
Asynchronous DesignV
Part 2: Systems and
Methodologies
Steven M. Nowick

Columbia University
Montek Singh

University of North Carolina at Chapel Hill

h THIS TWO-PART article aims to provide both a

short historical and technical overview of asynchro-

nous design, as well as a snapshot of the state of the

art. Part 1 covered foundations of asynchronous

design, and highlighted recent applications, includ-

ing commercial advances and use in emerging

application areas. Part 2 focuses on methodologies

for designing asynchronous systems, including

basics of hazards, synthesis and optimization

methods for both logic-level and high-level synthe-

sis, and the development of specification languages

and CAD tool flows. Finally, two sidebars provide a

summary of asynchronous processors and architec-

tures, as well as testing.

Synthesis and optimization
The synthesis of asynchronous circuits poses

some unique challenges, given the absence of a

fixed-rate global clock. There is a large body of

research to develop sound and efficient techniques,

both for logic-level and high-level synthesis.

Hazards and logic
synthesis

At the logic level, the lack

of a fixed-rate clock implies

an event-driven paradigm,

where components are acti-

vated and compute whenev-

er they receive new inputs.

As a result, without a validat-

ing clock edge, each component must clearly signal

when it has producedvaliddata, and thereforeVunlike

synchronous designV glitches must be avoided.

The potential for a glitch is called a hazard [1]. The

goal of asynchronous logic synthesis is to provide

optimal implementations that are also hazard-free.

Hazards are temporal phenomena, that are

defined with respect to an input transition, where

one or more input signals change value. A static

logic hazard occurs when an output is meant to

remain stable (i.e., at 0 or 1), but instead may glitch.

A dynamic logic hazard occurs when an output is

meant to have a clean transition (i.e., 0! 1 or 1!
0), but instead may glitch.

Figure 1a illustrates a dynamic logic hazard for a

given input transition, where the circuit output has a

function transition, in this case from 1 ! 0.

Depending on the relative arrival times of input A

and C transitions, and the gate delays, the output

may glitch, as shown. The circuit in Figure 1b has

identical functionality but is guaranteed hazard-free

for this input transition: with a small modification to

the bottom AND gate, it provides a clean 1 ! 0

output transition regardless of gate and wire delays.

The fundamental challenge of asynchronous

logic synthesis is to develop optimization techniques

Editor’s notes:
The second part of the two-part tutorial on asynchronous design addresses
methodologies for designing asynchronous systems and CAD tool flows.
It also presents a summary of asynchronous processors and architecture,
as well as testing.

VPartha Pratim Pande, Washington State University

2168-2356/15 B 2015 IEEEMay/June 2015 Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC 19

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/MDAT.2015.2413757

Date of publication: 16 March 2015; date of current version:

04 June 2015.

at each level of the classic synthesis flowVtwo-level

logic minimization (i.e., targeting AND/OR or NAND/

NAND structures), multi-level optimization, optimal

technology mapping to cell librariesVwhich simul-

taneously guarantee hazard-freedom.

Early work on hazards and hazard-free design was

developed by Huffman, Unger, McCluskey, Eichelber-

ger and Muller in the 1950s and 1960s, much of which

targeted correctness under single-input transitions or

highly restricted multiple-input transitions. An exact

solution to the two-level hazard-free logic minimiza-

tion problem was proposed in the early 1990s [1].

Techniques have also been introduced for heuristic

two-level hazard-free logic minimization [2], multi-

level hazard-free logic minimization [3] (by identi-

fying safe ‘‘hazard-non-increasing’’ transformations),

and hazard-free technology mapping. A general

methodology has been proposed, which identifies,

for a given arbitrary Boolean function and set of

specified input transitions, whether any hazard-free

multi-level implementation exists [4].

Two alternative widely-used approaches for the

specification and synthesis of hazard-free asynchro-

nous controllers have been proposed: 1) burst-

mode (BM) and 2) Petri-net based.

A burst-mode specification, shown in Figure 2a,

is a form of an asynchronous Mealy machine [5].

Unlike synchronous specifications, state transitions

occur without the notion of clock cycles, but rather

are event-driven. Once a specified ‘‘input burst’’ of

one or more signal transitions arrives, in arbitrary

order and time, the specified output changes (i.e.,

‘‘output burst’’) are generated, and the machine

advances to the next specification state. Burst-mode

specifications were first defined and formalized by

Nowick et al., including the first guaranteed hazard-

free gate-level synthesis flow [5]. The method built

on an earlier more ad hoc approach which was used

in the design of a large-scale experimental commu-

nication coprocessor (see Post Office chip, in

‘‘Processors and Architecture’’ sidebar). A latchless

architecture is targeted [2], which facilitates low

latency, consisting of standard-cell-based combina-

tional logic, and with the state stored on fed-back

outputs. (A latch-based architecture was also pro-

posed [5].) A simple hold-time requirement must be

met: no input burst may arrive until the machine has

stabilized from the previous input burst. This so-

called ‘‘generalized fundamental mode’’ timing

requirement, when handling a multi-input burst, is

an extension of classic ‘‘fundamental mode’’ which

assumed only single-input changes [2], [5]. Burst-

mode controllers have been used in a number of

applications, including: an experimental low-power

infrared communication chip [6] (see example in

Figure 2a) and high-performance Post Office com-

munications coprocessor, both from HP Laborato-

ries; control units in the Intel RAPPID project (see

Part 1), which includes the use of ‘‘extended burst-

mode (XBM)’’ specifications by Yun and Dill; and an

experimental laser space measurement chip devel-

oped at NASA Goddard.

