
Who Killed My Battery:
Analyzing Mobile Browser Energy Consumption

Narendran Thiagarajan†

naren@cs.stanford.edu
Gaurav Aggarwal†

agaurav@cs.stanford.edu
Angela Nicoara*

angela.nicoara@telekom.com
Dan Boneh†

dabo@cs.stanford.edu
Jatinder Pal Singh‡

jatinder@stanford.edu
†Department of Computer Science, Stanford University, CA
*Deutsche Telekom R&D Laboratories USA, Los Altos, CA

‡Department of Electrical Engineering, Stanford University, CA

ABSTRACT
Despite the growing popularity of mobile web browsing, the energy
consumed by a phone browser while surfing the web is poorly un-
derstood. We present an infrastructure for measuring the precise
energy used by a mobile browser to render web pages. We then
measure the energy needed to render financial, e-commerce, email,
blogging, news and social networking sites. Our tools are suffi-
ciently precise to measure the energy needed to render individual
web elements, such as cascade style sheets (CSS), Javascript, im-
ages, and plug-in objects. Our results show that for popular sites,
downloading and parsing cascade style sheets and Javascript con-
sumes a significant fraction of the total energy needed to render the
page. Using the data we collected we make concrete recommen-
dations on how to design web pages so as to minimize the energy
needed to render the page. As an example, by modifying scripts on
the Wikipedia mobile site we reduced by 30% the energy needed to
download and render Wikipedia pages with no change to the user
experience. We conclude by estimating the point at which offload-
ing browser computations to a remote proxy can save energy on the
phone.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.11 [Software Engi-
neering]: Software Architectures; D.2.8 [Software Engineering]:
Metrics—Performance Measures

General Terms
Design, Measurement, Performance

Keywords
Mobile browser, Energy consumption, Offloading computations,
Android

1. INTRODUCTION
Recent statistics from NetMarketShare show that about 3% of all

worldwide web browsing is done on mobile browsers [5]. Many
popular sites responded by providing a mobile version of their site
optimized for a small screen. However, we show that many mobile

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

sites are poorly optimized for energy use and rendering them in the
browser takes more power than necessary. Partly this is due to a
weak understanding of the browser’s energy use.

In this paper we set out to analyze the energy consumption of
the Android browser at popular web sites such as Facebook, Ama-
zon, and many others. Our experimental setup includes a multi-
meter hooked up to the phone battery that measures the phone’s
energy consumption as the phone loads and renders web pages. We
patched the default Android browser to help us measure the precise
energy used from the moment the browser begins navigating to the
desired web site until the page is fully rendered. The patch also lets
us measure the exact energy needed to render a page excluding the
energy consumed by the radio. Our setup is described in detail in
Section 2. In that section we also describe the energy model for the
phone’s radio which is similar to models presented in [18, 10].

Using our experimental setup we measured the energy needed
to render popular web sites as well as the energy needed to render
individual web elements such as images, Javascript, and Cascade
Style Sheets (CSS). We find that complex Javascript and CSS can
be as expensive to render as images. Moreover, dynamic Javascript
requests (in the form of XMLHttpRequest) can greatly increase
the cost of rendering the page since it prevents the page contents
from being cached. Finally, we show that on the Android browser,
rendering JPEG images is considerably cheaper than other formats
such as GIF and PNG for comparable size images. For example,
when we translate all images on the Facebook web site to JPEG we
obtain considerable energy savings.

Using our energy measurements we suggest guidelines for build-
ing energy-efficient web pages, namely pages that reduce energy
use on the client. For example, by applying our guidelines to the
Wikipedia mobile site we reduced its energy consumption from
35 Joules to 25 Joules, a saving of 29%. Our modification sim-
ply changes how Javascript works on the page, without affecting
the user experience. The measurements in this paper quantify how
much energy can be saved by following these guidelines.

Beyond optimization, our experiments let us estimate the effec-
tiveness of offloading browser computations to a remote server.
Section 5 gives quantitative numbers for a modern smartphone, the
Android ADP2 phone [2]. We discuss related and future work in
Sections 6 and 7. To promote further research on building “green”
energy efficient web sites we plan to release our experimental setup
and measurement code for others to use.

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

41

Figure 1: The hardware power multimeter and an open battery
used for measuring energy consumption

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5000 10000 15000 20000 25000

P
o
w

er
 (

m
W

)

Time (2ms units)

fb-full-8-nocache-3.94v.plot

Figure 2: Sample multimeter output graph for a Facebook page

2. METHODOLOGY
We begin by describing our hardware and software setup.

2.1 Hardware Setup
Our experiments were performed on an Android Developer

Phone 2 (ADP2) [2]. The mobile device is 3G-enabled T-Mobile
phone that uses 3G and 2.5G and is equipped with an ARM pro-
cessor, 192MB/ 288MB RAM, a 2GB MicroSD card, and an
802.11b/g WiFi interface. We measure its battery capacity in Sec-
tion 2.4.

