability α, obtain a sample Si ∼ B(p−q)2 ,

and maintain the sum Σi of the Si’s so far. This way, if Iπi is the amount of information

revealed by π by round i, we have that Σi is an unbiased estimator of α · Iπi . Therefore Σi

implements an information odometer for π. While Σi is stochastic, by choosing α < 1 that

is not too small, we can also ensure that Σi has sufficiently nice concentration properties

for our applications we discuss below.
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The Formal Results

We begin by showing how to construct a single-round information odometer. The follow-

ing sampling lemma serves as the main building block in subsequent applications and

constructions in this paper.

Theorem 3.5.1 (One round information odometer). Let (p, q) ∼ D be two numbers

∈ (1/3, 2/3), such that ∀ q Ep|q[p] = q. Suppose that Alice is given p (not known to Bob), and

Bob is given q (not known to Alice). Then there is a a (2-round) protocol τ such that:

• (Correctness) At the end of execution, players output “1” w.p exactly 2(p− q)2.

• (Low information) If T = T (p, q) denotes the transcript of τ , then

IC(τ) := Ep,q [D ((T |p)‖(T |q))] ≤ 16Ep,q [D (p‖q)] + 2Ep,q
[
H2(p−q)2

]
.

Theorem 3.5.1 is the central ingredient in the proofs of Theorems 3.2.6 and 3.1.6, which

together establish a strong (essentially tight) direct product theorem for communication

complexity in terms of information complexity, as discussed in the introduction of this

chapter.

In Section 3.5.2, we discuss the implications of our odometer construction to the in-

teractive compression problem, in light of the recent (exponential) separation result of

[71]. We outline a potential strategy for improving state of the art compression results,

which uses the odometer to “break” the underlying protocol into low-information pieces

(∼ logC), and compress each one separately.

3.5.1 An Interactive Information Odometer

In this section we prove Theorem 3.5.1, the main building block of our information

odometer.
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Proof of Theorem 3.5.1. The players run the protocol τ from Figure 3.3.

The protocol τ

1. Given her number p, Alice samples a number Zp ∈ [0, 1], according to the follow-
ing probability density function:

µp(z) =


4(p− z) if 0 ≤ z < p
4(z − p) if p ≤ z ≤ p+ 1/2

2− 4(z − p− 1/2) if p+ 1/2 < z ≤ 1

If p > 1/2, Alice samples from µ1−p(1− z).

2. Alice sends Zp to Bob.

3. Alice sends Bob a bit Ip indicating whether “Zp > p”.

4. Bob responds by sending a bit Iq indicating whether “Zp > q”.

5. The players output “1” iff Ip 6= Iq.

Figure 3.3: A single round information odometer. The probability that the protocol out-
puts “1” is 2(p− q)2.

Analysis of τ : Throughout the entire analysis, we assume that p ≤ 1/2, as it is straight-

forward to verify that µp(z) = µ1−p(1− z). First, let us analyze the probability with which

the players output “1”. Note that the assumption that p, q ∈ [1/3, 2/3] implies that either

q ∈ [0, p] or q ∈ [p, p+ 1/2]. If q ∈ [p, p+ 1/2], then by construction we have

Pr[players output “1”] = Pr[Ip 6= Iq] = Pr
µp

[Z ∈ [p, q]] =

∫ q

p

µ(z)dz =

∫ q

p

4(z − p)dz =

=
[
2z2 − 4pz)

]q
p

= 2q2 − 4pq − 2p2 + 4p2 = 2(p− q)2. (3.7)
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µ′p

µp

p′ p

Figure 3.4: The distribution µp of Zp for
p = 0.5, p′ = 0.3. The divergence be-
tween µp and µp′ is proportional to (p− p′)2.
The structure of the density function µp en-
sures that the log-ratio between the distri-
butions mostly cancels out, up to second or-
der terms.

µp

p q

Figure 3.5: The distribution µp for p = 0.5.
For any q, the probability that p < Zp < q
is equal to the area of the triangle enclosing
p, q, µp(q).

Similarly, if q ∈ [0, p], then

Pr[players output “1”] =

∫ p

q

µ(z)dz =

∫ q

p

4(p− z)dz = 2(p− q)2,

as claimed in the first proposition of the Theorem.

We turn to analyze the information cost of τ . We analyze step 2 of the protocol and

steps 3,4 separately. Step 2: The heart of the proof is showing that the information Zp

conveys to Bob (with input q) about Alice’s input p, is in fact comparable to the divergence

between p and q:

Lemma 3.5.2. I(Zp; p|q) ≤ 16 · Ep,q [D (p‖q)].

The key step is the following technical lemma which asserts that the divergence be-

tween the distribution of Zp and a “shift” of it Zp′ is proportional to (p − p′)2 (see Figure

2):

Lemma 3.5.3. For any p, p′ ∈ (1/3, 2/3), it holds that D (Zp‖Zp′) ≤ 8(p− p′)2.
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This technical lemma is proved by a direct calculation of the divergence, for details see

the appendix section of [40]. We now show how Lemma 3.5.3 implies Lemma 3.5.2:

Proof of Lemma 3.5.2.

I(Zp; p|q) = Ep,q
[
D
(
Zp‖Ep|q[Zp]

)]
≤ Ep,q [D (Zp‖Zq)] ≤ 8 · Ep,q[(p− q)2] (by Lemma 3.5.3)

≤ 16 · Ep,q [D (p‖q)] ,

where the second transition is by Fact 3.2.7 (taken with T = Z,X = p, Y = q, Z(q) = Zq),

and the last transition is by Pinsker’s inequality (Fact 3.2.9).

We continue to bound the information of the remaining steps of the protocol τ . Steps 3

and 4: Let W denote the indicator random variable of the event “Zp ∈ [p, q]”. Note that at

this point, both players already know Zp, and conditioned on Ip and Zp, W determines Iq

(and vice versa for Ip). Thus, the data processing inequality implies that the information

cost of the above steps is upper bounded by

Epq[H(Ip|IqZp) +H(Iq|IpZp)] ≤ Epq[H(W |IqZp) +H(W |IpZp)] ≤ 2Epq[H(W )] = 2Epq[H(2(p− q)2)],

(3.8)

where the last transition is by (3.7). By Lemma 3.5.2 and (3.8), we conclude that

IC(τ) ≤ I(Zp; p|q) + Epq [H(Ip|IqZp) +H(Iq|IpZp)] ≤ 16Ep,q [D (p‖q)] + 2Ep,q
[
H(2(p− q)2)

]
,

which concludes the second proposition and thus the whole proof of Theorem 3.5.1.

Due to space constraints, we leave the formal proofs of Theorems 3.2.6 and 3.1.6 to the

full version of the paper [40]. We conclude this chapter by describing the implications of
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the information odometer to the interactive compression problem. This is the content of

the next Section.

3.5.2 Towards better interactive compression?

In this section we discuss a potential application of the information odometer to the in-

teractive compression question. While we do not prove new compression results, our

construction helps clarify the main challenges involved in improving the current state-of-

the-art in compressing interactive communication, and suggests a “meta”-approach for

making progress on this fascinating problem.

As mentioned in the introduction, the problem of compressing interactive commu-

nication can be summarized as follows: “Given a protocol π whose information cost

IC(π, µ) is I and whose communication cost is C, is there an equivalent — compressed

— protocol π′ that only uses O(I) communication?”. Note that if π is non-interactive

then the answer to this question is positive [87]. A more modest goal would be to com-

press π into a protocol π′ that uses some function g(I, C) of communication, such as

g(I, C) = poly(I) · polylog(C). The compression question is closely related to the di-

rect sum problem for randomized communication complexity. In fact, these questions are

essentially equivalent to each other [35] — the better we can compress, the stronger direct

sum holds for communication complexity

The two best general compression results to date are incomparable to each other. The

first one, due to [16], gives g(I, C) = Õ(C1/2 · I1/2). The second one, due to [28], gives

g(I, C) = 2O(I), and was recently shown to be tight in a breakthrough result of Ganor et

al. [71]. Note that the second bound becomes non-trivial once I � logC. More precisely,

the compression scheme of [28] starts with an information-I protocol, and produces a

2O(I/ε)-communication protocol while failing with probability ε. Failing with probability

ε is inevitable, since I is an average-case quantity, and thus with a small probability ε the
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information cost of π will be very high (potentially as high as I/ε) making it impossible

to compress in less

than 2O(I/ε)-communication with existing techniques. However, one can easily extend

the compression result of [28] to show that if we are given a π whose information cost

is uniformly bounded by I (i.e. with high probability over paths taken by the protocol,

the divergence cost is bounded by I), then one can compress π into 2O(I) communication

while only introducing a negligible amount of additional error:

Claim 3.5.4 (Adapted from [28]). Let ρ, ε > 0 be error parameters, and let π an ε-error protocol

for f , such that Prµ[Dπ
xyr(m) > I] ≤ ρ. Then for any distribution µ, CCµ

ρ+ε(f) ≤ 2O(I).

Claim 3.5.4 gives rise to the following strategy for compressing a protocol π: (1) parti-

tion π into pieces π1, π2, . . ., such that each piece reveals only I1 bits of information (thus

the total number of pieces is∼ I/I1); (2) compress each piece using 2O(I1) communication.

Such a plan, if successful, would yield a total communication cost of O(2O(I1) · I/I1). If

one can make I1 as small as O(1), this would give a method for interactive compression.

Indeed, this strategy has been successfully carried out in [16] for compressing to exter-

nal information cost of π. The external information cost ICext(π) of π measures the amount

of information π(X, Y ) reveals about X, Y to an external observer. It is always the case

that ICext(π) ≥ IC(π) = I , and thus compressing a protocol to ICext(π) := Iext is easier

than compressing it to I . Since step (2) of the strategy is guaranteed by Claim 3.5.4, the

main challenge is executing step (1). “Partitioning” means terminating π after ∼ I1 in-

formation has been revealed. This produces the first piece π1. Then terminating after

another ∼ I1 information is revealed produces π2 etc. In the case of external information

Alice can privately estimate the amount of information learnt by an external observed

from her messages (since she has the ability to take the external observer’s point of view).

A similar statement holds about Bob. This allows Alice and Bob to partition the proto-
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col into pieces of low (O(1)) external information cost, thus enabling compression of π to

O(Iext · polylog(C)) communication.

Is a similar partitioning possible for internal information instead of external? This

question is essentially equivalent to the odometer problem studied in this paper. In par-

ticular, we can use our odometer construction to pause the protocol π after O(1) bits of in-

formation have been communication. Unfortunately, in the process we reveal an additive

overhead of O(logC) bits of information, and thus the resulting information complexity

of each part π1, π2, . . . isO(logC) rather thanO(1). Thus after applying step (2) of the com-

pression plan we get a total communication cost of I ·2O(logC), which is not better than the

original cost C. Unfortunately, [71] asserts it is hopeless to improve the exponential de-

pendence on I in the result of [28], so this the latter approach will not work. Nevertheless,

it is still hopeful to use the above approach to improve [16]’s compression result (see the

following subsection). This statement can be generalized as follows: Each chunk πi has

information complexity I1 = O(logC), and communication complexity C1 ≤ C. There-

fore, if we could compress πi into a protocol π′i of communication complexity g(I1, C1),

the odometer will imply that any π can be compressed to O(I · g(I1, C1)) communication.

We thus obtain the following claim6:

Claim 3.5.5. Suppose there is a compression protocol that takes as an input a protocol π1 with

communication cost C1 and worst case information cost I1, and compresses it into a protocol

π′1 of communication complexity g(C1, I1). Then a protocol π with communication cost C and

information cost I can be compressed into a protocol with communication cost Õ(I · g(C, logC)).

Claim 3.5.5 implies that it is sufficient to compress protocols whose information cost is

logarithmic in their communication cost. In particular, if one could compress a protocol

with communication cost C and information cost logC to a protocol with communication

cost g(C, logC) = Co(1), it would imply that any protocol with communication cost C

6Since, at this point, this is a qualitative statement, we leave errors out of the statement to avoid compli-
cating the notation.
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and information cost I can be compressed to communication I · Co(1). Note that both the

scheme from [16] and [28] yield only an upper bound of g(C, logC) = CO(1) in this case.

Comparison and implications of [71]’s separation result

As argued above, the result in this section shows is that the information odometer reduces

the task of interactive compression to the regime where information is only logarithmic

in communication (I = O(logC)). Thus, if one could compress a protocol whose infor-

mation cost is O(logC) and whose communication cost is ≤ C into a protocol which uses

g(C, logC) communication, then one could compress π which uses C communication and

I information into a protocol which uses O(I · g(C, logC)) communication in total. In

particular, if we could compress into g(C, logC) = Co(1) bits, then we could compress any

π into I · Co(1) communication, which would improve over the current state of the art

(g(C, logC) = CO(1) due to [16]).

The result of Ganor et. al. [71] does not, by any means, rule out such a compression

scheme, but only a compression scheme with subexponential dependence on I , if one in-

sists that g(C, I) depends solely on I (and at most sub-logarithmically in C). Therefore,

our result (Claim 39) still carries the hope that the odometer may lead to improved inter-

active compression by focusing one’s efforts on the I = logC regime (notice that in this

regime, even a modest compression on the order of 2O(ε)·I ·C1/2−ε would already improve

the C1/2 dependence in [16]).
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Part II

Applications to Other Computational

Models
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Many computational systems, both in theory and practice, are interactive in nature.

Standard real-life examples include client-server interaction for information exchange,

distributed computing, and online auctions to mention a few. In theory, the study of

interactive systems has led to striking consequences in computational complexity, show-

ing that interaction can be surprisingly powerful: In the context of proof complexity, the

celebrated IP = PSPACE theorem [142] states that, even problems which will forever re-

main infeasible to solve from scratch (such as finding a winning strategy in chess), can

nevertheless be verified efficiently if we allow the prover and verifier a small number of

rounds of interaction (i.e., assuming a player has a winning strategy, he can convince the

other in this fact, beyond reasonable doubt, in polynomial time). In algorithmic game

theory and mechanism design, it has been shown that multi-round interaction improves

the efficiency (social welfare and revenue) of systems, both in pricing mechanism and

combinatorial auctions contexts [11, 62] (Result 8 we obtain below improves on the latter

work).

The abstractness of the communication complexity model enables it to capture many

other computational models. The standard approach is to distribute the input for the

(non-interactive) problem into two or more players, and define an appropriate com-

munication game in which the number of bits (or rounds) exchanged correspond to

the complexity measure (space, queries, running time etc.) of the original model. This

approach for proving lower bounds has been particularly successful in the fields of

streaming algorithms (as demonstrated by one of our own results below) and extension

complexity [33], and constitutes one of the promising approaches to make progress in

the notoriously difficult field of circuit lower bounds (see Section Section 4 below). Other

connections between communication complexity and computational complexity have

been fruitful. Pǎtraşcu and Williams [130] showed that a (computationally efficient)

protocol with sublinear (o(n)) communication for the 3-party Disjointnss problem in
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the Number-on-Forehead (NOF) model7 implies a sub exponential SAT-solver. Later,

Pǎtraşcu showed that the (notoriously difficult) task of obtaining lower bounds in the

NOF model would imply strong data structure lower bounds in the cell-probe model,

which has been stuck for more than two decades [129].

In the following four chapters, we explore applications of information complexity to

the fields of circuit complexity, privacy, streaming and economics. Despite the apparent

dissimilarity of these fields of research, the common feature of the problems we study in

each of them is that they underly an interactive setup in which information is distributed

among multiple agents who are required to solve or optimize some objective function.

These agents may be honest, strategic or even adversarial (malicious). The philosophy

of this chapter is to explore the role of information and interaction in obtaining efficient

solutions in those various interactive systems, where efficiency may be measured in terms

of social welfare, revenue, space, privacy or communication, depending on the context.

7In this model, each player gets to see every input of the other players, except his own.
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Chapter 4

Applications to Circuit Complexity:

Towards the KRW Conjecture

One of the holy grails of complexity theory is showing that NP cannot be computed by

polynomial-size circuits, namely, that NP 6⊆ P/poly. Unfortunately, it currently seems

that even finding a function in NP that cannot be computed by circuits of linear size is

beyond our reach. Thus, it makes sense to try to prove lower bounds against weaker mod-

els of computation, in the hope that such study would eventually lead to lower bounds

against general circuits.

This paper focuses on (de-Morgan) formulas, which are one such weaker model. In-

tuitively, formulas model computations that cannot store intermediate results. Formally,

they are circuits with AND, OR, and NOT gates that have fan-out 1, or in other words,

their underlying graph is a tree.

For our purposes, it is useful to note that formulas are polynomially related to circuits1

of depth O(log n): It is easy to show that circuits of depth O(log n) can be converted into

formulas of polynomially-related size. On the other hand, every formula of size s can be

converted into a formula of depth O(log s) and size poly(s) [147, 44, 26]. In particular, the

1All the circuits in this paper are assumed to have constant fan-in.
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complexity class2 NC can be defined both as the class of polynomial-size formulas, and

as the class of polynomial-size circuits of depth O(log n).

It is a major open problem to find an explicit function that requires formulas of super-

polynomial size, that is, to prove that P 6⊆ NC. In fact, even proving that NEXP 6⊆

NC would be a big breakthrough. The state-of-the-art in this direction is the work of

Håstad [78], which provided an explicit function whose formula complexity is n3−o(1).

Improving over this lower bound is an important challenge.