Petri-net based controller design has also been

widely used, especially as supported in the Petrify

synthesis flow [7]. Figure 2b illustrates a concurrent

controller specification using a State Transition

Diagram (STG), a restricted form of Petri net, for a

VME bus receiver. This versatile style allows highly

concurrent control and interface circuits to be easily

specified, with synchronization points and concur-

rent threads captured explicitly. A quasi-delay

insensitive (QDI) timing assumption is used, which

requires that, at each wire fanout point in the circuit,

each wire fork has roughly equal delay. Beyond this

‘‘isochronic fork’’ assumption, there are no environ-

mental hold-time requirements. This approach grew

out of early work by Muller and Varshavsky. The

methodology has had wide application, including

for a concurrent VME bus controller (see Figure 2b),

and for several control circuits in asynchronous ARM

processors from the University of Manchester (Amu-

let3 and 3i, see ‘‘Processors andArchitecture’’sidebar).

While burst-mode and Petri-net-based methods can

often be used to synthesize the same specifications,

they build on two distinct views. A BM approach, while

Figure 1. Example of a dynamic logic hazard.

IEEE Design & Test20

Asynchronous DesignVPart 2: Systems and Methodologies

allowing significant concurrency in specifications, is

fundamentally state-based, as illustrated in Figure 2a,

and typically assumes some moderate hold-time

environmental timing assumptions. These restrictions

allow the development of highly-efficient algorithms

[2], [5], which leverage existing synchronous ap-

proaches, including exact and heuristic solutions for

optimal state assignment and logic minimization, as

well as support for handling larger examples [6]. As

such, they are especially suitable for high-performance

controller design [2], [6] (see also Post Office chip in

‘‘Processors and Architecture’’ sidebar). A Petri-net-

based approach fundamentally aims at supporting fine-

grain concurrency in specifications, as illustrated in

Figure 2b, and typically targets QDI circuits with no

environmental timing assumptions. These techniques

do not have direct synchronous antecedents, therefore

sophisticated algorithms have been developed to

ensure correct state assignment and logic optimization

[7]. As such, theyare especially suitable for small highly

concurrent interface circuits. However, beyond these

original center points, each approach has been

subsequently broadened, with support for increased

concurrency in burst-modemethods using XBM, and to

allow support for relative timing and burst-mode

assumptions in Petri-net methods.

An alternative approach, called NULL Convention

Logic (NCL), introduced by Karl Fant, has been

proposed for the unified synthesis of both control

and datapath. In NCL, synchronous netlists are

translated directly to equivalent asynchronous dual-

rail circuits using threshold gates, such as m-of-n

cells [8]. Entire asynchronous systems can be de-

signed which are highly robust to process, tempera-

ture and voltage (PVT) variability as well as extreme

environmental conditions (see Part 1), using a variant

of QDI design; however, the circuits tend to have large

latency and area overheads due to their dual-rail

encoding and complex threshold networks. Several

recent optimization strategies have been proposed to

significantly reduce these overheads (see ‘‘Specifica-

tion languages and tools’’ section, below).

Finally, several approaches have beenproposed for

timed circuits, which exploit knowledge of environ-

mental and internal delays to significantly optimize

designs. A general framework, called ‘‘relative timing

[9],’’ due to Stevens, Ginosar and Rotem, supports

partial ordering requirements between different paths,

and was used in the Intel RAPPID project (see Part 1).

An alternative approach by Myers and Meng exploits

absolute timing information [10].

High-level synthesis
High-level synthesis is the automated conversion

of an algorithmic description of the behavior of a

system into a structural representation. Typically, the

Figure 2. (a) Burst-mode specification and (b) Petri net specification.

May/June 2015 21

system’s behavior is specified in a hardware

description language (HDL), and then automated

tools explore the design space according to cost

functions and constraints, resulting in an efficient

gate-level implementation that can be handed off to

physical design tools.

An early asynchronous approach, called ACK, was

developed at the University of Utah [11]. A system is

specified at a procedural level using Standard Verilog

HDL, with an add-on package of asynchronous

channel abstractions, and the compiler maps it to

distributed asynchronous control and datapath

blocks. Three controller types are supported: burst-

mode [2], macromodular [12], and micropro-

grammed control. The compiler implements several

automated optimizations, including control partition-

ing, loop unrolling, sharing of common subexpres-

sions and dead-code elimination. Transformations are

back-annotated in the original specification to provide

useful designer feedback. The approach was applied

to synthesize a complete error decoder for a CDplayer.

Overall, this framework was an important early

contribution to the automated synthesis of asynchro-

nous systems, but lacked the ability to optimally target

cost functions.

A classic high-level synthesis problem is resource

sharing, which aims to determine how a limited set

of system resources (ALUs, registers, memories, etc.)

can be optimally shared and scheduled among the

specified operations so as to minimize a cost

function (e.g., latency) under cost constraints (e.g.,

area). While much work has been done on synchro-

nous resource sharing, the problem is fundamentally

different for asynchronous systems. In particular,

synchronous resource sharing methods typically

schedule all operations at the beginning of clock

intervals, yielding a discrete formulation that is often

cast as an integer linear programming problem. An

asynchronous system, on the other hand, has a

continuous time scale: an operation can be scheduled

as soon as its operands are available and a resource is

ready. An optimal asynchronous schedule cannot be

obtained from a synchronous formulation merely

through a post-processing step of relaxing the clocking

boundaries [13]. Nonetheless, some early asynchro-

nous resource sharing approaches directly adapted

the synchronous model, though results were not

guaranteed to be optimal.