Today’s mobile devices support a high level API for finding out
the battery level, but provide no support for obtaining precise fine-
grained energy use. To obtain precise measurements we use the
Agilent 34410A [1] high-precision digital power multimeter shown
in Figure 1. The multimeter provides fine grained measurements
every 1 milliseconds, namely a sampling rate of 1kHz. A sample
power graph is presented in Figure 2, where the high power interval
captures browser activity.

The Android mobile device will not boot without the battery in
the phone. Therefore, we left the battery inside the phone and mea-
sured continuous power transferred from the battery to the phone.
The charger was disconnected in order to eliminate interference
from the battery charging circuitry. To measure the energy con-
sumption, we opened the battery case and placed a 0.1 ohm resistor
in series with the ground. We measured the input voltage to the
phone and the voltage drop on the resistor from which we calculate
the phone’s instantaneous power consumption.

2.2 Software Setup
In addition to the hardware setup we also had to modify the de-

fault Android browser. Our modified browser enables us to fully
load a URL P in one of two modes:

Figure 3: System architecture

• No Cache. Browser cache is emptied before starting to load
the URL so that all elements of the web page are first down-
loaded from the network and then rendered on the phone.
This mode lets us measure the total energy used for navigat-
ing to the page, including 3G transmission, parsing HTML,
and rendering.

• With Cache. All elements of the web page are already
present in the browser cache so that there is no need to use the
radio to download any content. This mode lets us measure
the energy needed to parse and render HTML from cache.
No 3G traffic is allowed in this mode.

Our software setup consists of two components: (1) a Browser
Profiler, an Android application we wrote, and (2) the built-in
Android Browser with some modifications described below. We
will refer to these as Profiler and Browser respectively. Figure 3
illustrates the information flow between these components.

Measurement Workflow. The Profiler provides a simple user in-
terface that takes URL P and number of iterations n as input.

When the user taps a button to start profiling, Profiler tells
the browser to load the web page P in NoCache mode. First,
Profiler instructs the browser to clear its cache by sending
ACTION_CLEAR_CACHE intent [4]. Browser responds by com-
pletely clearing its cache and sends back CACHE_CLEARED intent
to Profiler. Both these intents are custom intents defined by us
and discussed in detail later in this section. Now, Profiler asks the
browser to load web page P by sending the built-in ACTION_VIEW
intent. Once page load finishes, user presses the BACK button on the
Android device to transfer control back to Profiler. This process is
repeated n times and represents n page loads of P in NoCache
mode.

At the end of NoCache mode, all components of page P will be
present in the browser cache. Now, Profiler asks the browser to load
P again n times using same combination of ACTION_VIEW intent
and BACK button as before. However, we do not clear the cache
after every load this time. So, this represents n page loads of P in
WithCache mode.

At the end of every page load, Profiler also logs the following
information to a file:

1. WiFi and 3G signal strength obtained using Android API.

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

42

2. Tx/Rx bytes: Number of bytes sent and received by the
browser obtained using getUidTxBytes(int uid)
and getUidRxBytes(int uid) functions in
android.os.NetStat class.

3. Page load time and list of URLs corresponding to all compo-
nents of the page that were downloaded. This information is
sent by the browser after page load completes.

Changes to the Android Browser. At a high level, the Android
Browser consists of three layers:

1. UI Layer - This contains all Android Activities [3] that com-
prise browser chrome, user interface elements like buttons,
menus and corresponding event handlers.

2. WebKit Glue - This contains Java classes that maintain cur-
rent state of the browser like open tabs and acts as an in-
termediary between the UI Layer and native WebKit. It in-
cludes CacheManager class which provides an interface to
store and lookup pages from a SQLite based cache. Also,
NetworkLoader class is used to download content from the
network.

3. Native WebKit Layer - This consists of the native
WebKit [8] library which parses and renders downloaded
web pages on the phone screen. It relies on NetworkLoader
and CacheManager classes to download different compo-
nents of a web page. This layer also contains the Javascript
engine.

To measure the precise energy used by the browser we had to
make a few modifications to the default Android browser.

1. Cache management. As described earlier, we load a page in
WithCache and NoCache mode to isolate the energy used for
rendering a web page from that used for transmission. To im-
plement these modes we had to make the following changes to
cache management in the Android browser:

• Cache everything - WithCache mode can be used to mea-
sure rendering energy only if all components of the web page
are cached and hence there is no need to download any new
content. CacheManager class contains the browser cache
management policy. We modified this class to cache redi-
rects containing a cookie header and HTTP responses with
zero content length which are otherwise not cached. Also,
we ignore Cache-Control headers, Pragma: no-cache and
Expires header field in any HTTP response.

• Clear cache programmatically - Browser contains a Pref-
erence option to clear the cache that can only be set man-
ually. Since we would be using Profiler to make mea-
surements, we introduced a new Android intent called
ACTION_CLEAR_CACHE. As described earlier, Profiler issues
this intent to the browser which acts upon it by clearing its
cache. We also added another intent CACHE_CLEARED to
serve as a callback from the browser to Profiler to inform
that cache has been cleared so that it can continue with the
next measurement.