One strategy for separating P from NC was suggested by Karchmer, Raz, and Wigder-

son [99]. They made a conjecture on the depth complexity of composition, and showed

that this conjecture implies that P 6⊆ NC. In order to introduce their conjecture, we need

some notation:

Definition 4.0.6 (Composition). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be boolean

functions. Their composition g ◦ f : ({0, 1}n)m → {0, 1} is defined by

(g ◦ f) (x1, . . . , xm)
∆
= g(f(x1), . . . , f(xm)),

where x1, . . . , xm ∈ {0, 1}n.

Definition 4.0.7 (Depth complexity). Let f : {0, 1}n → {0, 1}. The depth complexity of f ,

denoted D(f), is the smallest depth of a circuit of fan-in 2 that computes f using AND, OR and

NOT gates.

Conjecture 4.0.8 (The KRW conjecture [99]). Let f : {0, 1}n → {0, 1} and g : {0, 1}m →

{0, 1}. Then,

D(g ◦ f) ≈ D(g) + D(f). (4.1)

As noted above, [99] then showed that this conjecture could be used to prove that

P 6⊆ NC: the basic idea is that one could apply O(log n) compositions of a random func-
2In this paper, NC always denotes the non-uniform version of NC, which is sometimes de-

noted NC1/poly.
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tion f : {0, 1}logn → {0, 1}, thus obtaining a new function over n bits that is computable in

polynomial time yet requires depth Ω̃(log2 n). The key point here is that a random func-

tion on log n bits has depth complexity log n − o(log n), and can be described explicitly

using n bits.

In this paper, we solve a natural milestone toward proving the KRW conjecture, using

a new information-theoretic approach3. We also suggest a candidate for the next mile-

stone, and provide some initial results toward solving it. The rest of this introduction is

organized as follows: In Section 4.1, we review the background relevant to our results. In

Section 4.2, we describe our main result and our techniques. In Section 4.3, we describe

the next milestone candidate, and our initial results in this direction.

4.1 Background: A Communication Complexity Approach

to KRW

Karchmer-Wigderson relations

Karchmer and Wigderson [100] observed an interesting connection between depth com-

plexity and communication complexity: for every boolean function f , there exists a cor-

responding communication problem Rf , such that the depth complexity of f is equal to

the deterministic4 communication complexity of Rf . The communication problem Rf is

often called the Karchmer-Wigderson relation of f , and we will refer to it as a KW relation for

short.

The communication problem Rf is defined as follows: Alice gets an input x ∈ f−1(0),

and Bob gets as input y ∈ f−1(1). Clearly, it holds that x 6= y. The goal of Alice and Bob

3We note that the works [100, 63] on the KRW conjecture also use a (different) information-theoretic
argument.

4In this paper, we always refer to deterministic communication complexity, unless stated explicitly other-
wise.
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is to find a coordinate i such that xi 6= yi. Note that there may be more than one possible

choice for i, which means that Rf is a relation rather than a function.

This connection between functions and KW relations allows us to study the formula

and depth complexity of functions using techniques from communication complexity.

In the past, this approach has proved very fruitful in the setting of monotone formulas

[100, 76, 135, 99], and in particular [99] used it to prove a monotone analogue of the KRW

conjecture.

Intuitively, Information Complexity seems a plausible tool for tackling the KRW con-

jecture, as it involves a “direct-sum” type communication problem, and we already saw

in Chapter 3 that this tool has led to (partial) resolution of a similar (but different) com-

position problem in communication complexity. Indeed, one of the contributions of this

work is formalizing this intuition by showing how some of those ideas carry over to the

setting of KW relations (see Section Section 4.4).

KW relations and the KRW conjecture

In order to prove the KRW conjecture, one could study the KW relation that corresponds

to the composition g ◦ f . Let us describe how the KW relation Rg◦f looks like. Let f :

{0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}. For every m×n matrix X , let us denote by f(X)

the vector in {0, 1}m obtained by applying f to each row of X . In the KW relation Rg◦f ,

Alice and Bob get as inputs m×n matrices X, Y respectively, such that f(X) ∈ g−1(0) and

f(Y ) ∈ g−1(1), and their goal is to find an entry (j, i) such that Xj,i 6= Yj,i.

Let us denote the (deterministic) communication complexity of a problem R by C(R).

Clearly, it holds that

C(Rg◦f ) ≤ C(Rg) + C(Rf ). (4.2)

This upper bound is achieved by the following protocol: For every j ∈ [m], let Xj denote

the j-th row of X , and same for Y . Alice and Bob first use the optimal protocol of g on

inputs f(X) and f(Y ), and thus find an index j ∈ [m] such that f(Xj) 6= f(Yj). Then, they
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use the optimal protocol of f on inputs f(Xj) and f(Yj) to find a coordinate i on which

the j-th rows differ, thus obtaining an entry (j, i) on which X and Y differ.

The KRW conjecture says that the above protocol is essentially optimal. One intuition

for that conjecture is the following: the best way for Alice and Bob to solve Rg◦f is to

solve Rf on some row j such that f(Xj) 6= f(Yj), since otherwise they are not using the

guarantee they have on X and Y . However, in order to do that, they must find such a

row j, and to this end they have to solve Rg. Thus, they have to transmit C(Rg) bits in

order to find j, and another C(Rf ) bits to solve f on the j-th row. This intuition was made

rigorous in the proof of the monotone version of the KRW conjecture [99], and a similar

intuition underly our argument as well as the works of [63, 88] that are to be discussed

later.

The universal relation and its composition

Since proving the KRW conjecture seems difficult, [99] suggested studying a simpler

problem as a starting point. To describe this simpler problem, we first need to define

a communication problem called the universal relation, and its composition with itself. The

universal relation RUn is a communication problem in which Alice and Bob get as inputs

x, y ∈ {0, 1}n with the sole guarantee that x 6= y, and their goal is to find a coordinate i

such that xi 6= yi. The universal relation RUn is universal in the sense that every KW

relation reduces to it, and indeed, it is not hard to prove that C(RUn) ≥ n.

The composition of two universal relations RUm and RUn , denoted RUm◦Un , is defined

as follows. Alice gets as an input an m×n matrix X and a string a ∈ {0, 1}m, and Bob gets

as an input an m× n matrix Y and a string b ∈ {0, 1}m. Their inputs satisfy the following

conditions:

1. a 6= b.

2. for every j ∈ [n] such that aj 6= bj , it holds that Xj 6= Yj .
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Their goal, as before, is to find an entry on which X and Y differ. The vectors a and b are

analogues of the vectors f(X) and f(Y ) in the KW relation Rg◦f .

The relation RUm◦Un is a universal version of composition problems Rg◦f , in the sense

that every composition problem Rg◦f reduces to RUm◦Un . Now, [99] suggested to prove

that

C(RUm◦Un) ≈ C(RUm) + C(RUn) ≥ m+ n (4.3)

as a milestone toward proving the KRW conjecture. This challenge was met by [63] up to

a small additive loss, and an alternative proof was given later in [88]. Since then, there

has been no further progress on this problem for about two decades.

4.2 Main Result: The composition of a function with the

universal relation

Summing up, the KRW conjecture is about the composition of two functions Rg◦f , but it

was only known how to prove it for the composition of two universal relationsRUm◦Un . In

this work we go a step further: We prove an analogue of the KRW conjecture for relations

of the form Rg◦Un , where g ∈ {0, 1}m → {0, 1} is an arbitrary function; and where Rg◦Un is

a problem that can be naturally viewed as the composition of g with the universal relation.

We define the communication problem Rg◦Un as follows. Alice gets as an input an

m× n matrix X and a string a ∈ g−1(0), and Bob gets as an input an m× n matrix Y and

a string b ∈ g−1(1). Their inputs are guaranteed to satisfy Condition 2 from above, i.e.,

for every j ∈ [n] such that aj 6= bj , it holds that Xj 6= Yj . Clearly, their inputs also satisfy

a 6= b, as in Condition 1 above. The goal of Alice and Bob, as usual, is to find an entry on

which X and Y differ.

Note that Rg◦Un is universal, in the sense that for any f : {0, 1}n → {0, 1}, the com-

munication problem Rg◦f reduces to Rg◦Un . An ideal analogue of the KRW conjecture for
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Rg◦Un would be

C(Rg◦Un) = C(Rg) + C(RUn) = C(Rg) + n. (4.4)

We prove the following closely related result. Let L(g) denote the formula complexity of

g, and recall that log L(g) ≥ Ω (C(Rg)) due to the correspondence between formula size

and circuit depth.

Theorem 4.2.1 (Main theorem, [72]). Let m,n ∈ N be such that m ≤ 2n/2, and let g :

{0, 1}m → {0, 1}. Then,

C(Rg◦Un) ≥ log L(g) + n−O(
m · logm

n
) ≥ Ω (C(Rg)) + n−O(

m · logm

n
),

Moreover, the same lower bound applies to the logarithm of the number of leaves of any protocol

for Rg◦Un .

There is a good reason why the formula complexity L(g) appears in Theorem Theorem

4.2.1, as will be made clear in the following discussion on our techniques.

Remark 4.2.2. In the target application of the KRW conjecture, namely the proof that P 6⊆ NC,

the parameters can be chosen such thatm� n, so the loss ofO(m·logm
n

) in Theorem Theorem 4.2.1

is not very important.

Remark 4.2.3. We note that Theorem Theorem 4.2.1 also implies lower bound on the composi-

tion RUm◦Un of two universal games, thus giving yet another proof for the results of [63, 88].

Proof Techniques

Our starting point is the simple observation that (the logarithm of) the size of a formula φ

for any function f can be reinterpreted as the external information cost of the correspond-

ing (determinestic) protocol for Rf .

To see why this is helpful, consider the KW relation Rg◦Un . Intuitively, we would like

to argue that in order to solve Rg◦Un , Alice and Bob must solve Rg (incurring a cost of
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C(Rg)), and also solve the universal relation on one of the rows their matrices (incurring a

cost of n). Such an argument requires decomposing the communication of Alice and Bob

to a communication “about” Rg and a communication “about” RUn . However, it is not

clear how to do that, because Alice and Bob may “talk” simultaneously about Rg and RUn

(e.g. by sending the XOR of a bit of a and a bit of X).

On the other hand, when considering the information transmitted by Alice and Bob,

such a decomposition comes up naturally: the information that Alice and Bob transmit

can be decomposed, using the chain rule, into the information they transmit on the strings

a, b (which are inputs of Rg) and the information they transmit on the matrices X and Y

(which consist of inputs of RUn). Of course, implementing this argument is far from triv-

ial, and in particular, we do not know how to extend this argument to the full KRW

conjecture, i.e., KW relations of the form Rg◦f .

This suggests that information complexity may be the “right” tool to study the KRW

conjecture. In particular, since in the setting of KW relations, the information cost is anal-

ogous to the formula size, the “correct” way to state the KRW conjecture may be using

formula size:

L(g ◦ f) ≈ L(g) · L(f).

On hard distributions

One significant difference between our work and previous works on information com-

plexity and direct sum (e.g. [17]) is the following: In order to define the information

complexity of a communication problem, one must specify a distribution on the inputs.

The reason is information-theoretic notions such as entropy are only defined with respect

to a distribution. The previous works use distributions that are protocol independent,

that is, they first choose a distribution µ, and then prove that every protocol π for the

problem must have a large information cost with respect to µ.
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In the setting of KW relations, this is impossible: for every distribution µ there exists

a protocol π that has a small information cost with respect to µ (see the full version of

this paper [72]). Therefore, the only way to apply information-complexity techniques

to KW relations is to use protocol-dependent distributions, that is, to tailor a different

distribution for each protocol.

4.3 A next candidate milestone: The composition ⊕m ◦ f

In order to make further progress toward the KRW conjecture, we would like to replace

the universal relation with a function. One possible approach to this question would be

to start with compositions g ◦ f where g is a some known simple function. Perhaps the

simplest such example is the composition ∨m ◦ f , where ∨m is the disjunction of m bits,

and f is an arbirary function. For this example, an analogue of the KRW conjecture is

already known, that is, we know that

L(∨m ◦ f) = L(∨m) · L(f) = m · L(f),

(see, e.g., [150], and also discussion in Section 3.2.1 in [72]). The next simplest example

would be ⊕m ◦ f , where ⊕m is the parity of m bits. For this example, an analogue of the

KRW conjecture would be

L(⊕m ◦ f) ≈ L(⊕m) · L(f) = m2 · L(f), (4.5)

where the second equality follows from [105]. We therefore suggest the following conjec-

ture as a next milestone toward the KRW conjecture:

Conjecture 4.3.1. For every function f : {0, 1}n → {0, 1} and every m ∈ N , it holds that

L(⊕m ◦ f) = Ω̃
(
m2 · L(f)

)
.
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We note that Conjecture 4.3.1 is not only interesting as a milestone toward the KRW

conjecture, but is also interesting on its own right. In particular, if Conjecture 4.3.1 is

proved, it will yield an alternative proof of the state-of-the-art lower bound of of n3−o(1)

by [78].

In this work, we provide two preliminary results toward proving Conjecture 4.3.1:

• A lower bound for R⊕m◦Un : A natural first step toward solving Conjecture 4.3.1

would be to prove a corresponding lower bound on R⊕m◦Un , the composition of

parity with the universal relation. Though in principle we could apply Theorem

Theorem 4.2.1 with g = ⊕m, in this case it would not give a meaningful lower bound

unless m � n.. On the other hand, in the target application described above (prov-

ing a lower bound of Ω̃(n3)), we would like to set m = 2n/n.

One contribution of this work is proving the following tight analogue of Conjecture

4.3.1 for R⊕m◦Un :

Theorem 4.3.2 ([72]). For every m,n ∈ N it holds that

C(R⊕m◦Un) ≥ 2 logm+ n−O(log logm).

Moreover, the same lower bound applies to the logarithm of the number of leaves of any

protocol for R⊕m◦Un .

• A candidate hard distribution: We would like to use information-complexity tech-

niques in order to study the KW relation R⊕m◦f . In order to define the informa-

tion complexity of a protocol, we must first define an appropriate distribution over

the inputs. We would therefore like to find a “hard distribution” over the inputs

of R⊕m◦f that will have a large information cost. As discussed in Section 4.2, this re-

quires tailoring a different hard distribution for each protocol, which is a non-trivial

task.
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One contribution of this work is suggesting a way to construct a candidate hard

distribution for each protocol for R⊕m◦f .

4.4 External Information Complexity and Formula Lower

Bounds

In this section, we provide a short discussion of the connection between information com-

plexity and formula lower bounds. For a more thorough discussion, the reader is referred

to Section 3 of [72] We use the following notation:

Definition 4.4.1. The size of a formula φ, denoted L(φ), is the number of the leaves in the un-

derlying tree of φ. For a function f : {0, 1}n → {0, 1}, we denote by L(f) the size of the smallest

formula that computes it.

Definition 4.4.2. The size of a protocol Π, denoted L(Π), is the number of leaves in the underlying

tree of Π. Alternatively, L(Π) is the number of distinct transcripts the protocol may exhibit. For

a relation R, we denote by L(R) the size of the smallest protocol that solves the communication

problem R.

As discussed in the introduction, there is a tight connection between formulas for a

function f , and protocols for the KW relation Rf . In particular, it holds that L(f) = L(Rf ).

Fix a function f and a protocol Π for Rf . We can prove formula lower bounds for f by

proving lower bounds on L(Π).

Recall that the (external) information cost of Π with respect to µ [17] is

ICext
µ(Π)

∆
= I(Π : X, Y ),
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where I(Π : X, Y ) is the mutual information between Π and (X, Y ). Now, we claim that

ICext
µ(Π) gives a lower bound for L(Π). The reason is that

I(Π : X, Y ) ≤ H(Π) ≤ log L(Π), (4.6)

where the second inequality follows since the entropy of a random variable is upper

bounded by the logarithm of its support’s size. Indeed, in Section 3.1.1 of [72], it is shown

that the proofs of [105, 100] of a lower bound for the parity function can be viewed very

naturally as lower bounds on ICext
µ(Π).

On hard distributions. A key point to proving lower bounds on ICext
µ(Π) is choosing

the right distribution µ. For start, observe that for every protocol Π there exists some

distribution µ that achieves ICext
µ(Π) = log L(Π): this is the distribution that chooses a

transcript of Π uniformly at random, and then chooses an arbitrary pair of inputs (x, y)

that generates this transcript. We refer to such a distribution µ as a hardest distribution

for Π.

A curious feature of this construction of hardest distribution µ is that µ depends on Π.

On the other hand, one could hope to construct hard distributions that depend only on

the function f , and not on the specific protocol Π. Indeed, all the previous works on

information complexity used protocol-independent distributions. Unfortunately, this is

not the case: The fact that a O(log n)-information zero-error randomized protocol for all KW

relations, implies by Yao’s minimax theorem that it is impossible to prove formula lower

bounds better than Ω(n4) using protocol-independent distributions (See proof and further

discussion in Section 3.2 of [72]).

It follows that in order to prove formula lower bounds via information complexity,

one has to tailor a different hard distribution µ for each protocol Π. One of our contri-

butions in this work is developing tools for performing such a “tailoring”. For start, in

Section 3.2.1 in [72], we show how a known lower bound on the formula complexity of
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the composition ∨m ◦ f can be viewed as a natural way of tailoring hard distributions for

protocols for R∨m◦f (here, ∨m is the boolean OR function over m bits).

In Section 5 of [72], we propose a way for performing such “tailoring” for R⊕m◦f .