A truly asynchronous approach must abandon the

discrete-time formulation and, instead, must consider

the problem as one of determining a partial ordering of

operations. Such a formulation was first proposed by

Badia and Cortadella [14] using a heuristic list-

scheduling approach, where, at each step, the next

operation to be scheduled is chosen in a greedy

manner, i.e., the one with the longest chain of

dependent operations. The approach only handled

resource constraints, it did not consider latency

constraints. The first exact approach to asynchronous

resource sharing was introduced by Hansen and

Singh [13], using a branch-and-bound strategy, which

also supported sophisticated multi-objective cost func-

tions and constraints, e.g., resource- or area-constrained

latency minimization, and latency-constrained area

minimization. Subsequent recent extensions and

generalizations of this work incorporate energy and

power constraints, as well as scalability through a

hierarchical partitioning and scheduling approach.

A different flavor of the scheduling problem,where

asynchronous approaches have surpassed synchro-

nous ones, is one of optimal scheduling of pipelined

loops, i.e., where multiple iterations of an algorithmic

loop can execute in an overlapped fashion, called

multi-token execution. The goal of this problem is to

minimize the cycle time of the entire loop execution,

instead of the latency of one loop iteration. The first

exact solution, whether synchronous or asynchro-

nous, was introduced by Hansen and Singh [15]. This

problem has long been a challenge even in synchro-

nous design, and is much harder than the basic

scheduling problem, because one cycle of the

schedule can mix-and-match operations from an

arbitrary number of successive loop iterations.

Specification languages and tool flows
A key component in facilitating the practical use

of asynchronous design is to provide entry hardware

description languages (HDLs) and automated

computer-aided design (CAD) tool flows. There

have been important advances on both fronts,

though more remains to be done.

One of the interesting research challenges has

been to resolve the balance between two competing

needs: 1) to provide compatibility with existing

synchronous specification languages and CAD tool

flows, and 2) to design specification languages that

best capture the fine-grain concurrency, distributed

synchronization, and underlying clockless paradigm

of asynchronous systems. For the former approach,

there has been a strong push to demonstrate that

IEEE Design & Test22

Asynchronous DesignVPart 2: Systems and Methodologies

Processors and Architecture
Several leading processors from the 1950’s to 1970’s

used asynchronous circuits extensively, including the
ILLIAC [1952] and ILLIAC II [1962] (University of Illinois); the
Atlas [1962] and MU-5 [1974] (University of Manchester);
the DDM-1 datafl ow machine1 [1976] (Al Davis/Burroughs);
and designs from the seminal Macromodules project,2 which
enabled the rapid plug-and-play construction of custom sys-
tems using pre-existing building blocks [mid 1960’s] (Wash-
ington University).

The fi rst modern single-chip asynchronous microproces-
sor was designed by Martin’s group at Caltech [1988].3 This
16-bit RISC processor was developed as a proof-of-concept
to demonstrate the CHP compilation approach, and the
speed and robustness of QDI circuits. Subsequently, the
Amulet1 microprocessor, fi rst in a series, was developed at
the University of Manchester by Furber’s group [1993] as
an asynchronous ARM using micropipelines. Both projects
were highly infl uential, setting a foundation for two decades
of technical advances in all aspects of architecture, includ-
ing pipeline circuits, cache and memory design, specula-
tion, exception handling, and on-chip networks. These fi rst
forays were quickly followed by more advanced designs:
an 8-bit MIPS R2000-like TITAC-1 [1994] (Nanya’s group,
Tokyo Institute of Technology); Amulet2e [1997]; TITAC-24
[1997], which features a 32-bit MIPS R2000 microproces-
sor using a novel ‘scalable delay-insensitive’ circuit model,
allowing parameterized robustness requirements; a full-
featured 32bit asynchronous R3000 microprocessor called
MiniMIPS3 [1997] (Martin’s group, Caltech); and Amulet3i5
[2000]. The Amulet3i was a true system-on-chip, organized
modularly around a fl exible asynchronous on-chip bus, and
extensible through addition of conventional clocked IP.

Several low-power microcontrollers have also been
designed. The asynchronous 8051 microcontroller from
Philips6 not only was a major commercial success, sell-
ing over 700 million copies, but also used the fi rst fully-
automated industrial-strength asynchronous design fl ow
(Tangram, later Haste). More recently, Caltech’s Lutonium
has demonstrated ultra-low-energy operation at less than a
nanojoule per instruction.3

Other important milestones, using novel architectures,
include the counterfl ow pipeline processor at Sun Microsys-
tems Laboratories,7 an asynchronous out-of-order architec-
ture featuring precise exceptions at University of Utah,8 a
super-pipelined multimedia processor at Sharp,9 the Post
Offi ce communication co-processor at HP Laboratories,10
and a low-power sensor-network processor from Cornell
University.11 Asynchronous design has also been used as
a foundation for large-scale inter-processor communica-
tion, including the Torus routing chip,12 FLEETzero at Sun
Microsystems Laboratories,13 and the terabit-rate commer-
cial crossbar switches of Intel/Fulcrum.14 Finally, the recent
surge of interest in cognitive computing is exemplifi ed by
several recent neuromorphic processors — IBM’s True-
North,15 Stanford University’s Neurogrid (Boahen’s group),16
and University of Manchester’s SpiNNaker17 (Furber’s
group) — all of which use fully-asynchronous interconnec-

tion networks to integrate massively-parallel architectures
with thousands —and, eventually, millions— of processing
elements.