• Handle “changing” URLs - During our experiments we
noticed that despite our caching mode, the browser was
still downloading content from the network. Part of
the reason was due to GET requests with varying pa-
rameters. For example, while loading www.google.
com, the browser downloads http://www.google.com/
m/gn/loc?output=json&text=87135 and caches the re-
sult. However, when loading the same page from

cache, the browser tries to download a slightly different
URL - http://www.google.com/m/gn/loc?output=
json&text=94219. Since the value of the text parame-
ter is different from the cached copy, cache lookup fails and
a network request is issued. As a workaround, we identi-
fied all such “changing” URLs and modified browser code
to ignore the GET parameters in cache lookup. This sup-
pressed network traffic for these pages. [Note that we could
not simply turn off the 3G radio, since then the page would
not render].

2. Intercept Page Load. When recording samples using multi-
meter as explained in Section 2.1, there should be minimal in-
teraction with the phone to ensure accurate measurements. To
achieve this, we modified the browser to ask user’s permission
to start loading a web page by displaying a dialog and suspend
all browser activity until it obtains the permission. Now to take
measurements we can follow this simple process: Enter URL
to measure and hit load on the browser. Browser will display
the dialog and wait for user to press “ok”. Then, setup the mul-
timeter and trigger recording of samples. Lastly, hit “ok” on the
dialog to start loading the web page.

3. Track metrics. Browser keeps a list of all component URLs
that are downloaded over the network as part of rendering the
page. It also tracks the time taken to load the entire web page.
Once the page load completes, it sends this list of downloaded
URLs and page load time to Profiler which logs them to a file.
When page is being loaded from cache, this list of URLs should
be empty.

Impact on measurements. Our modifications to the browser do
not change the browser’s energy profile. Clearing the cache pro-
grammatically does not modify the code path for loading a web
page. Changes to cache everything mainly involve commenting
out code that checks for Cache-control headers, Expiry header
field etc. Our other modifications such as, tracking metrics and
string comparisons during cache lookup have negligible impact on
browser energy use.

2.3 Automation
The energy measurement system described in Section 2.2

requires significant user assistance in the measurement process. To
perform a large number of measurements we automated the process
by using the SCPI programming interface on the multimeter.

System components. Our energy measurement system consists of
the following components:

• Server,
• Android Phone (client), and
• Multimeter.

Figure 4 shows how these components interact. The server controls
the phone (client) and the multimeter, telling it when to start, stop
and save the measurements. When the experiment starts the server
communicates with our Browser Profiler application on the phone.
The server instructs this application to request the running phone
browser to repeatedly load a specific URL, either with or without
caching.

During this process the server also starts the multimeter mea-
surement. The server communicates with the Agilent multimeter
using SCPI commands. Due to the limitations set by SCPI com-
mands, the highest sampling rate achievable for the measurements
is 2.5 kHz (i.e. 2500 measurements per second). At the end of

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

43

rename
file

Multimeter

repeat
for all
URLs

setup
request

start measurement
URL

50
sec

voltage numbers

voltage numbers

Server
Android
Phone

load URL in
browser

Figure 4: Automated energy measurement system

the experiment, all measurements recorded on the multimeter are
transfered to the server for processing.

Software changes. The browser is modified to contain a single tab
so that all loads take place on the same tab. After loading each URL
the browser is navigated to an empty page so that all measurements
start with the browser in the same state. The server-client commu-
nication takes place over 3G and not USB because connecting the
phone to a computer via USB starts charging the phone, thereby
rendering the measurement unusable.

2.4 Battery Capacity Measurement
All our energy measurements are stated in Joules or millijoules.

To make sense of these numbers we often state energy used as a
fraction of the total battery capacity.

To determine the battery’s energy capacity in Joules we per-
formed the following simple experiment. We ran the multimeter
for 250 seconds sampling the power consumption every 5 millisec-
onds. During these 250 seconds we stressed the phone by con-
stantly browsing random web pages. At the end of the 250 seconds
we observed a total energy use of 229.88 Joules that resulted in a
7% drop in battery charge. From this experiment we learned the
following important fact:

1% of a fully charged battery is
approximately 32.84 Joules.

2.5 3G Radio Energy
To better understand the energy consumed by the 3G radio we

measured the energy needed to setup a 3G connection with the base
station and the energy needed for varying payload sizes.

Figure 5 shows the average energy needed for downloading or
uploading 4, 8, 16, 32, 64, 128, and 256 kB over 3G. All measure-
ment results are averaged over five runs and the standard deviation
is less than 5%. In all measurements the display brightness is set
to the minimum level. We measured the average idle power on the
device and found it to be 170 millijoules per second. We subtract
this number from all our measurements.

Energy model. Figure 5 shows two important facts about 3G be-
havior. First, for both download and upload there is a high setup
cost of roughly 12 Joules before the first byte can be sent. Second,
once the connection is established, the energy needed to download
data is mostly flat, which means that roughly the same energy is
used no matter how much data is downloaded (up to 256KB). The
situation is a little different for uploading data where the energy

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200 220 240 260

En
er

gy
 (

Jo
u

le
s)

Data size (Kilo bytes)

3G Download 3G Upload

Figure 5: Energy consumption over 3G (download and upload)

does increase with the amount of data being uploaded. These ob-
servations are consistent with earlier work [18, 10].