To this end, we develop some generic tools that may be of independent interest. For

example, we show that for every function f that is average-case hard, there are hardest

distributions µ such that X and Y have large entropy.

Proof of the main result

In this section, we prove our main result, namely, a lower bound on the complexity of the

relation Rg◦Un .

We start by defining Rg◦Un formally. Let g : {0, 1}m → {0, 1}, and recall that in the

introduction we defined the relation Rg◦Un as the following communication problem: Al-

ice gets as an input a matrix X ∈ {0, 1}m×n and a string a ∈ g−1(0). Bob gets a ma-

trix Y ∈ {0, 1}m×n and a vector b ∈ g−1(0). Their goal is to find an entry (j, i) on which X

and Y differ, and they are promised that for every j ∈ [m] such that aj 6= bj , it holds that

Xj 6= Yj .

In what follows, we will use a slightly different definition, following [88]: We will al-

low the players to get inputs that violate the above promise, but in such case, the players

are allowed to fail, in which case they should output the special failure symbol⊥. As was

noted in [88], this modification does not change much the complexity of the communica-

tion problem, and simplifies the analysis considerably.

Theorem 4.5.3 ([72]). [Theorem 4.2.1, main theorem, restated]Let m,n ∈ N be such that m ≤

2n/2, and let g : {0, 1}m → {0, 1}. Then,

C(Rg◦U) ≥ log L(Rg◦Un) ≥ log L(g) + n−O(
m · logm

n
).
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In the rest of this section, we prove Theorem Theorem 4.2.1. We note that only the

second inequality requires a proof, whereas the first inequality is trivial since a binary

tree of depth c has at most 2c leaves.

Fix a protocol Π for Rg◦Un . We prove a lower bound for the number of leaves in the

protocol tree of Π. To prove it, we will define a distribution µ on the inputs of the protocol,

and analyze the information complexity of Π with respect to µ. More specifically, below

we define random variables X ∈ {0, 1}m×n, a ∈ g−1(0), b ∈ g−1(1), and give Alice and

Bob the inputs (X, a) and (X,b) respectively. We will prove that

ICext
µ(Π) ≥ log L(g) + n−O(

m · logm

n
).

Definition 4.5.4. Let ` be a leaf of Π and let X` × Y` be its corresponding rectangle.

• We say that the leaf ` supports a matrix X ∈ {0, 1}m×n if X can be given as an input to

both players at `. Formally, ` supports X if there exist a, b ∈ {0, 1}m such that (X, a) ∈ X`

and (X, b) ∈ Y`. We also say that X is supported by ` and a, or by ` and b. Note that the

leaf ` must be a leaf that outputs ⊥.

• We say that the leaf ` supports a ∈ g−1(0) if a can be given as an input to Alice at `.

Formally, ` supports a if there exists a matrix X ∈ {0, 1}m×n such that (X, a) ∈ X`. A

similar definition applies to strings b ∈ g−1(1).

Definition 4.5.5. Let X ∈ {0, 1}m×n be a matrix. Then, the sub-tree of X , denoted TX , is the

sub-tree of Π that consists of the leaves that support X . Note that all those leaves output ⊥.

The distribution µ is sampled as follows:

1. Choose a uniformly distributed matrix X ∈ {0, 1}m×n.

2. Choose a uniformly distributed leaf ` of TX, and let X` × Y` denote its rectangle.

3. Choose an arbitrary pair (a,b) such that (X, a) ∈ X` and (X,b) ∈ Y`.
106



4. Give Alice the input (X, a) and to Bob the input (X,b).

We proceed to analyze the information cost of Π with respect to µ. We begin by applying

the chain rule to the information cost:

ICext
µ(Π)

∆
= I(Π : X, a,b)

= I(Π : X) + I(Π : a,b|X).

As was discussed in the introduction, the second equality can be thought of as a decompo-

sition of the information that the protocol Π gives on Rg◦Un (which is I(Π : X, a,b)), into

information on the universal game (which is I(Π : X)), and information on Rg (which

is I(Π : a,b|X)). In the following two lemmas, we show that the terms I(Π : X) and

I(Π : a,b|X) behave as expected.

Lemma 4.5.6. I(Π : X) ≥ n.

Lemma 4.5.7. I(Π : a,b|X) ≥ log L(g)−O(m·logm
n

).

We prove the lemmas in the following two subsections.

4.6 Proof of the Central Lemmas

In this section we prove the main lemmas required to establish Theorem Theorem 4.2.1.

Proof of Lemma Lemma 4.5.6

We prove that I(Π : X) ≥ n. As discussed above, the intuition for the lower bound

I(Π : X) ≥ n is that by the end of the protocol, Alice and Bob must be convinced that

their matrices agree on at least one row, and we will show that this requires transmitting
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n bits of information. By the definition of mutual information, it holds that

I(Π : X) = H(X)−H(X|Π)

= m · n−H(X|Π).

Thus, it suffices to prove that H(X|Π) ≤ (m − 1) · n. We prove the following stronger

claim: for every fixed transcript π in the support of Π, the number of matrices that are

supported by π is at most 2(m−1)·n.

Fix a transcript π, and let T be the set of matrices X that are supported by π (see

Definition 4.5.4). We prove the following claim on T , which is equivalent to saying that

Alice and Bob must be convinced that their matrices agree on at least one row.

Claim 4.6.1. Every two matrices X,X ′ in T agree on at least one row.

Proof. We use a standard “fooling set” argument. Let Xπ × Yπ denote the rectangle that

corresponds to π. Suppose, for the sake of contradiction, that there existX,X ′ ∈ T that do

not agree on any row. By definition of T , it follows that there exist strings a, b ∈ {0, 1}m of

even and odd weights respectively such that (X, a) ∈ Xπ and (X ′, b) ∈ Yπ. In particular,

this means that if we give Alice and Bob the inputs (X, a) and (X ′, b) respectively, the

resulting transcript of the protocol will be π.

However, this is a contradiction: on the one hand, π is a transcript on which the pro-

tocol outputs ⊥, since it was generated by the distribution µ. On the other hand, the

players are not allowed to output ⊥ on inputs (X, a), (X ′, b), since X and X ′ differ on

all their rows, and in particular differ on the all the rows j for which aj 6= bj . The claim

follows.

We conclude the proof of Lemma Lemma 4.5.6 by applying to T the following combi-

natorial lemma, which is a corollary of [75, Theorem 1]. For completeness, we provide a

proof in the full version of this paper, which rephrases a proof of [4].
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Lemma 4.6.2. Let S ⊆ {0, 1}m×n be a set of matrices such that every two matrices agree on at

least one row. Then, |S| ≤ 2(m−1)·n.

Proof of Lemma Lemma 4.5.7

We prove that I(Π : a,b|X) ≥ log L(g) − O(m·logm
n

). To this end, we define the notion

of “good” and “bad” matrices X , which intuitively are matrices for which the protocol

solves Rg and does not solve Rg respectively. We will then show that good matrices con-

tribute have a high information cost, while bad matrices occur with low probability and

therefore do not affect the information cost by much.

We start by defining the notion that a string is good for a leaf `. Intuitively, a ∈ g−1(0)

is good for a leaf ` if, when the protocol reaches the leaf ` and Alice is given the string a,

Alice “almost knows” an index j such that aj 6= bj . More specifically, Alice knows a small

set J ⊆ [m] that contains a coordinate j on which aj 6= bj .

Definition 4.6.3. Let ` be a leaf of Π, and let a ∈ g−1(0) be a string supported by `. We say that a

is good for ` if there exists a set J ⊆ [m] such that |J | < t
∆
= 6m

n
+ 2, and such that the following

holds: for every b ∈ g−1(1) that is supported by `, there exists j ∈ J such that aj 6= bj .

If a is not good for `, we say that it is bad for `. Alternatively, we say that a is bad for ` if for

every set J of size at most t, there exists b ∈ g−1(1) that is supported by ` such that a|J = b|J .

This definition is inspired by [79].

Definition 4.6.4. Let ` be a leaf of Π and let X` ×Y` be its rectangle. A matrix X ∈ {0, 1}m×n is

good for ` if for every a such that (X, a) ∈ X`, it holds that a is good for `. Otherwise, we say that

X is bad for `. We say that a matrix X ∈ {0, 1}m×n is good if it is good for all the leaves in TX .

In the next two subsections, we will prove the following propositions, which together

finish the proof of Lemma Lemma 4.5.7.

Proposition 4.6.5. For every good matrix X , it holds that I(Π : a,b|X = X) ≥ log L(g) − t ·

(logm+ 2).
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Proposition 4.6.6. The probability that X is a bad matrix is at most 2−m.

Proof of Proposition 4.6.5

Let X be a good matrix. We prove that I(Π : a,b|X = X) ≥ log L(g) − t · (logm + 2). We

start by noting that

I(Π : a,b|X = X)
∆
= H(Π|X = X)−H(Π|a,b,X = X) = H(Π|X = X)

where the second equality holds since the transcript Π is determined by a, b, and X. Thus,

it suffices to lower bound the entropy H(Π|X = X).

Next, observe that by the definition of µ, it holds that conditioned on X = X , the

transcript Π = Π ((X, a), (X,b)) is distributed uniformly over the leaves of TX . Therefore,

it suffices to prove that the tree TX has at least 2−t·(logm+2) · L(g) leaves. Let s denote the

number of leaves of TX . We prove the lower bound on s by reduction to Rg: we show

that, using TX , one can construct a protocol ΠX for RG of size L(ΠX) ≤ 2t·(logm+2) · s, and

this would imply the required bound.

The protocol ΠX for Rg is defined as follows: When Alice and Bob get inputs a and

b respectively, they invoke the protocol Π on inputs (X, a) and (X, b) respectively, thus

reaching a leaf `. Since X is a good matrix, it follows that a is good for `. This implies that

there exists a set J ⊆ [m], |J | < t, such that a|J 6= b′|J for every b′ that is supported by

`. Alice now sends the set J and the string a|J to Bob, and Bob replies with b|J . At this

point, they both know a coordinate on which a and b differ, and the protocol ends.

The correctness of the protocol ΠX is easy to verify. To analyze its size, observe that

after reaching the leaf `, Alice and Bob transmit at most t · (logm + 2) bits. This implies

that the protocol tree of ΠX can be obtained from the tree TX by replacing each leaf with a

binary tree with at most 2t·(logm+2) leaves. It follows that L(ΠX) ≤ 2t·(logm+2) ·s, as required.
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Proof of Proposition 4.6.6

We prove that the probability that X is a bad matrix is at most 2−m, or in other words,

that there are at most 2−m · 2m·n bad matrices. The intuition for the proof is the following:

Recall that Alice and Bob output ⊥, and this means that they have to be convinced that

their matrices agree on some row j for which aj 6= bj . However, when X is bad, Alice

and Bob do not know an index j such that aj 6= bj at the end of the protocol. This forces

them to agree on many rows, and they can only do so for few matrices. Details follow.

Without loss of generality, we may assume that

L(Π) ≤ L(g) · 2n ≤ 2m+n,

since otherwise Theorem Theorem 4.2.1 would follow immediately. Next, recall that a

matrix X is bad if and only if it is supported by a leaf ` and a string a ∈ g−1(0) such that a

is bad for `. Therefore, it suffices to prove that every such pair of a leaf ` and a string a are

“responsible” for at most 2−(3·m+n) · 2m·n bad matrices. This would imply that there are at

most 2−m · 2m·n bad matrices, by taking union bound over all leaves of Π (at most 2m+n)

and all strings a (at most 2m).

Fix a leaf ` of Π and a string a ∈ g−1(0). Let T be the set of matrices that are supported

by ` and a. We prove that |T | ≤ 2−(3·m+n) · 2m·n. Our proof works in two steps: first, we

define a combinatorial property of sets of matrices, called the h-agreement property, and

show that T has this property. This property embodies the intuition that Alice and Bob

must agree on many rows. Then, we prove a combinatorial lemma that upper bounds the

size of sets of matrices that have the h-agreement property.

Definition 4.6.7. Let S ⊆ {0, 1}m×n be a set of matrices, and let h ∈ N . We say that S satisfies

the h-agreement property if for every set J ⊆ [m] such that |J | < h, there exists a matrix Y J ,

such that every matrix X ∈ S agrees with Y J on a row outside J .
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We now show that T satisfies the h-agreement property for h = t. The intuition for

this claim is the following: at the leaf `, the protocol outputs ⊥, and therefore Alice and

Bob must be convinced that their matrices agree on at least one row j such that aj 6= bj .

However, Alice does not know an index j ∈ [m] such that aj 6= bj , and cannot even isolate

it to a small set J (since a is bad for `). Therefore, for every small set J , Alice must be

convinced that her matrix agrees with Bob’s matrix on some row outside J .

Claim 4.6.8. T satisfies the t-agreement property.

Proof. Let J ⊆ [m] be a set such that |J | < t, and let X` × Y` be the rectangle of `. Since a

is bad for `, there exists some b ∈ g−1(1) that is supported by ` such that a|J = b|J . This

implies that there exists some matrix Y such that (Y, b) ∈ Y`. We set Y J ∆
= Y , and prove

that every matrix X ∈ T agrees with Y on a row outside J .

Let X ∈ T . This implies that (X, a) ∈ X`, and therefore, if we give to Alice and Bob

the inputs (X, a) and (Y, b) respectively, the protocol will reach the leaf `. Now, recall that

` outputs ⊥, and therefore, there must exist some j ∈ [m] such that aj 6= bj but Xj = Yj .

However, we know that a|J = b|J , and therefore j /∈ J . It follows that X and Y agree on

a row outside J , as required.

To upper bound the size of T , we use the following combinatorial lemma, whose proof

can be found in Section 2.7 of [72].

Lemma 4.6.9. Let S be a set of matrices which satisfies the h-agreement property. Then,

|S| ≤ m!

(m− h)!
· 2(m−h)·n.

By combining Claim 4.6.8 and Lemma Lemma 4.6.9, it is easy to show that |T | ≤ 1
23·m+n ·

2m·n, as required.
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Chapter 5

Applications to Streaming: Tight Space

Bounds for Frequency Moments

In the turnstile model of data streams, an integer vector x is initialized to 0n and under-

goes a long sequence of additive updates to its coordinates. The t-th update in the stream

has the form xi ← xi + δt, where δt is an arbitrary (positive or negative) integer. At the

end of the stream we are promised that x ∈ {−M,−M + 1, . . . ,M}n for some bound M

which is typically assumed to be at least n (and which we assume here).

Approximating the frequency moments Fp =
∑n

i=1 |xi|p is one of the most fundamen-

tal problems studied in data streams, starting with the seminal work of Alon, Matias, and

Szegedy [5]. The goal is to output a number F̂p ∈ [(1 − ε)Fp, (1 + ε)Fp] with probability

at least 1 − δ using as little memory in bits as possible. It is known that for 0 < p ≤ 2,

Θ(ε−1 log(M) log 1/δ) bits of space is necessary and sufficient [98, 97]. Obtaining this op-

timal bound required a number of ideas, on the upper bound front from p-stable distri-

butions [90] to Nisan’s pseudorandom generator [90] to FT-Mollification [98], and on the

lower bound front from gap-Hamming [91] to augmented indexing [56] to indexing with

low error [97]. These ideas have been the basis of many other streaming algorithms and
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lower bounds, with connections to other areas, e.g., linear algebra [146, 55] and informa-

tion complexity [51, 30].

Perhaps surprisingly, for p > 2 a polynomial (in n) amount of space is required [139,

15, 49]. The best known upper bound is due to Ganguly and achieves space

O(n1−2/pε−2 log n · log(M) log(1/δ))/min(log n, ε4/p−2))).

In the case that ε ≤ 1/poly(log n), this simplifies to O(n1−2/pε−2 logM log(1/δ)). On the

other hand, if ε is a constant, this simplifies to O(n1−2/p log n logM log(1/δ)). The latter

complexity is also achieved by algorithms of [7, 6]. The lower bound, on the other

hand, for any ε, δ is only Ω(n1−2/pε−2 logM) [118]. A natural question is whether there

are algorithms using less space and achieving a high success probability, that is, if one

can do better than just repeating the constant probability data structure and taking a

median of Θ(log 1/δ) independent estimates. While there is some work on tightening

the bounds in the context of linear sketches over the reals [8, 118], these lower bounds

do not yield lower bounds in the streaming setting; for more discussion on this, see below.

Our Results. We show that for any ε ∈ (0, 1), any δ ≥ 2−o(n
1/p), and constant p > 2,

any algorithm obtaining a (1 + ε)-approximation to Fp in the turnstile streaming model

requires Ω(n1−2/pε−2 logM log(1/δ)) bits of space. In light of the upper bounds above, our

lower bound is optimal for any ε ≤ 1/poly(log n). As argued in [118], this is an important

regime of parameters. Namely, if ε = 1%, we have that for, e.g., n = 232, ε−1 ≥ log n.

Our result is a direct strengthening of the Ω(n1−2/pε−2 logM) lower bound of [118] which

cannot be made sensitive to the error probability δ. Moreover, even for constant ε, our

lower bound of Ω(n1−2/p logM log(1/δ)) bits improves prior work by a log(1/δ) factor. We

note that for constant ε, the upper bounds still have space O(n1−2/k log n logM log(1/δ))

bits, so while we obtain an improvement, there is still a gap in this case.
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While the ultimate goal in this line of research is to obtain tight space bounds simul-

taneously for any ε, δ ∈ (0, 1) and p > 2, our result is the first to obtain tight bounds

simultaneously in ε and δ for a wide range of parameters. Our proof technique is also

quite different than previous work. This seems necessary as the problem considered in

[118] has a protocol with information cost O(n1−2/pε−2 logM) with 0 error probability,

which can be compressed to a protocol with this amount of communication and expo-

nentially small error probability. A description of this protocol, explainaining why the

problem considered in [118] does not give stronger lower bounds, can be found in the

full version of this paper (see the appendix chapter).