References

1. A. L. Davis, “The architecture and system method of DDM1:
A recursively structured data driven machine,” in Proc. 5th
ACM ISCA, 1978, pp. 210–215.

2. W. A. Clark and C. E. Molnar, “Macromodular computer
systems,” in Computers in Biomedical Research, vol. 4,
R. Stacy and B. Waxman, Eds. New York, NY, USA: Aca-
demic, 1974, pp. 45–85.

3. A. J. Martin, M. Nystrom, and C. G. Wong, “Three genera-
tions of asynchronous microprocessors,” IEEE Des. Test,
vol. 20, no. 6, pp. 9–17, 2003.

4. A. Takamura et al., “TITAC-2: An asynchronous 32-Bit
microprocessor based on scalable-delay-insensitive
model,” in Proc. ICCD, 1997, pp. 288–294.

5. J. D. Garside et al., “AMULET3i—An asynchronous
system-on-chip,” in Proc. Int. Symp. Adv. Res. ASYNC,
2000, pp. 162–175.

6. H. van Gageldonk et al., “An asynchronous low-power
80C51 microcontroller,” in Proc. Int. Symp. Adv. Res.
ASYNC, 1998, pp. 96–107.

7. R. F. Sproull, I. E. Sutherland, and C. E. Molnar, “The coun-
terfl ow pipeline processor architecture,” IEEE Des. Test,
vol. 11, no. 3, pp. 48–59, 1994.

8. W. F. Richardson and E. Brunvand, “Precise exception
handling for a self-timed processor,” in Proc. ICCD, 1995,
pp. 32–37.

9. H. Terada, S. Miyata, and M. Iwata, “DDMPs: Self-timed
super-pipelined data-driven multimedia processors,” in
Proc. IEEE, vol. 87, no. 2, pp. 282–295, 1999.

10. B. Coates, A. L. Davis, and K. Stevens, “The post offi ce
experience: Designing a large asynchronous chip,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 3,
pp. 341–366, 1993.

11. V. Ekanayake et al., “An ultra low power processor for
sensor networks,” in Proc. Int. Conf. ASPLOS, 2004.

12. W. J. Dally and C. L. Seitz, “The torus routing chip,” Distrib.
Comput., vol. 1, no. 4, pp. 187–196, 1986.

13. W. S. Coates et al., “FLEETzero: An asynchronous switch-
ing experiment,” in Proc. Int. Symp. ASYNC, 2001,
pp.173–182.

14. M. Davies et al., “A 72-Port 10G ethernet switch/ router
using quasi-delay-insensitive asynchronous design,” in
Proc. Int. Symp. ASYNC, 2014, pp.103–104.

15. P. Merolla et al., “A million spiking-neuron integrated
circuit with a scalable communication network and inter-
face,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

16. B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital
multichip system for large-scale neural simulations,” in
Proc. IEEE, vol. 102, no. 5, pp. 699–716, 2014.

17. S. B. Furber et al., “Overview of the SpiNNaker sys-
tem architecture,” IEEE Trans. Comput., vol. 62, no. 12,
pp. 2454–2467, 2013.

May/June 2015 23

asynchronous designs can easily be specified with

existing synchronous languages, including SystemC,

SystemVerilog, and VHDL, to provide a seamless ‘‘on-

ramp’’ for industrial designers. However, given the

primacy of the clock and centralized control in these

styles, typically extensions and enhancements are

required. The latter approach aims to provide

entirely new entry specification languages and/or

synthesis flows, that are better tailored to an

asynchronous paradigm.

Caltech Synthesis Method. One of the earliest and

most influential asynchronous modeling and design

flows comes from Alain Martin’s group at Caltech from

the 1980s [16]. The block-structured high-level entry

language uses the notion of interacting processes, that

communicate through blocking synchronization, aug-

mented with constructs from Hoare’s ‘‘communicating

sequential processes’’ (CSP) language and Dijkstra’s

guarded commands. A synthesis method based on

stepwise refinement has been proposed, using four-

phase communication, where the processes are

mapped to primitive abstract components whose

handshaking protocols are then elaborated and sched-

uled. Several asynchronous RISC processors and

microcontrollers have been modeled and synthesized

using this approach (see ‘‘Processors and Architecture’’

sidebar). Alternative approaches have been proposed

targeting two-phase communication, including a CSP-

based approach by Ebergen based on trace theory and

delay-insensitive decomposition [17], and an occam-

based compilation approach by Brunvand and Sproull.