The experiment used to generate the data in Figure 5 separates
upload activity from download activity. That is, the upload num-
bers in the figure are obtained by sending data from the phone and
not using the radio for any other task. The download numbers
are obtained similarly. A web browser, however, simultaneously
sends HTTP requests and receives HTTP responses using multi-
ple threads as it requests and receives the various components that
make up a web page.

Naively one might conjecture that the energy needed to send
16kB and then receive 16kB is the sum of the energies for upload-
ing and downloading 16kB shown in Figure 5. But this turns out to
be false. Our experiments show that a mild interleaving of uploads
and downloads is essentially dominated by the cost of the upload
plus a relatively small quantity. More precisely, suppose we upload
and then download a 1kB chunk and repeat this process eight times
(that is, we upload a total of 8kB and download a total of 8kB at
1kB per iteration). Then the total energy used is only 5% more
than the energy needed to directly upload 8kB of data. Hence, the
upload and download energies in Figure 5 should not be summed
to estimate the radio energy used by a web page. Instead, for mild
interleaving the cost is dominated by the upload energy. Note that
the 3G setup cost is only incurred once.

When we repeated the experiment with a larger number of repeti-
tions (256) the energy used by the radio grew to more than the sum
of the corresponding upload/download energies. This suggests, and
our experiments confirm, that Figure 5 should not be used when
there are many round trips.

In summary, Figure 5 can be used to model applications that
mostly use one-way communication such as streaming video. For
Web traffic, that interleaves uploads and downloads, it can be quite
difficult to define an energy model that accurately predicts the 3G
energy needed to fetch a web page since energy use depends on the
precise shape of the traffic. We do not use a model to estimate the
radio energy needed to fetch a web page. All our data is derived
from experiments.

3. MEASUREMENTS
Using the infrastructure described in the previous section we ob-

tain insights on the energy consumption of mobile web sites and
web elements. We describe our experiments and findings here.

3.1 Energy Consumption of Top Web Sites
Our first experiment measures the energy consumption used

by web pages at several top sites. We chose sites representing

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

44

0

5

10

15

20

25

30

35

40

45

50

3
G

 s
et

u
p

b
ai

d
u

liv
e.

co
m

gm
ai

l

w
al

l s
t.

 jo
u

rn
al

yo
u

tu
b

e

eb
ay

p
ic

as
a

cn
n

b
b

c

am
az

o
n

m
ic

ro
so

ft

en
ga

d
ge

t

n
at

ge
o

n
yt

im
es

ya
h

o
o

ao
l

w
ea

th
er

fa
ce

b
o

o
k

w
o

rd
p

re
ss

b
lo

gg
er

go
.c

o
m

im
d

b

tu
m

b
lr

w
ik

ip
ed

ia

ap
p

le

En
er

gy
 (

Jo
u

le
s)

Figure 6: Energy consumption of top websites

Web site Comment % Battery Traffic (bytes)
life Upload Download

m.gmail.com inbox 0.41 9050 12048
m.picasa.com user albums 0.43 8223 15475

m.aol.com portal home 0.59 11927 37085
m.amazon.com product page 0.48 9523 26838

mobile.nytimes.com US home page 0.53 15386 66336
touch.facebook.com facebook wall 0.65 30214 81040

mw.weather.com Stanford weather 0.62 38253 134531
apple.com home page 1.41 86888 716835

m.imdb.com movie page 0.97 30764 127924
m.microsoft.com home page 0.49 15240 47936

m.natgeo.com home page 0.53 13877 76742
m.wikipedia.org article page 1.09 43699 308832

bbc.com mobile home page 0.46 20505 67004
m.ebay.com product page 0.42 8041 17941

m.yahoo.com portal home 0.55 14397 45564
m.youtube.com home page 0.55 5704 20329

baidu.com search page 0.39 2108 3951
blogger.com home page 0.94 45382 427788
m.cnn.com headlines page 0.46 9311 33844

m.engadget.com portal page 0.50 23334 80432
m.go.com start page 0.96 27965 154278
m.live.com personal page 0.40 7319 12576

wordpress.com home page 0.90 23318 205140
tumblr.com home page 1.03 40543 889242
m.wsj.com news page 0.41 4058 13653

Table 1: Web sites used in measuring energy consumption

e-commerce, social networking, email, blogging, portals, news,
videos, product and financial sectors. The complete list of sites is
shown in Table 1 along with the amount of traffic in bytes needed
to request and download the page. A summary of the energy con-
sumed by these sites is shown in Figure 6. Table 1 also shows the
energy needed to download and render the page as a fraction of
a fully charged battery (computed using the battery measurements
from Section 2.4).