Our Techniques. A Communication Problem: Our result is obtained by proving a lower

bound for a promise version of k-party set disjointness in the public-coin simultane-

ous model of communication. In this model there are k players each with a bit string

xi ∈ {0, 1}n, i ∈ [k] = {1, 2, . . . , k}, who are promised that their inputs satisfy one of the

following cases:

• (NO instance) for all j ∈ [n], the number of i ∈ [k] for which xij = 1 is distributed as

Bin(k, 1/k), or

• (YES instance) there is a unique j∗ ∈ [n] for which xij∗ = 1 for all i ∈ [k], and for all

j 6= j∗, the number of i ∈ [n] for which xij = 1 is distributed as Bin(k, 1/k).

The players simultaneously send a message M i(xi, R) to a referee, where R is a public-

coin that the players share. The referee then outputs a function f(M1(x1, R), . . . ,Mk(xk, R), R),

which should equal 1 if the inputs form a YES instance, and equal 0 otherwise. Notice that

if X ∼ Bin(k, 1/k), then Pr[X > `] ≤ (e/`)`, and so by a union bound for all coordinates

j in a NO instance, the number of i ∈ [k] for which X i
j = 1 is O(log n/ log log n). Thus, for

k = Ω(log n/ log log n), and in fact k = nΩ(1) in our reduction, NO and YES instances are

distinguishable.
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We first show an Ω(nmin(log 1/δ, log k)/k) total communication lower bound for any

protocol which succeeds with probability at least 1 − δ in solving this promise problem

in the public-coin simultaneous model of communication (SMP ). To do so, we use the

information complexity paradigm, first proving a direct sum theorem and then proving

a lower bound on the δ-error SMP complexity of a primitive problem (the k-party AND

function with the aforementioned promise).

The lower bound for the primitive problem involves lower bounding the information

a player’s message reveals about his/her input in a NO instance, which is an independent

bit with bias 1/k. To get a handle on this, we ask how many independent messages (over

a player’s private randomness) the player would need to send for someone to be able to

tell if his/her input is 0 or 1. We use the product structure of Hellinger distance to lower

bound this quantity, and relate it back to the amount of information a single message

of the player reveals via the Maximum Likelihood Estimation principle. This quantity

differs from player to player but we again use the product structure of Hellinger distance

to show the total information revealed across all players is large.

The proof above does not give a lower bound stronger than Ω(nmin(log 1/δ, log k)/k)

since in this case O(1) players can send their entire input to the referee (assuming

k = nΩ(1)), and parts of the argument above require that not all information about a

player’s input is revealed. To obtain our stronger bound of Ω(n log(1/δ)/k) for any

δ ≥ 2−o(n
1/p), we restrict all players to have the same (randomized) message function,

which implies that if one player sends his/her input to the referee, then all k players send

their input to the referee, resulting in much higher communication. This same message

function restriction turns out to be possible in our reduction, see below.

A Reduction to Streaming: To lower bound the space complexity of a streaming algo-

rithm we need a way of relating it to the communication cost of a protocol for this

disjointness problem. We use a recent result of Li, Nguyen, and Woodruff [117] showing
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there is a near-optimal streaming algorithm for any problem in the turnstile model which

can be implemented by maintaining A ·x in the stream, where A is a matrix with poly(n)-

bounded integer entries, and A is sampled from a fixed set of O(n logm) hardwired

matrices. In [117] near-optimal meant up to an O(log n) multiplicative factor in space,

which would not suffice here. However, their proof shows if one maintains A · x mod q,

where q is a vector of integers one for each coordinate (which depends on A but not on

x), then this is optimal up to a constant factor. Notice that this need not be optimal for

a specific family of streams, such as those arising in our communication game, though we

use the fact that by results in [117] an algorithm which succeeds with good probability for

any fixed stream has this form, and therefore we can assume this form in our reduction.

This implies a public-coin simultaneous protocol since the players can use the public

coin to choose an (A, q) pair, then each communicate A · xi mod q to the referee, who

can combine these (using linearity) to obtain A · (
∑k

i=1 x
i) mod q. This simulation also

implies all players have the same message function, even conditioned on the public coin,

i.e., it does not depend on the identity of the player.

We stress that the use of a public-coin simultaneous communication model is essential

for our result, as there is an O(n/k) total communication upper bound with exponentially

small error probability in the one-way communication model (in which player 1 talks to

player 2, who talks to player 3, etc., and player k announces the output) for this disjoint-

ness problem. The idea is similar to the multi-round 2-player protocol of Håstad and

Wigderson [81], in which the players interpret the public coin as a sequence of random

subsets of [n] and use it to whittle down their sets until they find the intersection. A proof

of this can be found in the full version of this paper (see appendix).

Given this reduction, one of the player’s messages must be Ω(n log(1/δ)/k2) bits long,

which lower bounds the space complexity of the streaming algorithm. By setting k =

εn1/p, and by having the referee add n1/pej∗ to the stream, where ej∗ is the standard unit

vector in direction j∗, one can show with probability 1 − δ, YES and NO instances differ
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by a (1 + ε)-factor in Fp(x). This is true even given our relaxed definition of disjointness,

in which we allow some coordinates to be as large as Θ(log n/ log log n), provided the

average of the k-th powers of these coordinates is Θ(1).

We are not done though, as we seek an extra logM factor in the lower bound, and for

this we superimpose Θ(logM) independent copies of this problem at different scales, in

a similar way as done for communication problems in previous work [118], and ask the

referee to solve a random scaling. There are some technical differences needed to execute

this approach in the high (1− δ) probability regime.

Related Work: We summarize the previous work on this problem in Table 5.1.

Fp Algorithm Space Complexity
[89] O(n1−2/pε−O(1) logO(1) n log(M))
[24] O(n1−2/pε−2−4/p log n log2(M))

[126] O(n1−2/pε−O(1) logO(1) n log(M))
[7] O(n1−2/pε−2−6/p log n log(M))

[42] O(n1−2/pε−2−4/p log n · g(p, n) log(M))
[6] O(n1−2/p log n log(M)ε−O(1))

[69], Best upper bound O(n1−2/pε−2 log n · log(M)/min(log n, ε4/p−2)))
[5] Ω(n1−5/p)

[152] Ω(ε−2)
[15] Ω(n1−2/p−γε−2/p), any constant γ > 0
[49] Ω(n1−2/pε−2/p)

[153] Ω(n1−2/pε−4/p/ logO(1) n)
[70] Ω(n1−2/pε−2/ log n)

[118] Ω(n1−2/pε−2 log(M))

Table 5.1: Results are in bits and for constant p > 2. The results are stated for constant
probability; all results can be made to achieve 1 − δ success probability by repeating the
data structure independently O(log 1/δ) times and taking the median of estimates; this
blows up the space by a multiplicative O(log 1/δ) factor. Here, g(p, n) = minc constant gc(n),
where g1(n) = log n, gc(n) = log(gc−1(n))/(1 − 2/p). We start the upper bound timeline
with [89], since that is the first work which achieved an exponent of 1 − 2/p for n. For
earlier works which achieved worse exponents for n, see [5, 57, 66, 67]. We note that [5]
initiated the problem and obtained an O(n1−1/pε−2 log(M)) bound in the insertion-only
model (see also [43, 41] for work in the insertion model).
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A few papers [9, 132, 118] study the “sketching model” of Fp-estimation in which the

underlying vector x is in Rn, rather than in the discrete set {−M,−M + 1, . . . ,M}n. The

goal is to design a distribution over linear maps A : Rn → Rs, for some s � n, so that

for any fixed vector x ∈ Rn, one can (1 + ε)-approximate ‖x‖pp with constant probability

by applying an estimation procedure E : Rs → R to Ax. We want the smallest s for

a given ε and n. Lower bounds in the sketching model do not imply lower bounds in

the turnstile model; this is even true given the recent work [117] characterizing turnstile

streaming algorithms as linear sketches. The main issue is that dimension lower bounds

in the sketching model are shown for input vectors over the reals, while it is conceivable

that a linear sketch with fewer dimensions does in fact exist if the input is restricted to

be in the integer box {−M,−M + 1, . . . ,M + 1}n. For instance, the inner product of x

with the single vector (1, 1/(M + 1), 1/(M + 1)2, . . . , 1/(M + 1)n−1) is enough to recover

x, so a sketching dimension of s = 1 suffices. What we are really interested in is a linear

sketch with polynomially bounded integer entries, and it is an open question to transport

dimension lower bounds in the sketching model to space lower bounds in the turnstile

streaming model.

Other related work is that of Jayram and Woodruff [97] which gives lower bounds

in terms of δ for Fp for p ≤ 2. This regime, as mentioned, is fundamentally different

and the communication problems there are based on two-player gap-Hamming and In-

dex problems, which have hard product distributions. In contrast we study multi-player

communication problems under non-product distributions.

There is also work on direct sums by Molinaro, Woodruff, and Yaroslavtsev [125],

which shows that for some problems, solving all n copies of the problem simultaneously

with probability 2/3, is as hard as solving each copy independently with probability 1 −

1/n. The techniques in that paper do not seem to apply here, since we are interested in

solving an OR rather than all copies, and so the output reveals a lot less information about
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the inputs. As observed in [46], there is a quite substantial difference in solving the OR

versus all copies of a problem.

Braverman and Oshman (private communication) recently obtained an Ω(log k) lower

bound on the (multi-round) Number-In-Hand communication complexity of the k-party

AND function. Of course, this lower bound applies in particular to simultaneous proto-

cols and is much stronger than the one proven in this paper (Ω (log(1/δ)/k)). However,

this stronger lower bound holds only for distributions which (prohibitively) violate the

promise required for our streaming application, and therefore their lower bound cannot

be used to prove our main result.

Preliminaries and Useful Statistical Measures

We henceforth use [−M,M ]n to denote the set {−M, . . . , 0, . . . ,M}n. Since the problem

considered in this section is a multi-party communication problem, we will often use vec-

tor random variables. Thus, in this section we abuse the notation and reserve bold capital

letters for random variables, and use calligraphic letters to sets (for example, X ∈ X

represents a random variable with support X). We write X ∼ B(p) to denote a Bernoulli-

distributed random variable, taking the value 1 with probability p and 0 with probability

1− p.

We use the following distance measures in our arguments.

Definition 5.1.10 (Total Variation distance and Hellinger distance). The Total Vari-

ation distance between two probability distributions P,Q over the same universe U is

∆(P,Q) := supA |P (A) − Q(A)|, where A ranges over all measurable events in the proba-

bility space.
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The (squared) Hellinger distance between P and Q is denoted as

h2(P,Q) = 1−
∑
x∈U

√
P (x)Q(x) =

1

2
·
∑
x∈U

(√
P (x)−

√
Q(x)

)2

.

By a slight abuse of notation, we sometimes use the above distance measures with

random variables instead of their underlying distributions. For example, if A,B are two

random variables in the joint probability space p(a, b), then ∆(A,B) = ∆(p(a), p(b)), and

h(A,B) = h(p(a), p(b)).

The following properties and relationships between the above measures will be used

throughout the paper. For missing proofs see [14] and references therein.

Fact 5.1.11 (Product structure of Hellinger distance). Let P := P1, . . . , Pt, Q := Q1, . . . , Qt

be two product distributions over the same universe, (i.e., P (x) =
∏

i Pi(xi), Q(x) =
∏

iQi(xi)).

Then h2(P,Q) = 1−
∏t

i=1 (1− h2(Pi, Qi)).

Lemma 5.1.12 (Hellinger vs. Total Variation). For any two distributions P,Q it holds that

h2(P,Q) ≤ ∆(P,Q) ≤ h(P,Q) ·
√

2− h2(P,Q).

Corollary 5.1.13. If ∆(P,Q) ≥ 1− α, then h2(P,Q) ≥ 1− 2
√
α.

Proof. Rearranging the RHS inequality of Lemma 5.1.12 and substituting x := h2(P,Q), C :=

∆(P,Q), we get the following quadratic equation: x2− 2x+C2 ≤ 0. Solving this equation

for x yields

h2(P,Q) = x ≥ 1−
√

1− C2 = 1−
√

(1 + C)(1− C) ≥ 1− 2
√

1− C ≥ 1− 2
√
α,

where the last two inequalities follow since 1− α ≤ C = ∆(P,Q) ≤ 1.
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We will need the following fact about the moments of sums of independent random

variables (For a proof see [113] Corollary 3).

Lemma 5.1.14 (Moments of sums of independent random variables). LetX1, X2, . . . , Xn be

independent non-negative random variables, and defineX :=
∑n

i=1Xi, ∆`(X) :=
(∑

i E[X`
i ]
)1/`.

Then for every m > 1,

(
E[X`]

)1/` ≤ 3e · m

logm
·max {∆2(X),∆m(X)} .

Lemma 5.1.15 (Chebychev inequality for higher moments). For any λ > 0 and m ≥ 2, it

holds that Pr [|X − E[X]| > λ · σm(X)] ≤ 1
λm
, where σm(X) := (E[|X − E[X]|m])

1
m .

Fact 5.1.16. If x ≤ ε, then log(1 − x) ≥ − x
1−ε . (The proof follows by the known inequality

log(1 + y) ≥ 1− 1/y).

Fact 5.1.17 (Binary entropy). ∀p ∈ [0, 1/2] , H(p) ≤ p log(e/p) ≤ 2p log(1/p).

Multiparty Communication and Information Complexity in the SMP

Model

We use the framework of communication complexity in the Simultaneous Message-

Passing model:

Definition 5.1.18 (Multiparty SMP Model). Let P be a k-ary relation with domain Xk :=

X1 × X2 × . . . × Xk and range Z . In the SMP communication model, k parties receive in-

puts X1,X2, . . .Xk, jointly distributed according to some prior distribution µ, and are allowed to

share a public random tape R. Each of the players simultaneously sends a message Mj(Xj, R)

to an external party called the referee , and the referee needs to output an answer v =

v(M1(X1, R), . . . ,Mk(Xk, R), R) such that v = 1 iff (X1, . . .Xk) ∈ P .

The communication cost of an SMP protocol π is the sum of the (worst-case) lengths of

its messages ‖π‖ :=
∑

j∈[k] |Mj|. For a fixed error parameter δ > 0, the distributional SMP
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communication complexity of a function f , denoted ~Dδ
µ(f), is the communication complexity

of the cheapest deterministic SMP protocol which computes f correctly with error at most

δ under input distribution µ.

The randomized SMP communication complexity of f , denoted R(δ, f), denotes the com-

munication of the cheapest (public-coin) randomized SMP protocol which computes f

correctly with error at most δ on any input x ∈ X k, under the randomness of the protocol

(R).

By Yao’s minimax theorem, R(δ, f) = maxµ ~D
δ
µ(f), and therefore it suffices to prove our

lower bound for some “hard” distribution µ in the distributional model.

Remark 5.1.19. To facilitate our proof techniques, we will sometimes need to give the referee an

auxiliary input as well. In the distributional model, this input is jointly distributed with the inputs

of the k players. The referee’s answer is then a function of the k messages he receives as well as

his own input. As a convention, in our definitions we typically ignore this artificial feature of the

model, and include it implicitly.

In this section we use the notion of (external) Information Cost (rather than internal).

Recall that the external information cost of a protocol π with respect to inputs X1, . . .Xk ∼ µ

is defined as

ICext
π (µ) := Iµ(π;X1, . . .Xk).

Again, when the distribution µ is clear from the context, we omit the subscript and simply

write I(π;X1, . . .Xk). The external information complexity of f under µ is the least amount

of information the players need to disclose to the referee about their inputs under µ, if

their SMP protocol is required to solve f on every input with high probability:

ICext
δ (µ, f) := infπ: π is an SMP protocol and ∀ (x1, . . . , xk) ∈ Xk Prπ [π(x1, . . . , xk) 6= f(x1, . . . , xk)] ≤ δ IC

ext
π (µ).

Remark 5.1.20. (a) The requirement in the definition above that π is correct everywhere , i.e.,

even outside the support of the distribution µ, is crucial: Our lower bounds will rely on
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analyzing the information cost of protocols under “trivial” distributions, and the only rea-

son these lower bounds will be meaningful (in particular, non-zero) is that these protocols

are required to succeed uniformly. (b) We remark that, unlike communication complex-

ity, the usage of private randomness may be crucial to achieve low information cost, and

therefore we assume π is randomized even against a fixed prior distribution µ.

Since one bit of communication can never reveal more than one bit of information, the

external information cost of a protocol is always upper bounded by its communication:

Fact 5.1.21. For any (k-party) communication protocol π and any distribution µ , ‖π‖ ≥ ICext
π (µ).

A special class of communication protocols are protocols in which players are re-

stricted to use the same function when sending their messages to the referee. This class

will be relevant to our main result.

Definition 5.1.22 (Symmetric SMP protocols). A k-party SMP protocol π is called symmetric

if for any fixed input X = x and fixing of the public randomness R = r,

M1(x, r) = M2(x, r) = . . . = Mk(x, r).