Philips’ Tangram Compiler. In the late 1980s, at

Philips Research (Eindhoven), the Tangram lan-

guage was developed by Kees van Berkel [12]. While

also block-structured and based on CSP, it uses an

entirely different synthesis flow, modeled more on

software compilers. In the first step, a syntax-directed

translation directly maps processes to intermediate

hardware components, e.g., small control cells and

datapath blocks. In the second step, these compo-

nents are individually mapped to gates, after apply-

ing some limited peephole optimizations. A

Tangram-based tool flow was used extensively at

Philips until the mid-2000s, with back-end physical

design performed using commercial synchronous

tools (Synopsys, Cadence, Magma), and bundled

data timing constraints enforced through directives.

This approach was the first fully-automated and

industrial-quality asynchronous tool flow, with ex-

tensive support for testability, profiling and early

power and performance estimation. A Philips-incu-

bated startup company, Handshake Solutions, then

migrated the language into a new variant, Haste. A

public-domain version, Balsa [18], with some new

enhancements, was used for the synthesis of a DMA

controller for an asynchronous ARM processor,

Amulet 3i (see ‘‘Processors and Architecture’’ side-

bar), as well as for an ARM-compatible core, SPA,

targeting smart card applications.

Pipelined System Synthesis and Optimization. An

entirely different approach is directly to target

pipelined microarchitectures. An initial pipelined

system and its topology are specified using a set of

basic components such as fork/join, split/merge,

conditional operation, and loop control. Automated

analysis and optimization are then applied to

improve system-level performance through path

rebalancing, including slack matching (i.e., FIFO

insertion), splitting and coalescing of pipeline stages,

loop unrolling and automatic pipelining [19], [20].

An automated tool flow, called Proteus [20], was

developed at Fulcrum Microsystems for high-perfor-

mance asynchronous ASICs, incorporating a number

of these optimizations, as well as a high-level CSP-

based HDL (CAST) and an RTL translator

(CAST2RTL). The tool was recently migrated to Intel,

and used to design its FM5000/6000 series Ethernet

switch chips. An earlier influential approach, called

desynchronization [21], provides a direct translation

method from a synchronous pipelined netlist to an

asynchronous implementation.

Null Convention Logic (NCL) Approaches. Several

automated tool flows have been developed for NCL-

based systems. A complete compiler which incor-

porates back-end synchronous tools was developed

at Theseus Logic [8], using a standard synchronous-

style HDL as an entry specification language. More

recent NCL flows have made significant advances

in automated CAD tool integration, support for

semi-custom asynchronous libraries, and logic

optimization and technology mapping [22], [23].

Other Complete Design Flows. An integrated

asynchronous synthesis flow from the startup com-

pany, Tiempo, uses high-level Transaction Level

Modeling (TLM), based on SystemVerilog, for spec-

ification entry [24]. The tool compiles to a gate-level

netlist, which is then synthesized to layout using

commercial synchronous tools.

Migration of Asynchrony into Synchronous Flows.

Synchronous architectures and automated tool

IEEE Design & Test24

Asynchronous DesignVPart 2: Systems and Methodologies

Testing
Testing of asynchronous circuits provides both

challenges and opportunities which are distinct from

the testing of clocked circuits. There has been a body

of recent research, for various fault models, test struc-

tures, pattern generation, and commercial application.

The absence of a global clock means that an asyn-

chronous design cannot be slowed down simply by us-

ing a lower clock rate. In addition, many asynchronous

datapaths use level-sensitive latches instead of edge-

triggered fl ip-fl ops assumed by most synchronous test

approaches. Moreover, asynchronous controllers, such

as generated by burst-mode and Petri-net based tech-

niques, typically store state on combinational feedback

wires or using sequential C elements, rather than using

fl ip-fl ops. An advantage of some asynchronous circuits,

however, is that they exhibit the useful property of self

checking, entering a deadlock state when subjected to

certain stuck-at faults. As a result, fault diagnosis can

take advantage of this additional failure mode.1,2

Given these distinguishing attributes, much effort

within the asynchronous community over the past two

decades has focused on developing new test tech-

niques. Early work targeted scan testing for datapaths

based on Sutherland’s micropipelines.3,4 The key idea

was to modify pipeline latches and their controllers

to introduce a clocked scan mode of operation. A

similar full-scan approach was used commercially at

Philips Semiconductors, where it was incorporated

into their Tangram asynchronous design fl ow, and

provided test quality equal to that of their commer-

cial synchronous fl ow (i.e. over 99% stuck-at fault

coverage).5 Philips used an alternative asynchronous

design-for-testability strategy, based on IDDQ testing,

to detect bridging faults.6

While full-scan approaches were promising for

micropipelines, the overhead can be unacceptably high

when fi ne-grained high-speed pipelines with shallow

stages are used. A partial scan approach was devel-

oped for the commercial synthesis fl ow at Theseus

Logic, using synchronous techniques, which yielded

100% stuck-at fault coverage.7 A more recent ap-

proach by Shi et al.,8 targeting Mousetrap pipelines,

entirely eliminates the need for scan, relying instead on

two interesting properties specifi c to many high-speed

asynchronous pipelines. First, the datapath uses

normally-transparent latches instead of fl ip-fl ops,

thereby allowing an entire multi-stage pipeline to be

placed in test mode as a single combinational fl ow-

through logic block. Second, the asynchronous control

circuits are inherently self-checking for a large fraction

of stuck-at faults (see above), thereby leaving only a

small number of faults to expose through test pattern

application.