Experiment details. To measure the total energy used to download
and render the page we first measured the phone’s average energy
consumption when the browser is idle, which is 170 mJ/sec. Then
the web pages to be measured are downloaded and saved in a re-
mote server running Apache web server. We then used our Browser
Profiler application to measure the energy consumption from the
moment the browser begins processing the navigation request un-
til the page is fully rendered. Each measurement was repeated up
to ten times. The difference between the idle energy measurement
and the energy when processing the request is the (average) total
energy used to download and render the page. This includes the en-
ergy needed for 3G communication and for parsing and rendering
the page, but does not include the phone’s idle energy consumption.

The resulting numbers are shown in Figure 6. Note that the error
bars are so small that they are barely visible.

The left most column in Figure 6 shows the energy needed to
set up a 3G connection and download a few bytes without any ad-
ditional processing. Since all navigation requests must setup a 3G
connection we treat this measurement as a baseline where the in-
teresting differences between web sites are above this line.

Figure 6 is generated from the mobile versions of the web
site shown. The exceptions are apple.com, tumblr.com,
blogger.com and wordpress.com that do not have a mobile web
site. As a result, the amount of data needed to retrieve these sites is
significantly higher than for other web sites. For example, Apple’s
page contains many images, including a 26kB welcome image that
is mostly wasted on the phone since the phone scales it down to fit
its small screen.

Rendering energy. Next we measure the energy needed to parse
and render the page without the energy consumed by the radio.
That is, we determine how the complexity of the web page affects
the energy needed to render it.

To measure the rendering energy we forced the browser to locally
cache all web content and then measured how much energy was
used to render the content from local cache. We made sure that:

1. There was no network traffic while rendering from local
cache, and

2. The cached data was identical to data fetched from the web
site, that is, the browser did not pre-process the data before
caching it.

Consequently, this experiment measures the energy used to parse
and render the page when all contents are already in memory. The
resulting numbers are shown in Figure 7. The percentages above
the bars show the energy to render the page as a fraction of the total
energy to download and render the page.

We only include measurements for 10 of the 25 sites in Figure 6.
For the remaining 15 sites caching web content did not prevent net-
work traffic. Javascript and CSS at these sites generated dynamic
web requests that could not be cached ahead of time. On the Apple
home page, for example, the Javascript used for tracking user lo-
cation generates an update forcing the phone to setup a 3G con-
nection. Thus, despite caching, energy consumption for these 10
sites was almost as high as when no caching took place. There is
an important lesson here for mobile web site design — dynamic
Javascript can greatly increase the power usage of a page. We dis-
cuss this issue further in Section 7.

Analysis. Figure 7 shows that mobile sites like baidu, that are
mostly text and very little Javascript and no large images, consume

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

45

0

1

2

3

4

5

6

7

gmail amazon picasa aol microsoft yahoo youtube baidu live.com wall
street

journal

En
er

gy
 (

Jo
u

le
s)

35.64% 31.71% 33.79%
22.49%

30.36%

32.37% 44.07%

31.79%

37.11%

40.49%

(Percentages show energy relative to Figure 6)

Figure 7: Rendering energy of top websites from cache

0

0.5

1

1.5

2

2.5

3

gmail amazon picasa aol microsoft yahoo youtube

En
er

gy
 (

Jo
u

le
s)

Rendering Energy Total Energy (Transmission + Rendering)

6.86%

17.09%

20.56%

15.53%
2.87%

18.89%

24.22%

Figure 8: Energy consumed by images. The percentage num-
bers refer to the total energy needed to render images as a frac-
tion of the energy for rendering the entire page.

little energy to render. The Amazon site that contains a product
image take more energy. Sites like youtube and yahoo that contain
images, Javascript, and CSS take considerably more energy to ren-
der. We study the precise reason for these differences in the next
section.

3.2 Energy Consumption of Web Components
Next, we look at the energy consumption of individual web ele-

ments such as images, Javascript, cascade style sheets (CSS), etc.
The question is how much energy is used by different web ele-
ments.

To measure the energy used by a particular element we created
a copy of the web page on our servers and then compared the en-
ergy consumption used for loading and rendering the entire page to
the energy consumption needed for loading and rendering the page
with the particular component removed by commenting it out. The
difference between the two numbers gives an estimate for the en-
ergy needed to present the component. These experiments were
run on web sites that contain specific components (Figure 7). For
example, our results for Javascript are illustrated in Figure 9.

As in the previous section we first measured the total energy used
for loading and rendering each component, which includes both
rendering and transmission energy. We then measured parsing and
rendering energy alone by forcing the browser to cache all content
locally on the phone.

Images. Figure 8 shows energy measurements for images on web
pages. The bars on the right correspond to the total energy spent on
images. The bars on the left show the rendering energy for cached
images. The percentage above the left bar shows the energy spent
on rendering images as a fraction of the energy for rendering the
entire page from cache.

As expected, rendering images takes a significant fraction of the

0

0.5

1

1.5

2

2.5

amazon picasa yahoo youtube

En
er

gy
 (

Jo
u

le
s)

Rendering Energy Total Energy (Transmission + Rendering)

16.89%

15.62%

6.79%

20.35%

Figure 9: Energy consumption of Javascript

total rendering energy. Some sites like Youtube spend around quar-
ter of their rendering energy on images.