For a function f , we denote the distributional and randomized communication complex-

ity of f with respect to symmetric SMP protocols by by ~DSYM,δ
µ (f) and ~RSYM

δ (f). Similarly,

we denote by ICSYM,δ
µ (f) the (external) information complexity of f with respect to sym-

metric SMP protocols.

5.2 Multiparty SMP complexity of Set-Disjointness

In this section we prove our lower bound on the SMP communication complexity of the

k-party Set-Disjointness function. We obtain the following theorem.
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Theorem 5.2.1 (SMP communication complexity of multiparty Set-Disjointness). For any

δ ≥ n · 2−k,

R(δ,Disjnk) ≥ Ω

(
n · min{log(1/δ), log k}

k

)
.

~RSYM
δ (Disjnk) ≥ Ω

(
n ·min

{
log(1/δ)

k
, log k

})
.

Recall the k-party Set-Disjointness problem is defined as follows:

Definition 5.2.2 (Disjnk ). Denote by Disjnk the multiparty Set-Disjointness problem in which k

players each receive an n-dimensional input vector Xj = {Xj,i}ni=1 (where Xj,i ∈ {0, 1}). By the

end of the protocol, the referee needs to distinguish between the following cases:

• (The “NO” case) ∀ i ∈ [n],
∑

j Xj,i < k, or

• (The “YES” case) ∃ i ∈ [n] for which
∑

j Xj,i = k.

Denote ANDk(x1, x2, . . . , xk) :=
∧k
j=1 xj . Note that Disjnk(X1, . . . ,Xk) =

∨n
i=1 ANDk (X1,i, . . . ,Xk,i) .

We start by defining a “hard” distribution for Disjnk which still satisfies the promise

(gap) required for our streaming application. Consider the distribution η on n-bit string

inputs, defined by the following process.

The distribution η:

• For each i ∈ [n], j ∈ [k] set Xj,i ∼ B(1/k), independently at random.

• Pick a uniformly random coordinate I ∈R [n].

• Pick Z ∈R {0, 1}. If Z = 1, set all the values Xj,I to 1, for all j ∈ [k]

(If Z = 0, keep all coordinates as before.).

• The referee receives the index I (this feature will only be used in Section 5.5).
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Denote by η0 the distribution of η | “Z = 0”, and by µ0 the projection of η0 on

a single coordinate (this is well defined since the distribution over all coordinates is

i.i.d). In particular, notice that η0 = µn0 is a product distribution, and for every i ∈ [n],

Prµ0 [Xi,j = 1 for all j ∈ [k]] = (1/k)k. Thus, by a union bound over all n coordinates and

our assumption on δ,

Pr
µn0

[Disjnk(X1, . . . ,Xk)] ≤ n · (1/k)k ≤ n · 2−k ≤ δ. (5.1)

Direct sum and the SMP complexity of ANDk

To prove Theorem 5.2.1, we first use a direct sum argument, asserting that under product

distributions, solving Set Disjointness is essentially equivalent to solving n copies of the

1-bit ANDk function. The following direct sum argument is well known (See e.g., [15]):

Claim 5.2.3 (Direct sum for Disjnk ). For any δ ≥ n · 2−k, ICδ(η0,Disj
n
k) ≥ n · ICext

2δ (µ0,ANDk).

We defer the proof of this claim to the full version of the paper (see appendix). With

Claim 5.2.3 in hand, it suffices to prove that any (randomized) SMP protocol solving ANDk

with error at most δ, must have a large information cost under µ0 . This is the content of

the next theorem, which is one of our central technical contributions.

Theorem 5.2.4. For every δ > 0,

ICext
δ (µ0,ANDk) ≥ Ω

(
min

{
log 1/δ

k
,
log k

k

})
and ICSYM,δ

µ0
(ANDk) ≥ Ω

(
min

{
log 1/δ

k
, log k

})
.

Proof. Let π be a (randomized) SMP protocol which solves ANDk(X1, . . . ,Xk) for all in-

puts in {0, 1}k with success probability at least 1 − δ. For the rest of the analysis, we

fix the public randomness of the protocol. Indeed, proving the lower bound for every

fixing of the tape suffices as the chain rule for mutual information implies ICext
π (µ0) =

ER[ICext
πR

(µ0)]. For each player j ∈ [k], let Mj denote the transcript of player j’s message,
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and let M j
0 := Mj|“Xj = 0”, M j

1 := Mj|“Xj = 1” (note that if π is further a symmetric

protocol, then M j
0 and M j

1 are the same for every player j ∈ [k]). Since the Xj’s are in-

dependent under µ0, and therefore so are the messages Mj , the chain rule implies that

ICext
π (µ0) =

∑k
j=1 I(Mj;Xj). We shall argue that

∑k
j=1 I(Mj;Xj) ≥ Ω

(
log 1/δ
k

, log k
k

)
, and if

π is further a symmetric protocol, then
∑k

j=1 I(Mj;Xj) ≥ Ω
(

log 1/δ
k

, log k
)

. To this end,

let us denote by

h2(M j
1 ,M

j
0 ) := 1− zj

the (squared) Hellinger distance between player j’s message distributions in both cases.

There are two cases: If there is a player j for which zj = 0, then h2(M j
1 ,M

j
0 ) = 1, which

means that I(Mj;Xj) = H(Xj) = H(1/k) = Ω(log(k)/k) and thus ICext
δ (µ0,ANDk) ≥

Ω(log(k)/k). Furthermore, if π is symmetric, then z1 = z2 = . . . = zj , which in this

case implies by the same reasoning that I(Mj;Xj) = Ω(log(k)/k) for all players j ∈ [k],

and thus ICSYM,δ
µ0

(ANDk) ≥ Ω(log k), as desired.

We may henceforth assume that all zj’s are non-zero, and the rest of the analysis ap-

plies for general (not necessarily symmetric) SMP protocols. To this end, let us introduce

one final notation: For a fixed input Xj , let M⊕t
j denote (the concatenation of) t independent

copies of Mj|Xj (so M⊕t
j = (M j

0 )t whenever Xj = 0 and M⊕t
j = (M j

1 )t whenever Xj = 1).

By the conditional independence of the t copies of Mj (conditioned on Xj) and the prod-

uct structure of the Hellinger distance (Fact 5.1.11), we have that for each j ∈ [k], the total

variation distance between the t-fold message copies in the “YES” and “NO” cases is at

least

∆

(
(M j

1 )t, (M j
0 )t
)
≥ h2

(
(M j

1 )t, (M j
0 )t
)

= 1− (zj)
t, (5.2)
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where the first inequality follows from Lemma 5.1.12. Set tj = O(log k/ log(1/zj)) (note

that this is well defined as we assumed zj 6= 0). Thus, for each player j ∈ [k],

∆

(
(M j

1 )tj , (M j
0 )t
)
≥ 1− 1

10k
. (5.3)

Equation (5.3) implies that the error probability of the MLE predictor1 for predicting Xj

given M
⊕tj
j is at most ε := 1/(10k). Therefore, Fano’s inequality (Lemma 1.1.19) and the

data processing inequality together imply that

∀ j ∈ [k], I(M
⊕tj
j ;Xj) ≥ H(Xj)−H(ε) ≥ H

(
1

k

)
−H

(
1

10k

)
≥ Ω

(
log k

k

)
, (5.4)

since Xj ∼ B(1/k) under µ0, and H(1/(10k)) ≤ 2
10k

log(10k) ≤ 4
5
k log(k) by Fact 5.1.17.

Now, by the chain rule for mutual information (Fact 1.1.16) we know that

I(M
⊕tj
j ;Xj) =

tj∑
s=1

I((Mj)s;Xj|(Mj)<s) ≤
tj∑
s=1

I((Mj)s;Xj), (5.5)

where the last inequality follows from Fact 1.1.14, as the messages (Mj)s and (Mj)<s are

independent conditioned on Xi (by construction). Notice that (Mj)s ∼ Mj for all s ∈ [t],

as all the messages are equally distributed conditioned on Xj). Combining equations (5.4)

and (5.5) therefore implies

I(Mj;Xj) ≥ Ω

(
log k

k · tj

)
≥ Ω

(
log(1/zj)

k

)
, (5.6)

recalling that tj = O(log k/ log(1/zj)). Since (5.6) holds for any player j ∈ [k], we have

k∑
j=1

I(Mj;Xj) ≥ Ω

(
1

k
·

k∑
j=1

log

(
1

zj

))
. (5.7)

1That is, the predictor which given M⊕tj = m, outputs Y := argmaxx∈{0,1} Pr[(M j
x)t = m].
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We finish the proof by showing that

k∑
j=1

log

(
1

zj

)
≥ Ω(log(1/δ)). (5.8)

To this end, we first claim that the correctness of π implies that the total variation distance

between the transcript distributions of π on the input 0k and on the input 1k must be large

(notice that below we crucially use the fact that our information complexity definition

requires the protocol to be correct on all inputs, so in particular, a δ-error protocol must

distinguish with comparable error, between “YES” and “NO” inputs):

Proposition 5.2.5. ∆(π(0k), π(1k)) ≥ 1− 2δ.

Proof. Let Y be the set of transcripts τ for which π(τ) = ANDk(1
k) = 1. By the correctness

assumption, Pr[π(1k) ∈ Y ] ≥ 1 − δ, and Pr[π(0k) ∈ Y ] ≤ δ, so the above follows by

definition of the total variation distance.

Since µ0 is a product distribution (the Xj’s are i.i.d), it holds that π(0k) = ×kj=1M
j
0 , and

π(1k) = ×kj=1M
j
0 . Therefore, recalling that zj := 1 − h2(M j

0 ,M
j
1 ), the product structure of

the Hellinger distance (Fact 5.1.11) implies

1− Πk
j=1 zj = 1− Πk

j=1(1− h2(M j
0 ,M

j
1 )) = h2(π(0k), π(1k)) ≥ 1− 4

√
δ (5.9)

where the last transition follows from the combination of Proposition 5.2.5 with Corollary

5.1.13 (taken with α = 2δ). Rearranging (5.9), we get Πk
j=1 zj ≤ 4

√
δ, or equivalently,

k∑
j=1

log

(
1

zj

)
≥ 1

2
log

(
1

δ

)
− 2 = Ω (log 1/δ) , (5.10)

as desired. Combining equations (5.8) and (5.7), we conclude that ICext
π (µ0) ≥ Ω

(
log 1/δ
k

)
,

which completes the proof of Theorem 5.2.4.
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Since communication is always lower bounded by information (Fact 5.1.21), combin-

ing Theorem 5.2.4 and Claim 5.2.3 directly implies Theorem 5.2.1:

Corollary 5.2.6. For any δ ≥ n · 2−k,

R(δ,Disjnk) ≥ Ω

(
n ·min

{
log 1/δ

k
,
log k

k

})
and ~RSYM

δ (Disjnk) ≥ Ω

(
n ·min

{
log 1/δ

k
, log k

})
.

Path-independent stream automata [117]

As mentioned in the introduction, a central fact which facilitates our lower bound is the

recent result of [117], asserting that in the turnstile streaming model, linear sketching al-

gorithms achieve optimal space complexity, up to a logarithmic factor. Since we cannot

even afford losing a log n factor in our lower bound, we use the following intermediate

result of [117], which shows that oblivious streaming algorithms are optimal up to a con-

stant factor. The following exposition largely follows that of [117], from which a number

of definitions also occur in the earlier work of [68].

The work of [117] considers problems in which the input is a vector x ∈ Zn rep-

resented as a data stream σ = (σ1, σ2, . . . ) in which each element σi belongs to Σ =

{e1, . . . , en,−ei, . . . ,−en} (where the ei’s are canonical basis vectors) such that
∑

i σi = x.

We write x = freqσ.

Definition 5.3.7 (Deterministic stream automata). A deterministic stream automaton A is

a deterministic Turing machine that uses two tapes, a one-way (unidirectional) read-only input

tape and a (bidirectional) two way work-tape. The input tape contains the input stream σ. After

processing its input, the automaton writes an output, denoted by φA(σ), on the work-tape.

A configuration of a stream automaton A is modeled as a triple (q, h, w), where, q is a

state of the finite control, h the current head position of the work-tape and w the content

of the work-tape. The set of configurations of a stream automaton A that are reachable

from the initial configuration o on some input stream is denoted by C(A). A stream
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automaton is a tuple (n,C, o,⊕, φ), where n specifies the dimension of the underlying

vector, ⊕ : C × Σ → C is the configuration transition function, o is the initial position of

the automaton and φ : C → Zp(n) is the output function and p(n) is the dimension of the

output. For a stream σ we also write φ(o⊕ σ) as φ(σ) for simplicity.

The set of configurations of an automaton A that is reachable from the origin o for

some input stream σ with ‖ freqσ‖∞ ≤ m is denoted by C(A,m). The space of the au-

tomaton A with stream parameter m is defined as S(A,m) = log |C(A,m)|. An algorithm

is said to be a correct randomized algorithm with error probability δ if for any fixed stream

σ with ‖ freqσ‖∞ ≤ m, with probability at least 1 − δ the algorithm outputs the correct

answer to a relation P for the underlying vector x represented by σ. Note that the stream-

ing algorithm should be correct even if for a substream σ′ of σ we have ‖ freqσ′‖∞ > m,

provided that ‖ freqσ‖∞ ≤ m. In this case we say A solves P on Zn|m|.

Definition 5.3.8 (Path-independent stream automata). A stream automaton A is said to be

path independent (PIA ) if for each configuration s and input stream σ, s⊕ σ is dependent only

on freqσ and s.

Suppose that A is a path independent automaton. We can define a function + : Zn ×

C → C as x + a = a⊕ σ, where freqσ = x. Since A is a path independent automaton, the

function + is well-defined. In [68] it is proved that

Theorem 5.3.9. Suppose thatA is a path independent automaton with initial configuration o. Let

M = {x ∈ Zn : x+ o = 0 + o}, then M is a submodule of Zn, and the mapping x+M 7→ x+ o

is a set isomorphism between Zn/M and the set of reachable configurations {x+ o : x ∈ Zn}.

Definition 5.3.10 (Randomized stream automata). A randomized stream automaton is a de-

terministic stream automaton with one additional tape for the random bits. The random bit string

R is initialized on the random bit tape before any input record is read; thereafter the random bit

string is used in a two way read-only manner. The rest of the execution proceeds as in a determin-

istic stream automaton.
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A randomized stream automaton A is said to be path-independent if for each random-

ness R the deterministic instance AR is path-independent. The space complexity of A is

defined to be

S(A,m) = max
R
{|R|+ S(AR,m)} .

Theorem 5.3.11 ([117] Theorems 9 and 10). Suppose that a randomized algorithm A solves

a relation P on any stream σ with probability at least 1 − δ. There exists a randomized path-

independent automaton (PIA ) B which solves P on Zn|m| with probability at least 1− 7δ such that

S(B,m) ≤ S(A,m) +O(log n+ log logm+ log 1
δ
). Further, the number of random bits used by

the algorithm is is O(log 1/δ + log n+ log logm).

Here we record the corollary of Theorem 5.3.11 that will be used in the proof of our

main result (Theorem 5.5.1). To this end, we will need the following (refined) restatement

of the SMP communication model used in our paper:

Definition 5.3.12. Let P (x1, . . . , xk) be a k-ary relation. In the public-coin SMP com-

munication model, k players receive inputs x1, . . . , xk ∈ Zn respectively, such that x :=∑
j xj ∈ Zn

|m| (for some m ∈ N). The players share a public random tape R of O(log 1/δ +

log n + log logm) uniformly random bits. Each of the players simultaneously sends a mes-

sage Mj(xj, R) to an external party called the referee , and the referee outputs an an-

swer v = v(M1(x1, R), . . . ,Mk(xk, R), R), such that PrR[v = P (x1, . . . , xk)] ≥ 1 −

δ. Recall that the symmetric SMP communication complexity of P is ~RSYM
δ (P ) :=

minπ : π is symmetric and δ-solves P
∑k

j=1 |Mj(xj, R)| where | · | denotes the worst-case length

of the messages, over all choices of x1, . . . , xs and R.

Corollary 5.3.13. Let P (x1, . . . , xk) be a relation such that ~RSYM
δ (P ) = c. Let A be a space-

optimal streaming algorithm in the turnstile model from which the output ofA on an input stream

σ with underlying vector x, can be used to solve P with probability at least 1− δ. Then the space

complexity of A is at least c/k.
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Proof. By Theorem 5.3.11, we can assume that A is a randomized path-independent au-

tomaton using O(log 1/δ + log n + log logm) random bits. The players in the public-coin

simultaneous model of communication can therefore use the public coin R to agree upon

a deterministic path-independent automaton B. Each player can run B on his/her local

input vector xj , and transmit the state of B to the referee. Notice that each player uses the

same function to compute his message, and therefore this SMP protocol is also symmet-

ric. By Theorem 5.3.9, the referee can associate these states with elements of the quotient

group Zn/M , where M is determined from the description of B (which is in turn deter-

mined by R), and perform arithmetic in Zn/M to add up the states to obtain the result

of the execution of B on the concatenation of streams σ1, . . . , σk, where σj is a stream

generating xj . It follows that B will be executed on σ with underlying vector x, and by

hypothesis can be used to solve P with probability at least 1 − δ. As k times the space

complexity of B is the communication cost, the corollary follows.

5.4 The Augmented Disjnk problem

In this section we define the multiparty communication problem which we use as a proxy

for our main lower bound. This communication problem is constructed using a fairly

standard hardness-amplification technique (“augmentation”) of the k-party Disjointness

problem, in a similar fashion to the work of [118] (who used this technique for the L∞

communication problem).