A novel approach to testing delay faults—in particu-

lar, timing constraint violations—in asynchronous pipe-

lines has also been proposed.9 Unlike synchronous

approaches, very little testing hardware is added—in

fact, none is required for linear pipelines—yet “at-

speed” delay faults can be activated using only low-

speed test equipment.

References

1. I. David, R. Ginosar, and M. Yoeli, “Self-timed is

self-checking,” J. Electron. Testing, vol. 6, no. 2, pp.

219–228, 1995.

2. S. J. Piestrak and T. Nanya, “Towards totally self-

checking delay-insensitive systems,” in Proc. 25th Int.

Symp. Fault-Tolerant Comput., 1995, pp. 228–237.

3. A. Khoche and E. Brunvand, “Testing micropipe-

lines,” in Proc. Int. Symp. ASYNC, 1994, pp. 239–246.

4. O. A. Petlin and S. B. Furber, “Built-in self-testing

of micropipelines,” in Proc. Int. Symp. ASYNC, 1997,

pp. 22–29.

5. F. te Beest et al., “Automatic scan insertion and test

generation for asynchronous circuits,” in Proc. ITC,

2002, pp. 804–813.

6. M. Roncken, “Defect-oriented testability for asyn-

chronous ICs,” in Proc. IEEE, vol. 87, no. 2, pp.

363–375, 1999.

7. A. Kondratyev, L. Sorensen, and A. Streich, “Testing

of asynchronous circuits by “inappropriate” means:

Synchronous approach,” in Proc. Int. Symp. ASYNC,

2002, pp. 171–180.

8. F. Shi et al., “Test generation for ultra-high-speed

asynchronous pipelines,” in Proc. ITC, 2005.

9. G. Gill et al., “Low-overhead testing of delay faults

in high-speed asynchronous pipelines,” in Proc. Int.

Symp. ASYNC, 2006, pp. 46–56.

May/June 2015 25

flows have also been developed which adopt

asynchronous ideas of communicating back pres-

sure and robust handling of long global wires into a

clocked system, including latency-insensitive design

[25] and synchronous elastic architectures [26].

Controller Synthesis Tools. The two asynchronous

controller styles, burst-mode and Petrify, discussed

earlier (see ‘‘Synthesis and Optimization’’) are each

supported by automated public-domain tool flows.

The MINIMALIST package, for burst-mode synthesis,

includes algorithms for optimal state encoding and

hazard-free two-level logic minimization, scripts to

explore design-space tradeoffs, support for automatic

insertion of initialization circuitry, and mapping to a

Verilog netlist [2]. The Petrify tool [7] includes a wide

range of algorithms for state encoding, logic optimiza-

tion and technology mapping.

Testing. Support for testability is a critical

component of any tool flow. Asynchronous design

offers unique challenges, given the lack of a global

clock and the requirement of hazard-free design. An

overview of recent advances is highlighted in the

‘‘Testing’’ sidebar.

Performance and timing analysis
Performance and timing analysis are important

components in developing optimized designs and

practical tool flows. Asynchronous circuits and

systems, with their lack of fixed-rate clock, and their

use of fine-grained concurrency between small

interacting components, pose distinct challenges

and opportunities for such analysis.

Several general approaches have been proposed

to analyze the operation of a concurrent system,

which is modeled in the form of a Petri net or Event-

Rule system. There are two main alternative ap-

proaches to model event timing: 1) using stochastic

models (e.g., exponential delay), [27], [28] or 2) using

min-max bounds [29]. The former approach provides

metrics for average-case throughput, which can be

used both to derive early performance estimates and

to guide performance-driven optimization. The latter

approach, which identifies min/max bounds on the

separation of pairs of events over the entire operating

lifetime of a system, provides useful timing informa-

tion as well as formal event ordering guarantees that

enable hardware simplification. Other approaches

target the specialized problem of performance anal-

ysis of pipelined asynchronous systems [19], [20].

Formal verification and
design validation

From a formal perspective, asynchronous circuits

are instances of concurrent systems, and general

techniques for this domain have been effectively

used. The application of trace theory was pioneered

by Dill [30], which models a concurrent system as

an interaction of finite automata, and verifies basic

safety properties through a conformance relation,

with extensions to handle liveness and fairness

properties using infinite automata. The focus is on

speed-independent, QDI and DI circuits, and the

method was used to verify arbiters, queues, and

other systems. Other approaches use reachability

analysis and model checking, including techniques

to incorporate timing constraints, to validate im-

plementations, such as are included in the Petrify

tool [7], which can also formally check the

consistency and well-formedness of specifications.

Simulation, and functional and timing validation,

techniques have also been developed for industrial

flows at Tiempo [24] and Fulcrum/Intel [20].

ASYNCHRONOUS DESIGN IN THE PAST DECADE or so

has experienced a tremendous surge of interest, as

designers grapple with the challenges of deep-

submicron technology and large-scale heteroge-

neous system integration. Several significant inroads

have been breached into the mainstream commer-

cial world, both through major established compa-

nies and diverse startups. These have demonstrated

benefits in important application areas, such as

embedded microcontrollers, networks-on-chip, and

high-performance Ethernet switch chips and

FPGA’s. There have also been promising advances

in more radical emerging applications, such as

ultra-low-energy design, neuromorphic computing,

continuous-time DSP’s, handling of extreme envir-

onments, nanomagnetics, flexible electronics, and

energy harvesting. The inherent plug-and-play

assembly, on-demand operation, and flexible com-

munication strategies of the asynchronous regime

fit well in a world where variability and unpredict-

ability are first-class concerns, and where support

for large-scale assembly of heterogeneous parallel

architectures is becoming a critical requirement.