The amount of energy used to render images is proportional to
the number and size of images on the page. The Youtube page has
5 large images representing a screenshot from each video which is
why 24.22% of the total energy to render the page is spent on im-
ages. Gmail, in contrast, contains only small GIFs (13 pixels wide)
and images take a smaller fraction of the total energy (6.86%). We
found that one small GIF on the Gmail page is repeated 16 times.
This GIF indicates whether an email was sent to a single recipient
or a group.

Picasa spends a large fraction of its rendering energy (20.56%)
on images because the user album page contains 8 large album
cover images.

Javascript. Figure 9 shows similar measurements for Javascript
on web pages. Of the cachable websites that we considered only
Amazon, Picasa, Youtube and Yahoo have Javascript.

Amazon consumes 16.89% of its rendering energy for handling
Javascript. The reason for the large rendering cost is a large and
complex Javascript file. Many of the Javascript functions in the
file are not used by the page but loading and processing the entire
Javascript file consumes a lot of energy.

Yahoo’s Javascript code is embedded in the HTML page. The
amount of Javascript code is very small but the code gets executed
every time the page loads. As a result Javascript processing takes
only 6.79% of the total rendering energy. The Javascript code here
is minimal and fully used in the page. Youtube’s Javascript is em-
bedded but is so heavy that it takes 20.35% of the total energy.

Cascade Style Sheets (CSS). Finally, Figure 10 shows energy
measurements for CSS. The rendering cost of CSS depends on the
number of items styled using CSS. Amazon has a high CSS ren-
dering cost (17.57%) since about 104 items in the page use styling
defined in the CSS file. Amazon also has complex styling in the
page like a color fade out effect, horizontal bars to show product
ratings, and huge wide buttons. Gmail has simple styling defined
in an internal style sheet. The CSS is very small and it consumes
only 3% of the total rendering energy.

AOL and Picasa both contain large images but the CSS energy
consumption for AOL is much lower than Picasa’s. The reason is
that AOL uses HTML tables to position its images while Picasa
uses CSS to position images. This nicely illustrates how position-
ing using CSS is less energy efficient than positioning using simple
HTML tags.

Microsoft and Yahoo pages use large CSS files that causes a very
high transmission energy cost to download the file.

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

46

0

0.5

1

1.5

2

2.5

3

3.5

4

gmail amazon picasa aol microsoft yahoo youtube

En
er

gy
 (

Jo
u

le
s)

Rendering Energy Total Energy (Transmission + Rendering)

3.05%

17.57% 17.54%

1.1%

12.42%

9.9%

17.38%

Figure 10: Energy consumption of cascade style sheets

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

fa
ce

b
o

o
k

gm
ai

l

w
ea

th
er

am
az

o
n

n
yt

im
es

ap
p

le

p
ic

as
a

ao
l

im
d

b

m
ic

ro
so

ft

n
at

ge
o

w
ik

ip
ed

ia

b
b

c

eb
ay

ya
h

o
o

yo
u

tu
b

e

images css java script others

Figure 11: Total energy consumption of web components
(Transmission + Rendering)

The relative energy used on web components. For completeness,
Figure 11 shows the relative costs of individual components. The
general trend across web sites is that CSS and Javascript are the
most energy consuming components in the transmission and ren-
dering of a site. The value of ’others’ in the graph mainly includes
the 3G connection setup cost and text rendering.

Sites that have high ’others’ (such as AOL, Ebay and Gmail) can
become more efficient as wireless technology improves and con-
nection setup cost decreases. Sites with low ’others’ (such as Apple
and IMDB) spend much of their energy on web elements and will
not gain much from improvements in wireless technology. Thus,
Figure 11 is another method for comparing web site efficiency.

4. OPTIMIZING MOBILE WEB PAGES
Power hungry web components include images, Javascript, and

CSS. In this section we show how to optimize web pages so as to
reduce the power consumption of these elements.

4.1 Reducing Javascript Power Consumption
Javascript is one of the most energy consuming components in

a web page. Figure 9 shows a high download and rendering
energy required by most of the websites for Javascript. This is
mainly because these webpages load large Javascript files for ren-
dering the web page even though not all of the script is used by the
page. For example, the download and rendering of Javascript in the
Wikipedia page takes about 10 Joules. This is about 30% of the
total energy to download and render the page.

The Wikipedia webpage has two Javascript files linked to the
page - application.js and jquery.js. The application.js is the
Javascript specific to the Wikipedia site and the jquery.js is the
generic jquery Javascript library. In the Wikipedia page each sec-
tion of the page like Introduction, Table of Contents, etc. can be
collapsed and expanded by the click of a button above each section.

The Javascript in jquery.js is used primarily for a single purpose -
to dynamically identify the correct section based on the id of the
button clicked. But loading this Javascript to the memory alone
takes 4 Joules.