Definition 5.4.1 (Aug-Disj(r, k, δ)). Aug-Disj(r, k, δ) is the following k-party communication

problem: The players receive r instances of Disjnk :

(X1
1, . . . ,X

1
k), (X

2
1, . . . ,X

2
k), . . . , (X

r
1, . . . ,X

r
k)
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In addition, the referee receives an index T ∈ [r] which is unknown to the players, along with the

last (r − T ) inputs {(X`
1, . . . ,X

`
k)}r`=T+1. By the end of the protocol, the referee should output

the answer to the T ’th instance, i.e, the players need to solve Disjnk(XT
1 , . . . ,X

T
k ) with probability

1− δ.

For convenience, we henceforth denote (X>t
1 , . . . ,X>t

k ) := {(X`
1, . . . ,X

`
k)}r`=t+1, and

(X<t
1 , . . . ,X<t

k ),
(
X
{−t}
1 , . . . ,X

{−t}
k

)
are defined analogously.

We now define a “hard” distribution ν for Aug-Disj(r, k, δ). To this end, recall the dis-

tributions η, η0 for Disjnk from Section 5.2. The index T ∈ [r] is chosen independently and

uniformly at random. All copies but the T ’th copy are independently chosen according to

the “NO” distribution for Disjnk , i.e.,
(
X
{−T}
1 , . . . ,X

{−T}
k

)
∼ ηr−1

0 , while (XT
1 , . . . ,X

T
k ) ∼ η.

The next lemma asserts that the the r-augmented Disjointness problem under the distri-

bution ν is r times harder than solving a single instance Disjnk under η.

Lemma 5.4.2 (Direct Sum for Aug-Disj(r, k, δ)).

R(δ,Aug-Disj(r, k, δ)) ≥ r · ICext
δ (η0,Disj

n
k).

Proof. The proof is essentially the same as that of Claim 5.2.3, using a standard “em-

bedding” argument: Let Π be a protocol for Aug-Disj(r, k, δ) under ν, such that ‖Π‖ =

R(δ,Aug-Disj(r, k, δ)). The k players will use public randomness to sample a random

t ∈R [r] along with (r − t) “dummy” inputs (X>t
1 , . . . ,X>t

k ) where each copy is indepen-

dently drawn from η0, and “embed” their inputs (x1, . . . , xk) ∼ η (to Disjnk ) to the t’th coor-

dinate of Π, having the referee set T = t. Since in the augmented problem player’s inputs

to each of the r copies are independent, and since η0 is a product distribution, they can use

private randomness to “fill in” their inputs to the rest of the coordinates (X<t
1 , . . . ,X<t

k ) (for

a formal argument see the essentially identical proof of Claim 5.2.3). This process defines

a legal input {(X`
1, . . . ,X

`
k)}r`=1 ∼ ν for Π, and so the players can now run Π on this input

and output its answer. Call this protocol π. By the premise
(
X
{−T}
1 , . . . ,X

{−T}
k ∼ ηr−1

0

)
, π
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outputs the correct answer to the t’th copy with probability at least 1 − δ. Furthermore,

we may analyze the information complexity of Π under the distribution ηr0 (notice that

~Dηr0
(Aug-Disj(r, k, δ)) = 0 trivially, but we are analyzing the information cost of Π which

must be correct with probability 1− δ over all inputs !). We have

ICext
δ (η0,Disj

n
k) ≤ ICext

π (η0) = Iη0(π;x1, . . . xk)

= Et∈R[r]

[
Iη0(Π;Xt

1, . . .X
t
k)
]

≤ Et∈R[r]

[
Iη0(Π;Xt

1, . . .X
t
k |X>t

1 , . . . ,X>t
k )
]

(By Lemma 1.1.14)

=
1

r

r∑
t=1

Iη0(Π;Xt
1, . . .X

t
k |X>t

1 , . . . ,X>t
k )

=
1

r
· Iηr0(Π; (X1

1, . . . ,X
1
k), (X

2
1, . . . ,X

2
k), . . . , (X

r
1, . . . ,X

r
k))

≤ ‖Π‖
r

= R(δ,Aug-Disj(r, k, δ)),

where the last equality follows from the chain rule for mutual information.

5.5 Improved Space Bounds for Frequency Moments

Let x ∈ Rn represent a data stream in turnstile streaming model. We say that an algorithm

solves the (p, ε, δ)-Norm problem if its output v satisfies v ∈ (1± ε)‖x‖pp with probability at

least 1− δ. Our main result is as follows:

Theorem 5.5.1. For any constant p > 2, there exists an absolute constant α > 1 such that for any

ε > n−Ω(1) and δ ≥ 2−o(n
1/p), any randomized streaming algorithm that solves the (p, ε, δ)-Norm

problem for x ∈ [−M,M ]n where M = Ω(nα/p), requires Ω
(
ε−2 · n1−2/p(logM) log 1/δ

)
bits

of space. In particular, the space complexity of any ε-approximate high-probability streaming

algorithm (i.e, where δ = O(1/n)) is at least Ω
(
ε−2 · n1−2/p(log n)(logM)

)
.
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Proof. Let s be the space complexity of a space-optimal streaming algorithm that solves

the (p, ε, δ)-Norm. By Theorem 5.3.11, there is a path-independent streaming algorithm A

which solves (p, ε, 7δ)-Norm using s′ = s+O(log n+log logM+log 1
δ
) bits of space. We will

show thatA can be used to (produce a symmetric SMP protocol) solving Aug-Disj(r, k, 18δ)

(on ZnM ), for r = (1−1/α) log10M,k = Θ(ε ·n1/p), under the hard distribution ν. Corollary

5.3.13 then implies

s′ ≥
~RSYM
δ (Aug-Disj(r, k, 18δ))

k
≥ Ω

(
rn

k
·min

{
log 1/δ

k
, log k

})
=

Ω

(
min

{
n1− 2

p (logM) log 1/δ

ε2
,
n1− 1

p log n(logM)

ε

})
,

where the second inequality follows from Lemma 5.4.2 and Corollary 5.2.6 (as in our

regime of parameters δ ≥ n·2−k = 2−Ω(n1/p)), and the last transition follows by substituting

the values of the parameters k,M and noting that log k = Θ(log n) in our regime. Since

s′ = s+O(log n+ log logM + log 1
δ
), the last equation implies that so long as δ ≥ 2−o(n

1/p),

s ≥ Ω

(
n1− 2

p (logM) log 1/δ

ε2

)
, as claimed.

It therefore remains to prove that A can be used to solve Aug-Disj(r, k, 18δ) under the

input distribution ν. To this end, recall that in the Aug-Disj(r, k, δ) problem under the

distribution ν, k players receive r instances each, where all instances but a single random

instance t ∈R [r] are independently distributed according to η0, while (Xt
1, . . . ,X

t
k) ∼ η.

The referee receives t along with (X>t
1 , . . . ,X>t

k ) and needs to solve Disjnk(Xt
1, . . . ,X

t
k), i.e.,

distinguish between the “NO” case and the “YES” case in definition 5.2.2. Recall that for

every instance (X`
1, . . . ,X

`
k), the referee also receives the “spiked” coordinate I` ∈ [n] of

this instance (see the definition of η, η0 in Subsection 5.2). The players will use the PIA

algorithm A to design the SMP protocol π for Aug-Disj described in Figure 5.1.
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The SMP protocol π

Input : (X1
1, . . . ,X

1
k), (X

2
1, . . . ,X

2
k), . . . , (X

r
1, . . . ,X

r
k).

1. Set γ ←− 4ep, C ←− 10t · γ · n1/p, ρ←− (1 + ε)(Ep + (1 + 7ε)Cp) (Ep is defined
below).

2. Each player j ∈ [k] locally defines Y`j := 10`−1 · X`
j ∀` ∈ [r], and generates the

stream
σj := Y1

j , . . . ,Yrj
according to his input, and sends the referee the message A(σj).

3. The referee locally computes A>t :=
∑k

j=1A(Y t+1
j ,Y t+2

j , . . . ,Yrj ) where the addi-
tion is over the quotient ring Zn/M (and M is the module representing the kernel
of the automatona A).
Notice that he can do so as he has t and (X>t

1 , . . . ,X>t
k ).

4. The referee adds the value C to the “spiked” coordinate I` of the `-th instance,
for each ` ∈ [r]. Let C := C1, . . . ,Cr denote the underlying stream representing
this vector (notice that he can do so since he receives the “spiked” coordinate I`

of each instance).

5. The referee adds up the messages he receive from the players, over the quotient
ring Zn/M , and outputs 1 (“YES”) iff
v :=

(∑k
j=1A(σj)

)
+A(C≤t)− A>t > ρ.

aSee Section 5.2 for the formal definitions and statement.

Figure 5.1: An SMP protocol for Aug-Disj(r, k, 18δ) using the PIA A

We now turn to analyze the correctness of π. For the rest of this analysis, we fix the

value of the “special” coordinate T = t. Notice that the value v the referee computes

in π corresponds to the p-norm of the stream (with underlying frequency vector) z :=

(Y≤t1 , . . . ,Y≤tk ,C≤t). Furthermore, ‖v‖∞ ≤
(∑t

`=1

∑k
j=1 Y`j

)
+ C ≤

∑r
`=1

∑k
j=1 10`−1 + C ≤

10r · k + C ≤ O(10r · n1/p) ≤ M for a sufficiently small constant α > 1, by our assump-

tion k ≤ O(n1/p), C ≤ O(10r · n1/p) , and our assumption that M = Ω(nα/p). Therefore,

the correctness of the streaming algorithm A guarantees that the output v of the referee
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satisfies

Pr
[
v /∈ (1± ε)‖z‖pp

]
≤ 7δ. (5.11)

Define Li :=
∑

j∈[k]

∑
`∈[t] Y`j,i+1I ·C, where 1I is the indicator random variable for the

event I = i. In this notation, ‖z‖pp =
∑n

i=1(Li)
p. Recall that for any i 6= I , both in the “NO”

and “YES” distributions, X`
j,i ∼ B(1/k) independently of each other, and in particular,

these Li’s are independent random variables. We will need the following concentration

bounds on the contribution of the Li’s:

Claim 5.5.2 (Concentration bounds). It holds that:

• Eηr0 [
∑

i 6=I(Li)
p] ≤ 2n · 10tp(2ep)p.

• For every m ∈ N,

σm

(∑
i 6=I

(Li)
p

)
:=

(
E

[∣∣∣∣∣∑
i 6=I

(Li)
p − E

[∑
i 6=I

(Li)
p

]∣∣∣∣∣
m]) 1

m

≤ n1/m · (4emp)p · 10tp.

• For every m ≤ o(n1/p), Prη0 [(LI)
p ≥ (1 + 7ε)Cp] ≤ δ.

We defer the proof of this technical claim to the end of this argument. In the following

denote Ep := Eη0
[∑

i 6=I(Li)
p
]

(note that δ can be computed by the referee as it is public

knowledge). Applying the generalized Chebychev’s inequality (Lemma 5.1.15) with m =

log 1/δ and λ = 2, the first two propositions of Claim 5.5.2 guarantee that

Pr

[∣∣∣∣∣∑
i 6=I

(Li)
p − Ep

∣∣∣∣∣ > ε · Cp

]
= Pr

[∣∣∣∣∣∑
i 6=I

(Li)
p − E

[∑
i 6=I

(Li)
p

]∣∣∣∣∣ > ε · Cp

]

≤ Pr

[∣∣∣∣∣∑
i 6=I

(Li)
p − E

[∑
i 6=I

(Li)
p

]∣∣∣∣∣ > 2 · σm

(∑
i 6=I

(Li)
p

)]
≤ 2−m = 2− log 1/δ < δ, (5.12)
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where the first inequality is by the second proposition of Claim 5.5.2 (which implies that

2 · σm
(∑

i 6=I(Li)
p
)
≤ εCp whenever ε ≥ Ω(n1/m−1) = n−Ω(1)), and the second inequality

holds by our assumption that δ > 2−o(n
1/p). Combining (5.12) with the third proposition

of Claim 5.5.2 implies

Pr
η0

[
‖z‖pp > Ep + Cp(1 + 7ε)

]
= Pr

η0

[
‖z‖pp > (Ep + εCp) + Cp(1 + 7ε)

]
≤ 2δ.

Hence, by definition of the “threshold” ρ := (1 + ε)[Ep + (1 + 7ε)Cp], we conclude by (5.11)

that in the “NO” case,

Pr
η0

[v > ρ] ≤ Pr
[
‖z‖pp > Ep + (1 + 7ε)Cp

]
≤ 9δ. (5.13)

On the other hand, in the “YES” case, the coordinate I is such that X`
j,I = 1 for all

j ∈ [k], ` ∈ [r]. Setting k = 128eε · n1/p = Θ(ε · n1/p), the contribution of this coordinate to

the p-norm of z is

(
C +

t∑
`=1

10`−1 · k

)p

≥
(
10t · γ · n1/p + 10t · 128eε · n1/p

)p
=

= n · 10tp · γp (1 + 128ε/γ)p ≥ n · 10tp · γp · e
128eεp

2γ (since 128eε/γ < 1/2)

= n · 10tp · γp · e
128eεp
8ep ≥ n · 10tp · γp · (1 + 16ε) = (1 + 16ε)Cp.

Furthermore, (5.12) ensures that, except with probability δ, the contribution of all the

rest coordinates (i 6= I) is at least Ep − εCp, and thus in the “YES” case,

Pr
[
‖z‖pp > Ep + (1 + 15ε)Cp

]
= Pr

[
‖z‖pp > (Ep − εCp) + Cp(1 + 16ε)

]
≥ 1− 2δ
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Finally, (5.11) implies that under the “YES” distribution,

Pr [v > ρ]

≥ Pr
[
‖z‖pp > (1 + ε)ρ

]
− 7δ = Pr

[
v > (1 + ε)2 · (Ep + (1 + 7ε)Cp)

]
− 7δ

≥ Pr
[
‖z‖pp > Ep + 3εEp + (1 + 3ε)(1 + 7ε)Cp

]
− 7δ

≥ Pr
[
‖z‖pp > Ep + 3εCp + (1 + 11ε)Cp

]
− 7δ (since Ep ≤ Cp)

= Pr
[
‖z‖pp > Ep + (1 + 14ε)Cp

]
≥ 1− 9δ (5.14)

We conclude from equations (5.13) and (5.14) that setting the threshold ρ guarantees

that π is correct with probability at least 1 − 18δ, which completes the reduction and the

proof of Theorem 5.5.1.

It remains to prove Claim 5.5.2.

Proof of Claim 5.5.2. First proposition: Since all coordinates except coordinate I are iden-

tically distributed, we can write Eη0 [
∑

i 6=I(Li)
p] = (n− 1) · E[(Lt)

p] + E[(C + Lt)
p], where

Lt :=
∑
j∈[k]

∑
`∈[t]

10`−1X`
j , and X`

j’s are i.i.d B(1/k).

We first prove the following lemma, which upper bounds the p’th moment of a single

coordinate (i 6= I) in a “NO” instance. Though it is a spacial case of Lemma 5.1.14, for

completeness we present an elementary (yet slightly weaker) proof that will be sufficient

in our applications.

Lemma 5.5.3. For every p ≥ 1, E[(Lt)
p] ≤ (2ep)p · 10tp.

Proof. We shall show by induction on t, that there exists a function f(p) ≤ (2ep)p for which

E[(Lt)
p] ≤ f(p) · 10tp. (5.15)
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Indeed, define the function f(p) recursively by the formula: f(p + 1) := (ep)p + f(p). It

follows that

f(p) = (ep)p + (e(p− 1))p−1 + (e(p− 2))p−2 + . . .+ 1 ≤ (2ep)p,

as desired. The proof for the base case (t = 1) is very similar to the general case, so we

postpone it to the end of the proof. Suppose (5.15) is true for for all integers up to t. We

shall show that

E[(Lt+1)p] ≤ f(p+ 1) · 10(t+1)p. (5.16)

To this end, we may write Lt+1 := ∆t+1 + Lt, where ∆t+1 := 10t ·
∑

j∈[k] X
t+1
j . We first

bound E[(∆t+1)p]:

E[(∆t+1)p] = (10tp) · E

∑
j∈[k]

Xt+1
j

p
≤ 10tp ·

p∑
r=1

(
k

r

)
· pr · E

[
r∏
i=1

Xt+1
ji

]
(By the multinomial formula)

≤ 10tp ·
p∑
r=1

(
ek

r

)r
· pr ·

(
1

k

)r
(By Stirling’s approximation and in dependence of Xt+1

j ’s)

≤ 10tp ·
p∑
r=1

(ep
r

)r
≤ (ep)p · 10tp. (5.17)
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We therefore have

E[(Lt+1)p] = E[(∆t+1 + Lt)
p]

≤ 2p−1 · (E[(∆t+1)p] + E[(Lt)
p])

≤ 2p−1 ·
(
E[(∆t+1)p] + f(p) · 10tp

)
(by the inductive hypothesis)

≤ 2p−1 · 10tp [(ep)p + f(p)] (by (5.17))

≤ 10(t+1)p · [(2ep)p + f(p)]

= 10(t+1)p · f(p+ 1) ,

which finishes the proof of (5.16). For the base case (t = 1), we need to show that

E[(L1)p] := E[(
∑

j∈[k] X
1
j)
p] ≤ 10p · f(p). Indeed, repeating essentially the same calcula-

tion as in (5.17), one obtains

E[(L1)p] ≤ (2ep)p = 2p · (ep)p ≤ 10p · (e(p− 1))p−1

≤ 10p ·
[
(e(p− 1))p−1 + f(p− 1)

]
= 10p · f(p).