Design challenges still remain, however. The

historical lack of commercial development of

asynchronous CAD tools, coupled with some of

the unique features of asynchronous systems, has

IEEE Design & Test26

Asynchronous DesignVPart 2: Systems and Methodologies

led researchers to several alternative directions. At

current standing, automated tool flows for synthesis,

optimization and testability have been developed

and used at several companies, but these custom in-

house tools typically are specialized for particular

design styles, and are not generally available to

other researchers and designers. It is hoped, and

anticipated, that this interest will drive the EDA

industry to become partners in establishing asyn-

chronous standards-based languages and widely-

available commercial-grade tool flows. Inroads are

also needed to better educate the microelectronics

community, including the next generation of

designers.

On occasion, designers have tried to harness

asynchronous benefits by targeting an individual

component for asynchronous implementation within

a complex clocked system. However, the speed

benefits of asynchrony, especially at the level of sub-

clock-period, can sometimes be lost to the synchroni-

zation needed at mixed-timing interfaces, as

happenedwith the RAPPID instruction length decoder.

This has led many designers to believe that asynchro-

nous design always has to be an all-or-nothing

approach. However, several other examplesVe.g.,

IBM’s FIR filter, Intel/Fulcrum’s Ethernet switch chips,

CT-DSP’s, GALS NoCs, etc.Vhave shown that mixing

asynchronous with synchronous logic can, in many

cases, be a highly-viable paradigm, and perhaps the

best way forward for greater penetration into industry.

Finally, there is much at stake with emerging

computing technologies, which represent both an

opportunity and a challenge to asynchronous design.

While the precise role of asynchronous design in

technologies such as quantum cellular automata,

nanomagnetics, self-assembled molecular electron-

ics, etc., is as yet unclear, it is generally believed that

some form of asynchrony will inevitably be required

to enable these novel computing paradigms.

Acknowledgment
The authors appreciate the funding support of the

National Science Foundation under Grants CCF-

1219013, CCF-0964606, and OCI-1127361.

h References
[1] S. M. Nowick and D. L. Dill, ‘‘Exact two-level

minimization of hazard-free logic with multiple-input

changes,’’ IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 14, no. 8, pp. 986–997, 1995.

[2] R. M. Fuhrer et al., MINIMALIST: An

Environment for the Synthesis, Verification and

Testability of Burst-Mode Asynchronous Machines.

Dept. Comp. Sci., Columbia Univ., Tech. Report

CUCS-020-99. [Online]. Available: http://hdl.handle.

net/10022/AC:P:29316; http://www.cs.columbia.edu/

~nowick/asynctools.

[3] D. S. Kung, ‘‘Hazard-non-increasing gate-level

optimization algorithms,’’ in Proc. IEEE/ACM Int.

Conf. Comput.-Aided Design (ICCAD 92), 1992,

pp. 631–634.

[4] S. M. Nowick and C. W. O’Donnell, ‘‘On the existence of

hazard-free multi-level logic,’’ in Proc. 9th IEEE Int.

Symp. Adv. Res. Asynch. Circuits Syst. (ASYNC 03),

2003, pp. 109–120.

[5] S. M. Nowick and D. L. Dill, ‘‘Synthesis of

asynchronous state machines using a local clock,’’ in

Proc. IEEE Int. Conf. Comput. Design (ICCD 91), 1991,

pp. 192–197.

[6] A. Marshall, B. Coates, and P. Siegel, ‘‘Designing an

asynchronous communications chip,’’ IEEE Design

& Test, vol. 11, no. 2, pp. 8–21, 1994.

[7] J. Cortadella et al., ‘‘Petrify: A tool for manipulating

concurrent specifications and synthesis of

asynchronous controllers,’’ IEEE Trans. Inf. Syst.,

vol. E80-D, no. 3, pp. 315–325, 1997. [Online].

Available: http://www.lsi.upc.edu/~jordicf/petrify.

[8] M. Ligthart et al., ‘‘Asynchronous design using

commercial HDL synthesis tools,’’ in Proc. 6th IEEE

Int. Symp. Adv. Res. Asynch. Circuits Syst.

(ASYNC 00), 2000, pp. 114–125.

[9] K. S Stevens, R. Ginosar, and S. Rotem, ‘‘Relative

timing [asynchronous design],’’ IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 11, no. 1,

pp. 129–140, 2003.

[10] C. J. Myers and T. H.-Y. Meng, ‘‘Synthesis of timed

asynchronous circuits,’’ IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 1, no. 2, pp. 106–119,

1993.

[11] H. Jacobson et al., ‘‘High-level asynchronous system

design using the ACK framework,’’ in Proc. 6th IEEE

Int. Symp. Adv. Res. Asynch. Circuits Syst.

(ASYNC 00), 2000, pp. 93–103.

[12] K. van Berkel, Handshake Circuits: An Asynchronous

Architecture for VLSI Programming. Cambridge,

U.K.: Cambridge University Press, 1993.

[13] J. Hansen and M. Singh, ‘‘A fast branch-and-bound

approach to high-level synthesis of asynchronous

systems,’’ in Proc. Int. Symp. Asynch. Circuits Syst.