In order to prove that this energy is avoidable, we redesigned
the page with a different Javascript. This time each text section
and the button are given the same id and the Javascript function
uses document.getElementById() to get the right section and ele-
ment.value=show/hide is used. The application.js is now replaced
by this simple Javascript. We found that in cache mode, the modi-
fied Wikipedia page renders with 9.5 Joules. Just adding the appli-
cation.js and jquery.js files as link to the page increases the energy
consumption to 15 Joules.

This experiment shows that shrinking Javascript on a mobile
page to contain only functions used by the page greatly reduces
energy use. Using generic Javascript libraries simplifies web
development, but increases the energy used by the resulting pages.

4.2 Reducing CSS Power Consumption
Similar to the previous experiment we found that large CSS files

with unused CSS rules consume more than minimum required en-
ergy. For example, Apple consumes a large amount of energy to
download and render CSS (Figure 10). The total energy to down-
load and render CSS of this page is around 12 Joules. This is be-
cause the Apple home page requires 5 different CSS files contain-
ing different rules used in the page.

We modified the Apple site by replacing multiple CSS files with
just one CSS file containing just the rules required by the page.
This resulted in an energy drop of 5 Joules. This is about 40% of
the total CSS energy consumed by Apple. This energy can be saved
by using a CSS file with only the required CSS rules.

This shows that like Javascript, CSS file should be page specific
and contain only the rules required by the elements in the page.

4.3 Image Formats: Comparison and Opti-
mization

The web sites we analyzed use a variety of image formats, with
JPEG, GIF, and PNG being the most common. Since the energy
needed to render an image depends on the encoding format we set
out to compare the energy signature for different formats. We focus
on these three predominant formats.

Recall that the GIF format supports 8-bits per pixel and uses
the Lempel-Ziv-Welch (LZW) lossless data compression method.
PNG is similarly a bitmapped image format that was created to
improve upon and replace GIF. PNG also uses lossless data com-
pression. JPEG is another popular image format using lossy data
compression.

On the mobile web sites we examined GIFs were mostly used
for very small images such as small arrows and icons, PNGs were
used for larger images such as banners and logos, and JPEGs were
used for large images.

Image formats for different dimensions. Figure 12 shows the
energy consumption needed to download and render images of dif-
ferent sizes in the three formats on the Android phone.

This experiment used a JPEG image of dimensions 1600x1200
and size 741kB. Smaller images of different height and width are
cropped from this image as shown on the x-axis. We then saved
the cropped images as JPEG, GIF and PNGs. Each image was then
embedded in a web page that contained the image and nothing else.
Energy needed to download and render each image is measured
for all sizes shown on the x-axis with the energy along the y-axis.
Since GIF and PNG are only used for small images, we only exper-
imented with these formats for small images.

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

47

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 100 200 300 400 500 600 700

En
er

gy
 (

Jo
u

le
s)

Image width (pixels)

Image download + rendering energy

JPEG GIF PNG

Figure 12: Energy consumption for image formats

Figure 12 shows that JPEG is the most energy efficient format on
the Android phone for all image sizes. To further drive this point
home we used Mogrify to convert all images on the Amazon and
Facebook pages to JPEG using a standard 92% quality compression
measure. We then measured the energy consumption for rendering
the resulting images from cache relative to the original images and
obtained the following results

Amazon Facebook
Site (Joules) (Joules)

Original 2.54 3.43
JPEG 2.04 2.39

Savings 20% 30%

The table shows that both Amazon and Facebook can conserve en-
ergy on Android phones by converting all their images to JPEG,
without impacting the visible quality of the images. The reason for
the savings is that JPEG compresses the images better and is faster
to render then PNG and GIF.

5. OFFLOADING BROWSER COMPUTA-
TION

Given the phone’s limited energy there is a strong desire to min-
imize its work. A natural idea is to offload heavy computations to a
server cloud and have the phone display the results [13]. In the con-
text of web browsing one could offload image rendering — includ-
ing decompression and conversion to a bitmap — to the cloud and
have the phone simply display the resulting bitmap. Some browsers
such as Opera [7] and SkyFire [6] take this approach. Their phone
browsers talk to the web through a proxy that does most of the
heavy lifting of rendering the page.

Generally speaking, there are two approaches to offloading com-
putation:

• Front-end proxy: a web proxy examines all traffic to the
phone and partially renders the page to save work for the
phone. Here the proxy decides how the content should be
modified before it is sent to the phone. This approach was
previously used by old WAP gateways as they translated
HTML to WAP. This approach is also used by Opera and
SkyFire, but is not used by the default Android or iPhone
browsers.

• Back-end server: the phone downloads web content as is,
but then offloads certain operations to a server farm. Here
the phone decides what needs to be offloaded.

In the next two section we discuss both approaches and measure
their energy savings.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 100 200 300 400 500 600 700

En
er

gy
 (

Jo
u

le
s)

Image width (pixels)

Image download + rendering energy

JPEG Offload Energy

Figure 13: The benefits of offloading images

5.1 Offloading via a Front-end Proxy
Some sites, like apple.com, do not have a mobile version.

Phones visiting these sites unnecessarily download large images.
A natural application for a front-end proxy is to resize images to
fit the phone screen, thereby saving radio use and rendering work.
The natural place for a front-end proxy is at the carrier’s data center
where the carrier can optionally play the role of the proxy.