This finishes the proof of (5.15), and therefore concludes the proof of Claim 5.5.3.

Substituting the value of C = 10t · γ ·n1/p, we conclude by Lemma 5.5.3 and (5.18) that

Eη0

[∑
i 6=I

(Li)
p

]
= (n− 1) · E[(Lt)

p] + E[(C + Lt)
p]

≤ (n− 1) · (2ep)p · 10tp + 2Cp

= (n− 1) · (2ep)p · 10tp + 2n · γp · 10tp

≤ n · 10tp (2γp + (2ep)p) .

Second proposition: To upper bound the m-th moment of
∑

i 6=I(Li)
p, we note that∑

i 6=I(Li)
p is a sum of independent random variables, and thus Lemma 5.1.14 implies that
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E

[∣∣∣∣∣∑
i 6=I

(Li)
p

∣∣∣∣∣
m]
≤
(

3em

logm

)m
·
∑
i 6=I

E[(Li)
mp]

≤ (n− 1) · (3em)m · (2emp)mp · 10tmp

≤ n · (4emp)mp · 10tmp,

where the second inequality follows again from Lemma 5.5.3, taken with p := mp. The

second proposition of Lemma 5.5.2 now follows by raising both sides of the above in-

equality to the 1/m power.

Third proposition: We first upper bound the expected contribution of the I’th coordi-

nate under η0:

Eη0 [(LI)
p] = E[(C + Lt)

p] = Cp ·
p∑
r=0

(
p

r

)
· E
[(

Lt
C

)r]
≤ Cp ·

p∑
r=0

(ep
r

)r
· (2er)r · 10tr

Cr

= Cp ·
p∑
r=0

(
2e2 · p · 10t

C

)r
≤ Cp

∞∑
r=0

ε−r ≤ 1

1− ε
· Cp ≤ (1 + 2ε)Cp, (5.18)

where the third transition follows from Lemma 5.5.3 (applied p times with p = r), and

the second before last transition follows since 2e2·p·10t

C
= 2e2·p·10t

10t·γ·n1/p � ε for large enough n.

Next, we upper bound the m-th moment of LpI . Similar to the calculations in (5.18), we

have
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σm((LpI))
m := Eη0 [|(Lt + C)p − E[(Lt + C)p]|m] ≤

≤ Eη0 [|(Lt + C)p − Cp]|m] ≤ Eη0

[
Cpm ·

(
p∑
r=0

( ep

r · C

)r
· Lrt − 1

)m]

= Eη0

[
Cpm ·

(
p∑
r=1

( ep

r · C

)r
· Lrt

)m]
≤ Eη0

[
Cpm · pm ·

p∑
r=1

( ep

r · C

)rm
· Lrmt

]
(5.19)

≤ Cpm ·
p∑
r=1

(
ep2

r · C

)rm
· Eη0 [Lrmt ] ≤ Cpm ·

p∑
r=1

(
ep2

r · C

)rm
· (2eprm)rm · 10trm (By Lemma 5.5.3)

= Cpm ·
p∑
r=1

(
10t · 2e2p3m

C

)rm
≤ Cpm · εm

1− εm
≤ (2εCp)m, (5.20)

where (5.19) follows from Jensen’s inequality ((
∑n

i=1 ai)
m ≤ nm ·

∑n
i=1 a

m
i ), and the

second before last transition again follows since 10t·2e2p3m
C

= 10t·2e2p3m
10t·γ·n1/p � ε by the premise

m = o(n1/p).

Given the assumption δ > 2−o(n
1/p), we can now apply Lemma 5.1.15 with m = log 1/δ

(≤ o(n1/p))), λ = 2, to conclude that

Pr
η0

[(LI)
p ≥ (1 + 7ε)Cp] ≤ Pr

η0
[|(LI)p − E[(LI)

p]| > 4εCp]]

≤ Pr
η0

[ |(LI)p − E[(LI)
p]| > 2 · σm((LI)

p)] ] ≤ 2−m = δ,

where the first and second transitions follow from (5.18) and (5.20) respectively.
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Chapter 6

Applications to Economics: Welfare

Maximization with Limited Interaction

In this chapter we study the tradeoff between the amount of communication and the

number of rounds of interaction required to find an (approximately) optimal matching in

a bipartite graph. In our model there are n “players” and m “items”. Each player initially

knows a subset of the items to which it may be matched (i.e. m bits of information). The

players communicate in rounds: in each round each player writes a message on a shared

blackboard. The message can only depend on what the player knows at that stage: his

initial input and all the messages by all other players that were written on the blackboard

in previous rounds.

This problem was recently introduced by [62] as a simple market scenario: the players

are unit-demand bidders and our goal is to find an (approximately) welfare-maximizing

allocation of the items to players. The classic auction of [60] – that may be viewed as

a simple Walrasian-like market process for this setting – can be implemented as to find

an approximately optimal allocation where each player needs only send O(log n) bits of

communication (on the average). The question considered by [62] was whether such a

low communication burden suffices without using multiple rounds of interaction. As
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a lower bound, they proved that a non-interactive protocol, i.e. one that uses a single

round of communication, cannot get a n1/2−ε-factor approximation (for any fixed ε > 0) with

no(1) bits of communication per player. As upper bounds they exhibited (I) an O(log n)-

round protocol, where each player sends O(log n) bits per round, that gets a 1
1−δ -factor

approximation (for any fixed δ > 0) and (II) for any fixed r ≥ 1, a r-round protocol, where

each player sends O(log n) bits per round, that gets a O(n1/(r+1))-approximation.

The natural question at this point is whether there are r-round protocols with better

approximation factors that still use no(1) bits of communication per player. This question

was left open in [62], where it was pointed out that it was even open whether the exactly

optimal matching can be found by 2-round protocols that use O(log n) bits of communi-

cation per player. We answer this open problem by proving lower bounds for any fixed

number of rounds.

Theorem: For every r ≥ 1 there exists ε(r) = exp(−r), such that every (deterministic or

randomized) r-round protocol requires nε(r) bits of communication per player in order to

find a matching whose size is at least n−ε(r) fraction of the optimal matching.

Our proof relies on information theory, and uses a type of multiparty round-reduction

argument which requires the analysis of information sent by multiple players in a way

that avoids summing the information costs. In contrast to the standard two-party model,

round-elimination arguments in the multiparty model are non-trivial, as the number of

parties scales with the input size, and calls for a subtle embedding argument (we discuss

this further in Section 6.2).

6.0.1 More context and related models

The bipartite matching problem is clearly a very basic one and obviously models a host

of situations beyond the simple market scenario that was the direct motivation of [62]

and this paper. Despite having been widely studied, even its algorithmic status is not
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well understood, and it is not clear whether a nearly-linear time algorithm exists for it.

(The best known running time (for the dense case) is the 40-year old O(n2.5) algorithm

of [83], but for special cases like regular or near-regular graphs nearly linear times are

known (e.g. [3, 156]). In parallel computation, a major open problem is whether bipartite

matching can be solved in deterministic parallel poly-logarithmic time (with a polynomial

amount of processors). ( Randomized parallel algorithms for the problem [127, 101] have

been known for over 25 years.) It was suggested in [62] that studying the problem in the

communication complexity model is an approach that might lead to algorithmic insights

as well.

The bipartite matching problem has been studied in various other multi-party models

that focus on communication as well. In particular, strong and tight bounds for approxi-

mate matching are known in the weaker “message passing” or “private channels” models

[85] that have implications to models of parallel and distributed computation . Related

work has also been done in networked distributed computing models, e.g., [119]. “One-

way” communication models are used to analyze streaming or semi-streaming models

and some upper bounds (e.g., [109]) as well as weak lower bounds [73] are known for

approximate matchings in these models. For “r-way” protocols, a super-linear communi-

cation lower bound was recently shown by [77] for exact matchings, in an incomparable

model1. A somewhat more detailed survey of these related models can be found in the

appendix of [62].

It should be noted that the open problems mentioned above remain so even in the

standard two-party setting where each of the two players holds all the information of n/2

of our players. We do not know any better upper bounds than what is possible in the

1Besides of the fact that this lower bound applies only for testing exact matching and not approximate
matchings, their model consists of p-parties for some constant or logarithmic p, who are communicating in
some fixed number of sequential rounds (not simultaneous). The input itself of each player is therefore
super-linear in the number of nodes of the input graph (n), and indeed they prove a super-linear commu-
nication lower bound for fixed-round protocols. Such a result is obviously impossible in our model. The
[77] model does not seem to capture the economic scenario we attempt to model in this paper (i.e., that
of private-valuations) and therefore we view these results as tangential, as also evidenced by the distinct
proof-techniques.

147



multi-player model, and certainly, as the model is stronger, no better lower bounds are

known. We also do not know whether our lower bound (or the single round one of [62])

applies also in this stronger two-player model.

6.0.2 The blackboard model and approximate matchings

Our framework in this chapter is the Number-In-Hand (NIH) multiparty communica-

tion complexity model with shared blackboard. In this model, n players receive inputs

(x1, x2, . . . , xn) ∈ X1 × X2 × . . .Xn respectively. In our context, each of the n players (bid-

ders) is associated with a node u ∈ U = [n] of some bipartite graph G = (U, V,E), and her

input is the set of incident edges on her node (her demand set of items in V = [m]). The

players’ goal is to compute a maximum set of disjoint connected pairs (u, v) ∈ E(G), i.e.,

a maximum matching in G (we define this formally below).

The players communicate in some fixed number of rounds r, where in each commu-

nication round, players simultaneously write (at most) ` bits each on a shared blackboard

which is viewable to all parties. We sometimes refer to the parameter ` as the bandwidth

of the protocol. In a deterministic protocol, each player’s message should be completely

determined by the content of the blackboard and her own private input xi. In a random-

ized protocol, the message of each player may further depend on both public and private

random coins. When player’s inputs are distributional ((x1, x2, . . . , xn) ∼ µ) which is the

setting in this paper, we may assume without loss of generality that the protocol is de-

terministic, since the averaging principle asserts that there is always some fixing of the

randomness that will achieve the same performance with respect to µ. We remark that by

Yao’s minimax theorem (see e.g. [111]), our main result applies to randomized protocols

as well2.
2More formally, if there is a distribution µ on players inputs such that the approximation ratio of any

r-round deterministic protocol with respect to µ is at most α in expectation, then Yao’s minimax theorem
asserts this lower bound applies to randomized r-round protocols as well.
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The transcript of a protocol π (namely, the content of the blackboard) when executed

on an input graphG is denoted by Π(G), or simply Π when clear from context. At the end

of the r’th communication round, a referee (the “central planner” in our context) computes

a matching M̂(Π), which is completely determined by Π. We call this the output of the

protocol.

We will be interested in protocols that compute approximate matchings. To make this

more formal, let G(n,m) denote the family of bipartite graphs on (n,m)-vertex sets re-

spectively, and denote by F(n,m) the family of all matchings in G(n,m) (not necessarily

maximum matchings). Denote by |M(G)| the size of a maximum matching in the in-

put graph G. We require that the output of any protocol satisfies M̂(Π) ∈ F(n,m). The

following definition is central to this work.

Definition 6.0.4 (Approximate Matchings). We say that a protocol π computes an α-

approximate matching (α ≥ 1) if |M̂(Π) ∩ E(G)| is at least 1
α
· |M(G)|, i.e., if the number

of matched pairs (u, v) ∈ E(G) is at least a (1/α)-fraction of the maximum matching in

G. Similarly, when the input graph G is distributed according to some distribution µ (i.e.,

(x1, x2, . . . , xn) ∼ µ), we say that the approximation ratio of π is α ≥ 1 if

E
G∼µ

[[] |M̂(Π) ∩ E(G)|] ≥ 1

α
· E
G∼µ

[[] |M(G)|].

The expected matching size of π is Eµ[|M̂(Π)∩E(G)|] (we remark that the “hard” distri-

bution we construct in the next section will satisfy |M(G)| ≡ n for all G in the support of

µ, so the quantity EG∼µ [[] |M(G)|] will always be n). Note that these definitions in partic-

ular allow the protocol to be erroneous, i.e., the referee is allowed to output “illegal” pairs

(u, v) /∈ E(G), but we only count the correctly matched pairs. Our lower bound holds

even with respect to this more permissive model.
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6.1 A hard distribution for r-round protocols

We begin by defining a family of hard distributions for protocols with r rounds. Recall

that G(n,m) is the family of bipartite graphs on (n,m) vertex-sets. For any given number

of rounds r, we define a hard distribution µr on bipartite graphs in G(nr,mr). µr is

recursively defined in Figure 6.1.
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A recursive definition of the hard distribution µr

In what follows, ` is a parameter to be defined later.

1. For r = 0, G0 = (U0, V 0, E0) consists of a set of n0 bidders U0 = {b1, . . . , bn0} and a

set of m0 items V 0 = {j1 . . . , jm0}, such that n0 = m0 = `11. E0 is then obtained by

selecting a random permutation σ ∈R S`11 and connecting (bi, jσ(i)) by an edge.

This specifies µ0.

2. For any r ≥ 0, the distribution µr+1 over Gr+1 = (U r+1, V r+1, Er+1) is defined as

follows:

Vertices:

• The set of bidders is U r+1 :=
⋃n10

r
i=1 Bi where |Bi| = nr. Thus, nr+1 = n11

r .

• The set of items is V r+1 :=
⋃n10

r +`·n8
r

j=1 Tj where |Tj| = mr. Thus, mr+1 =

(n10
r + ` · n8

r) ·mr.

Edges: Let dr be the degree of each vertex in U r (this is well defined as the de-

gree of any vertex is fixed for every graph in the support of µr). The distribution

on edges is obtained by first choosing ` · n8
r random indices {a1, a2, . . . a`·n8

r
} from

[n10
r +`·n8

r], and a random invertible map σ : [n10
r ] −→ [n10

r +`·n8
r]\{a1, a2, . . . a`·n8

r
}.

Each vertex u ∈ Bi is connected to dr uniformly random vertices in each one of the

blocks Ta1 , Ta2 , . . . , Ta`·n8r , using independent randomness for each of the blocks.

The entire block Bi is further connected to the entire block Tσ(i) using an inde-

pendent copy of the distribution µr. Note that this is well defined, as |Bi| = nr,

|Taj | = |Tσ(i)| = mr and µr is indeed a distribution on bipartite graphs from

G(nr,mr).

Figure 6.1: A hard distribution for r-round protocols.
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As standard, the input of each of bidder u ∈ U r+1 is the set of incident edges on the

vertex u (defined by µr+1). Note that every graph in the support of µr+1 has a perfect

matching (|M̂(Gr+1)| = nr+1).

Notation To facilitate our analysis, the following notation will be useful. Notice that

each block Bi of players is connected to exactly ` ·n8
r + 1 blocks of items whose indices we

denoted by

Ii := {σ(i), a1, a2, . . . a`·n8
r
}.

For eachBi, let τi : Ii −→ [`·n8
r+1] be the bijection that maps any index in Ii to its location

in the sorted list of Ii (i.e., τ−1
i (1) is the smallest index in Ii, τ−1

i (2) is the second smallest

index in Ii and so forth). By a slight abuse of notation, let us denote Gi
j := (Bi, Tτ−1

i (j))

the (induced) subgraph of G on the sets (Bi, Tτ−1
i (j)), for each j ∈ [` · n8

r + 1]. Similarly, for

a bidder u ∈ Bi, let Gi
j(u) := (u, Tτ−1

i (j)) denote the (induced) subgraph of G on the sets

(u, Tτ−1
i (j)). In this notation, the entire input of players in Bi is Γi := {Gi

1, G
i
2, . . . , G

i
`·n8

r+1}.

Let

Ji := τi(σ(i))

denote the index of the “hidden graph” Gi
Ji

= (Bi, Tσ(i)). To avoid confusion (with the

other indices j), we henceforth write

G(Ji) := Gi
Ji
.

Note that by symmetry of our construction, the index Ji is uniformly distributed in [` ·

n8
r + 1]. The following fact will be crucial to our analysis:

Fact 6.1.1 (Marginal Indistinguishability). For any block Bi and any bidder u ∈ Bi, Gi
j(u) ∼

Gi
k(u) for any j 6= k ∈ [` · n8

r + 1]. That is, the marginal distribution of the induced subgraphs

on the vertex u is the same for any j ∈ [` · n8
r + 1].
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Proof. By construction of µr+1, the marginal distribution of edges in Gi
Ji

(u) is uniform

(over Tτ−1
i (Ji)

), and the number of edges (degree of u) in Gi
Ji

(u) is always dr. But this is

precisely the definition of the distribution on edges of Gi
j(u) for all j ∈ [` · n8

r + 1] \ {Ji}.

We conclude that the distribution of Gi
j(u) is the same for all j ∈ [` · n8

r + 1].

Finally, Let B denote the partition of bidders in U := U r+1 into the blocks Bi, and T

denote the partition of items in V := V r+1 into the blocks Tj . Since T and B are fixed (pub-

licly known) in the distribution µr+1, our entire analysis is performed under the implicit

conditioning on T ,B. Note that T does not reveal the identity of the “fooling blocks” Taj ,

but only the items belonging to each block.