(ASYNC-10), 2010, pp. 107–116.

May/June 2015 27

[14] R. M. Badia and J. Cortadella, ‘‘High-level synthesis

of asynchronous systems: scheduling and process

synchronization,’’ in Proc. European Design

Automation Conf., 1993, pp. 70–74.

[15] J. Hansen and M. Singh, ‘‘Multi-token resource sharing

for pipelined asynchronous systems,’’ in Proc.

ACM/IEEE Design, Automation Test Europe

Conf. (DATE 12), 2012, pp. 1191–1196.

[16] A. J. Martin, Programming in VLSI: from

Communicating Processes to Delay-Insensitive

Circuits, Dept. of Comp. Sci., California Inst. of

Tech., Tech. Rep. CS-TR-89-1. , .

[17] J. C. Ebergen, ‘‘A formal approach to designing

delay-insensitive circuits,’’ Distrib. Comput., vol. 5,

no. 3, pp. 107–119, 1991.

[18] D. Edwards and A. Bardsley, ‘‘Balsa: An asynchronous

hardware synthesis language,’’ The Computer J.,

vol. 45, no. 1, pp. 12–18, 2002.

[19] G. Gill and M. Singh, ‘‘Automated microarchitectural

exploration for achieving throughput targets in

pipelined asynchronous systems,’’ in Proc. IEEE

Symp. Asynch. Circuits Syst. (ASYNC 10), 2010,

pp. 117–127.

[20] P. Beerel, G. D. Dimou, and A. M. Lines, ‘‘Proteus: An

ASIC flow for GHz asynchronous designs,’’ IEEE

Design & Test, vol. 28, no. 5, pp. 38–51, 2011.

[21] J. Cortadella et al., ‘‘Desynchronization: Synthesis

of asynchronous circuits from synchronous

specifications. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 25, no. 10,

pp. 1904–1921, 2006.

[22] R. B. Reese, S. C. Smith, and M. A. Thornton,

‘‘UncleVAn RTL approach to asynchronous design,’’ in

Proc. 18th IEEE Int. Symp. Asynch. Circuits Syst.

(ASYNC 12), 2012, pp. 65–72.

[23] M. Moreira et al., ‘‘Semi-custom NCL design with

commercial EDA frameworks: Is it possible?,’’ in

Proc. 20th IEEE Int. Symp. Asynch. Circuits Syst.

(ASYNC 14), 2014, pp. 53–60.

[24] A. Yakovlev, P. Vivet, and M. Renaudin, ‘‘Advances in

asynchronous logic: From principles to GALS & NoC,

recent industry applications, commercial CAD tools,’’ in

Proc. ACM/IEEE Design, Automation and Test in

Europe Conf. (DATE 13), 2013, pp. 1715–1724.

[25] L. P. Carloni, K. L. McMillan, and

A. L. Sangiovanni-Vincentelli, ‘‘Theory of

latency-insensitive design,’’ IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 20,

no. 9, pp. 1059–1076, 2001.

[26] J. Carmona et al., ‘‘Elastic circuits,’’ IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 28,

no. 10, pp. 1437–1455, 2009.

[27] P. A. Beerel and A. Xie, ‘‘Performance analysis of

asynchronous circuits using Markov chains,’’ in Proc.

Concurrency Hardware Design, 2002, pp. 313–344.

[28] P. B. McGee and S. M. Nowick, ‘‘Efficient performance

analysis of asynchronous systems based on

periodicity,’’ in Proc. CODES-ISSS, 2005,

pp. 225–230. [Online]. Available: http://www.cs.

columbia.edu/~nowick/asynctools.

[29] H. Hulgaard et al., ‘‘An algorithm for exact bounds on

time separation of events in concurrent systems,’’ IEEE

Trans. Comput., vol. 44, no. 11, pp. 1306–1317,

1995.

[30] D. L. Dill, Trace Theory for the Automatic Hierarchical

Verification of Speed-Independent Circuits.

Cambridge, MA, USA: MIT Press, 1989.

Steven M. Nowick is a professor of computer
science at Columbia University, New York, NY, USA.
His research interests include the design and
optimization of asynchronous and mixed-timing (i.e.,
GALS) digital systems, scalable and low-latency on-
chip interconnection networks for shared-memory
parallel processors and embedded systems, extreme
low-energy digital systems, neuromorphic computing,
and variation-tolerant global communication. He has a
PhD in computer science from Stanford University,
Stanford, CA, USA. He is a Fellow of the IEEE.

Montek Singh is an associate professor of
computer science at the University of North Carolina
at Chapel Hill, NC, USA. His research interests
include asynchronous and mixed-timing circuits and
systems; CAD tools for design, analysis, and optimi-
zation; high-speed and low-power VLSI design; and
applications to emerging computing technologies,
energy-efficient graphics, and image sensing hard-
ware. He has a PhD in computer science from
Columbia University, New York, NY, USA.

h Direct questions and comments about this article
to Steven M. Nowick, Department of Computer
Science, Columbia University, New York, NY 10027
USA; nowick@cs.columbia.edu; or to Montek Singh,
Department of Computer Science, University of North
Carolina, Chapel Hill, NC 27599 USA; montek@cs.
unc.edu.

IEEE Design & Test28

Asynchronous DesignVPart 2: Systems and Methodologies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