6.2 Main Result and Overview of the Proof

In this section we state our main result. Recall that the expected matching size of π (with

respect to µ) is Eµ[|M̂(Π) ∩ E(G)|]. We shall prove the following theorem.

Theorem 6.2.1 (Main Result). The expected matching size of any r-round protocol under µr is

at most 5n
1−1/11r

r . This holds as long as the number of bits sent by each player at any round is at

most ` = n
1/11r+1

r . In particular, since µr has a perfect matching, the approximation ratio of any

r-round protocol is no better than Ω
(
n1/11r

)
.

The intuition behind the proof is as follows. Consider some (r + 1)-round protocol π

(with bandwidth `), and let MBi = M1
Bi
M2

Bi
, . . . ,Mnr

Bi
denote the (concatenated) messages

sent by all of the bidders in a block Bi in the first round of π. Informally speaking, the

distribution µr+1 is designed so that messages of players in Bi (MBi) convey little infor-

mation about the “hidden” graph G(Ji). Intuitively, this will be true since the marginal

distribution of the graphs Gi
j(u) for any bidder u ∈ Bi is identical for each j (Fact 6.1.1)

and therefore a bidder in Bi will not be able to distinguish between vertices (items) in⋃`·n8
r

j=1 Taj and in Tσ(i). By simultaneity of the protocol, we will show that the latter condi-
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tion also implies that the total information conveyed by MBi on G(Ji) is small. In order

to make this information � 1 bit, the parameters are chosen so that nr grows doubly-

exponentially in r (nr ≈ `11r), and this choice is the cause for the approximation ratio we

eventually obtain. Intuitively, the fact the little information is conveyed by each block

on the “hidden graph” implies that the distribution of edges in the graph G(Ji) is still

close to µr even conditioned on the first message of the i’th block MBi . Now suppose an

(r+1)-round protocol finds a large matching with respect to the original distribution µr+1

(in expectation). Then the expected matching size on each of the G(Ji) must be large as

well. Hence, “ignoring” the first round of the protocol, the original protocol essentially

induces an r-round protocol for finding a large matching with respect to the distribution

µr, up to some error term (indeed, some edges of G(Ji) may have already been discovered

in the first round of the protocol, but the argument above ensures that not too many are

revealed). Since we have now reduced the problem to finding a large matching under µr

using only r rounds, we may use an inductive hypothesis to upper bound this expected

matching size.

Making the above intuition precise is complicated by the fact that, unlike standard

“round-elimination” arguments in the two-party setting, in our setup one cannot simply

“project” an r-round nr+1-party protocol (with inputs ∼ µr+1) directly to the distribution

µr, since a protocol for the latter distribution has only nr players (inputs). To remedy this,

we use the conditional independence properties of our construction together with an em-

bedding argument to obtain the desired lower bound. The embedding part of the proof is

subtle, since in general, conditioning on the first message M1 correlates the inputs of the

players, so it is not clear how to sample the “missing” inputs of the “higher-dimensional”

protocol. Luckily and crucially, the edges to the “fooling blocks” Taj in µr+1 were chosen

independently for each bidder u ∈ U (unlike the hidden graphs G(Ji) in which players

have correlated edges). This independence is what allows to embed a lower-dimensional
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graph correctly according to the conditioned on the first message M1 using no communica-

tion.

The formal proof of Theorem 6.2.1 is subtle and technical. We refer the reader to the

full version of the paper for the detailed proof.
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Chapter 7

Applications to Privacy and Secure

Computation

7.1 Interactive computation between two untrusting par-

ties: From honest-but-curious to malicious

In this Chapter we consider an application of the interactive information odometer pre-

sented in Section 3.4, to the setting where Alice and Bob do not trust each other and wish

to compute a function f(X, Y ) of their inputs while revealing as little information to each

other as possible. This setting has been extensively studied in the theoretical cryptogra-

phy literature. In the the case of 3+ parties with private channels (and honest majority),

[23] showed that secure multiparty computation is possible, that is, it is possible to com-

pute any function of the player’s inputs while revealing nothing beyond the value of

the function to the players. It is known that no such protocol can exist for two parties,

even in the case of honest-but-curious participants. In this model, Chor and Kushilevitz

[54] characterized the family of two-party Boolean functions computable with perfect pri-

vacy. This characterization was extended by Kushilevitz [110] and Beaver [19] to general-

valued functions, asserting that most function are not privately computable. Subsequent
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papers studied the privacy loss of specific functions, and explored communication trade-

offs required to achieve perfect or approximate privacy in the honest model (Bar Yehuda

et al [13] [65] [2]).

In the malicious model, where one of the parties is assumed to be adversarial, much less

was known. When the malicious party is assumed to be computationally bounded, and

thus one can use cryptographic primitives, [74] ensure the “best possible” privacy can be

preserved, assuming the existence of so called ”trapdoor permutations” 1. Other works

define a weaker notion of privacy and obtain privacy-preserving schemes for specific

functions under these notions ([131, 122]). None of these works has a pure statistical

security guarantee against general, unrestricted adversaries.

As information-theoretically secure two-party computation is impossible for most

functions, several approaches for quantifying privacy loss have been proposed over the

years in the security and privacy literature [106, 65, 123, 104]. In fact, one way to view

the information complexity IC(f, ε) is as the smallest (average) amount of information

Alice and Bob must reveal to each other to compute f with error ε (here the information

revealed by the value of f(X, Y ) is included in the information complexity). Thus,

information complexity gives the precise answer to the two-party private computation in

the information-theoretic honest-but-curious model: Alice and Bob will try to learn about

Y and X respectively from the protocol, while adhering to its prescribed execution.

Therefore, in the honest-but-curious case, a protocol π whose information cost is close

to the information complexity of f will achieve a near-optimal performance in terms of

privacy, revealing only ≈ I := IC(f, ε) information to Alice and Bob. That is, assuming

Alice and Bob adhere to the execution of π2.
1The authors show that a malicious player cannot learn anything more that the value of f(X ′, Y ) for any

X ′ of her choice.
2 In the secure computation literature information loss is typically measured as the difference between

what the parties learn (the information cost) and what they were supposed to learn (the mutual information
between the output and the other partie’s input). To keep notation simple, we ignore the latter term here,
since it does not substantially affect any of the result. To be specific, one may assume that Alice and Bob are
trying to compute only a few bits of output, and thus this term is negligible.
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What happens when either Alice or Bob is malicious? There are easy examples where

a cheating Bob can extract ω(I) bits of information on Alice’s input, if the protocol is

executed naively (an instructive example is the standard hashing protocol for the Equality

function). Is there a way to compile π into a protocol π′ such that (1) if Alice and Bob are

honest is close to π in terms of computing f ; (2) even if Alice or Bob are dishonest, reveals

at most O(I) information to the dishonest party (that is, a dishonest Bob cannot “phish”

more thanO(I) bits of information out of Alice)? If information complexity was known to

be equal to communication complexity, we could just compress π into a protocol π′ with

O(I) bits of communication. Even if Alice or Bob are dishonest, they cannot cause the

protocol π′ to run for more than O(I) rounds, and thus they cannot make it reveal more

than O(I) bits of information. Unfortunately, the recent result of [71] asserts that there

are I-bit information protocols which cannot be simulated by less than than 2Ω(I) bits of

communication, and therefore this approach does not work.

We adapt our odometer construction to get a generic (black-box) conversion from a

low-information protocol in the honest-but-curious model to a low-information protocol

for the adversarial model. The basic premise is simple: we would like to maintain an

estimate on the amount of information revealed so far, and abort if this number exceeds,

say, 10I . This plan is complicated by the fact that the dishonest party (say Bob) may

try to attack this process in various ways. Firstly, he can try to fool the odometer into

thinking that he learns less information than he actually does. Secondly, and perhaps

more importantly, Bob can try to use the odometer itself to learn additional information

about X . In particular, if it is Bob’s turn to select the variable Z discussed above, Bob may

cheat and select Z adversarially to elicit information from Alice. We modify the odometer

protocol so that such cheating can only hasten the termination of the simulation (and cause

Bob learn less information). We note that in our simulation Alice does not try to enforce

Bob’s compliance; rather, we just guarantee that the odometer has a proper estimate on

what Bob learned so far, and thus it allows us to terminate once too much information has
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been revealed. Our conversion result postulates that Alice and Bob share the knowledge

of a prior distribution µ of their inputs (information-theoretic quantities are meaningless

without an underlying prior). We believe that these results can be generalized to the

prior-free setting using techniques similar to the ones used to define prior-free information

complexity in [28].

We show how Alice can use the information odometer, in a black-box fashion, to

achieve (the best possible) information-theoretic security against an arbitrarily (compu-

tationally unbounded) malicious Bob. More specifically, we prove:

Theorem 7.1.1 (Privacy-preserving simulation, informally stated). Let θ be a two-party com-

munication protocol such that IC(θ) = I . Then for any δ > 0, there is a communication protocol

π̃ using “live” randomness, with the following properties:

• If both parties are honest, then π̃ 2δ-simulates θ.

• IC(π̃) ≤ O(I + log(‖θ‖)).

• There is a global constant λ > 0 such that for any protocol π̃′ where at least one party is

honest (follows π̃), the following holds: ∀ k ∈ N ,

Pr[ Honest party reveals more than λk(I/δ + log(‖θ‖+ 1)) bits of information ] ≤ 2−Ω(k).

That is, an honest player never reveals to the other party much more than the essential

amount of information required to solve f . We stress that the protocol does not assume any

prior knowledge about the honesty of any player.

Due to space constraints, we defer the formal proof of Theorem 7.1.1 to the full version

of the paper [40].
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7.2 Conclusion and Open Problems

The full resolution of many of the problems addressed in this monograph are beyond our

reach. We henceforth list some of these interesting and important open questions.

The computability of information complexity and its rate of convergence in the num-

ber of rounds. An unsatisfactory state of affairs is that despite the characterization and

understanding of the information complexity measure, it is still not known whether this

measure is even computable. More precisely, we do not have an algorithm that given the

truth table of a function F (X, Y ) calculates the (zero-error) information complexity of this

function. Note we can compute the communication complexity of F n for any n, and we

have CC(Fn)
n
↘ ICext(F ), which gives us a sequence which decreases down to ICext(F ), but

we do not have a similar sequence of lower bound. Figuring out the rate of convergence

of the bounded-round information complexity ICextr
µ(f) to ICext

µ(f), or at least an upper

bound on it, would give a stopping criteria and therefore is sufficient for the computabil-

ity of ICext(F ).

The rate of convergence of ICext
r(F )↘ ICext(F ) is a very interesting question in its own

right. The question is about the usefulness of additional rounds in giving an information-

theoretically efficient protocol for F , and equivalently whether extra rounds of commu-

nication are useful for computing n copies of F for large n. We showed that in the case

of F = AND, the rate of convergence is 1/r2. We conjecture that this is always the right

rate, except when full convergence happens within a fixed number of rounds.

Conjecture 7.2.1. For all F (X, Y ) one of the two scenarios hold: (1) ICext
r(F ) = ICext(F ) for

some r = r(F ); or (2) ICext
r(F )− ICext(F ) = ΘF (1/r2).

As we’ve seen in Chapter 2, the AND function exhibits the second behavior. An

example of the first behavior is the single-bit transmission function F (X, Y ) = X . Its
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information cost is ICext
r(F ) = ICext(F ) = 1 for all r ≥ 1.

Multi-party information complexity. An extremely interesting and potentially gratifying

direction is developing the “right” notions of information complexity for the Number-

On-Forehead multi-party communication complexity model. There are examples where

information-theoretic methods were successfully applied to multiparty number-in-hand

communication [47]. However, it is not clear whether (and how) similar techniques can

apply to the number-on-the-forehead model. One obstacle here is the existence of private

multi-party protocols that allow three or more parties to evaluate a function of their inputs

while only learning the value of the function [22].

A XOR lemma for communication complexity. In Chapter 3 we proved direct product

theorems which assert a lower bound on computing n independent copies of f in terms

of the cost of a single copy. When n is very large, such theorems can be superseded by

trivial arguments, since fn must require at least n bits of communication just to describe

the output. One could hope to achieve hardness amplification without blowing up the

output size – a classical example is YAO’s XOR lemma in circuit complexity. In light of

the state-of-the-art direct product result, we state the following conjecture:

Conjecture 7.2.2 (XOR Lemma for communication complexity).

Dµn(f⊕n, 1/2 + e−Ω(n)) = Ω̃(
√
n) · Dµ(f, 2/3)

where f⊕n((x1, y1), . . . , (xn, yn)) := f(x1, y1)⊕ ....⊕ f(xn, yn).

We remark that the analogues “direct-sum” of this conjecture is true: [16] proved that

their direct sum result for fn can be easily extended to the computation of f⊕n, showing

(roughly) that Dµn(f⊕n, 3/4) = Ω̃(
√
n) · Dµ(f, 2/3). However, this conversion technique
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does not apply to the direct product setting.

Approximate matchings and round-Communication tradeoffs in welfare maximiza-

tion. There are many open problems related to our result from Chapter 6. Let us mention

a few of the most natural ones. Our first open problem is closing the gap between our

lower bound (Theorem 6.2.1) and the upper bound of [62]: We show that r = Ω(log log n)

rounds of communication are required to achieve constant approximation ratio using

poly-logarithmic bits per player, while the upper bound is r = O(log n). We believe that

the upper bound is in fact tight, and improving the lower bound is left as our first and

direct open problem.

Another interesting direction is trying to extend our lower bound technique to obtain

similar-in-spirit round-communication tradeoffs for the more general setup of combinato-

rial auctions, also studied by [62]. From a communication complexity perspective, lower

bounds in this setup are more compelling, since player valuations require exponentially

many bits to encode, hence interaction has the potential to reduce the overall communi-

cation (required to obtain efficient allocations) from exponential to polynomial. Indeed,

it is shown in [62] that, in the case of sub-additive bidders, there is an r-round randomized

protocol that obtains an Õ(r ·m1/(r+1))-approximation to the optimal social welfare, where

in each round each player sends poly(m,n) bits. Once again, an (exponential in m) lower

bound was given only for the case of simultaneous protocols (r = 1) and the natural

question is to extend it to multiple rounds as well.

A more general open problem advocated by [62] is to analyze the communication

complexity of finding an exact optimal matching. One may naturally conjecture that nΩ(1)

rounds of interaction are required for this if each player only sends no(1) bits each round,

but no super-logarithmic bound is known. The communication complexity of the prob-

lem without any limitation on the number of rounds is also open: no significantly super

linear, ω(n log n), bound is known, while the best upper bound known is Õ(n3/2).
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Information complexity has proved to be a powerful tool for proving strong bounds

in many computational models, through the communication complexity lens. We believe

that there are many more potential applications to be explored. A partial list includes

lower bounds for the Private Information Retrieval problem (PIR) and for Secret-Sharing,

applications to Differential Privacy and to mechanism design.
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Nikolay K. Vereshchagin. Towards a reverse newman’s theorem in interactive infor-
mation complexity. In Proceedings of the 28th Conference on Computational Complexity,
CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 24–33, 2013.

[46] Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P. Woodruff, and
Grigory Yaroslavtsev. Certifying equality with limited interaction. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, pages 545–581, 2014.

[47] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on the multi-
party communication complexity of set disjointness. In Computational Complexity,
2003. Proceedings. 18th IEEE Annual Conference on, pages 107–117. IEEE, 2003.

[48] A. Chakrabarti and O. Regev. An optimal lower bound on the communication com-
plexity of gap-hamming-distance. In Proceedings of the 43rd annual ACM symposium
on Theory of computing, pages 51–60. ACM, 2011.

[49] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds
on the multi-party communication complexity of set disjointness. In IEEE Confer-
ence on Computational Complexity, pages 107–117, 2003.

[50] Amit Chakrabarti, Ranganath Kondapally, and Zhenghui Wang. Information com-
plexity versus corruption and applications to orthogonality and gap-hamming.
CoRR, abs/1205.0968, 2012.

[51] Amit Chakrabarti, Ranganath Kondapally, and Zhenghui Wang. Information com-
plexity versus corruption and applications to orthogonality and gap-hamming. In
APPROX-RANDOM, pages 483–494, 2012.

167



[52] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informational
complexity and the direct sum problem for simultaneous message complexity. In
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science,
pages 270–278, 2001.

[53] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. In Proceedings of the
twenty-first annual ACM symposium on Theory of computing, pages 62–72. ACM, 1989.

[54] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. STOC 89
and SIAM J. Disc. Math, 4:36–47, 1991.

[55] Kenneth L. Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney,
Xiangrui Meng, and David P. Woodruff. The fast cauchy transform and faster robust
linear regression. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013,
pages 466–477, 2013.

[56] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the 41st annual ACM symposium on Theory of computing,
pages 205–214. ACM, 2009.

[57] Don Coppersmith and Ravi Kumar. An improved data stream algorithm for fre-
quency moments. In Proceedings of the 15th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 151–156, 2004.

[58] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley series
in telecommunications. J. Wiley and Sons, New York, 1991.

[59] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, 1991.

[60] Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auctions. The
Journal of Political Economy, pages 863–872, 1986.

[61] Shahar Dobzinski and Noam Nisan. Limitations of vcg-based mechanisms. Combi-
natorica, 31(4):379–396, 2011.

[62] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires in-
teraction. In STOC, pages 233–242, 2014.

[63] Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jiri Sgall. Communica-
tion complexity towards lower bounds on circuit depth. Computational Complexity,
10(3):210–246, 2001.
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