Figure 13 shows the energy savings that result from a front-end
proxy that down-scales all large JPEG images to 160 pixel width.
The blue line is the energy needed to download JPEG images of
various sizes when no front-end proxy is used. This line is gener-
ated using the same cropping setup used in Figure 12. The green
line shows the saving from a front-end proxy. Since all images
larger than 160x160 are scaled down by the proxy, the energy be-
yond that image size is flat.

The area between the green line and the blue line represents the
energy savings on the phone. On the Apple home page, for exam-
ple, this front-end proxy would save 1.77 Joules on every page load
with little impact to the user experience. While down scaling is not
a new idea, we are not aware of any quantitative measurements
showing its impact on modern phones such as the Android ADP2.
We hope these results make a compelling case for this service.

Down-scaling is not without limitations:

• By down-scaling images, users loose the ability to quickly
zoom in on intricate image details. Instead, a zoom-in re-
quires downloading the zoomed part of the image. But the
more common case is that no zooming takes place.

• For content sent encrypted using SSL, the proxy cannot see
the content and therefore cannot down-scale it. However,
down-scaling cleartext HTTP content is already a win.

Down-scaling can be offered as an opt-in/opt-out option to users to
improve the browsing experience on the phone.

5.2 Offloading via a Back-end Server
Another option for offloading computation is to let the phone

browser send sub-tasks to a back-end server. For images, for ex-
ample, the cost of loading a compressed image and converting it
to a bitmap can be offloaded. In this example we are potentially
reducing CPU work at the cost of increasing use of the radio. We
study when this trade-off is worth while.

As technology improves we expect to see the following trends:

• CPU energy consumption per instruction will continue to
drop, and

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

48

Amazon images Page size Energy
converted to: (kB) (mJ)

JPEG 26.45 224.68
PNG 65.53 268.05

Bitmap (BMP) 75.19 362.49

Table 2: Energy to render all the images in Amazon page in
multiple formats

• The energy needed to transmit or receive one byte from the
phone to the base station will stay roughly constant in com-
parison.

The first assumption is a qualitative version of Moore’s law. The
second assumption is due to the laws of physics: the energy needed
to reach a base station at a certain distance is “roughly” constant.
By “roughly” we mean that transmission energy will likely drop at
a far slower pace than the rate of drop in CPU energy.

Given these two trends, it should be clear that offloading is not
viable in the long run if it results in more radio use. In fact, as
CPU energy per instruction decreases it is far better to maximize
the amount of computation on the phone in order to minimize use
of the radio.

Nevertheless, it is possible that with current technology offload-
ing image rendering to a back-end server saves energy. If so, then
one could envision an architecture where the phone sends an image
URL to a back-end server. The back-end server retrieves the image,
converts it to a plain bitmap, and sends the result to the phone. The
phone simply copies the bitmap to its video buffer.

To test whether this architecture saves energy we compared the
cost of fetching and rendering compressed JPEGs and PNGs to full
bitmaps (BMP). We converted all the images on the Amazon page
to one of JPEG, PNG or BMP. We then measured the cost of render-
ing the images on the page from cache for each of the three formats
and the results are in Table 2.

As already suggested in Figure 12, JPEG is by far the most ef-
ficient encoding and PNG is the second. BMP is by far the worst
even though it requires no decompression. We suspect the reason
BMP does so poorly is that BMP images are considerably bigger
and the extra energy needed to keep the radio on far outweighs the
cost of decompressing the image.

Based on this experiment we conclude that back-end offloading
of image rendering is not viable even with today’s technology.

6. RELATED WORK
There is a large body of work focusing on energy consumption

and network activity in mobile devices. Most results focus on the
phone operating system or generic phone applications. To the best
of our knowledge, none study the web browser and the energy
needed to render specific pages.

Network traffic for smartphone applications. Existing research
on mobile devices has proposed several approaches to the problem
of minimizing energy consumption, such as [18] which reduces
power consumption of data transfers, [10] which chooses wire-
less interfaces based on network condition estimation, [11] which
proposes an approach to energy-aware cellular data scheduling,
and [19, 9] which dynamically switches between wireless network
interfaces based on the data traffic. Several techniques have been
used (e.g., bundling multiple transfers [18], switching between
WiFi and 3G cellular networks [19, 9], and scheduling based on a
dynamic programming procedure for computing the optimal com-
munication schedule [11]) to minimize energy consumption. In

comparison, our focus is on helping web developers build more en-
ergy efficient web pages.

Other related measurement works include a study of the per-
formance of 3G network and applications on smartphones [17,
23]. Huang et al. [17] show that 3G connections suffer from
very long latencies and slow data transfers, which may lead to in-
creased energy consumption. Zhuang et at. [23] present a location-
sensing framework to improve the energy efficiency of localiza-
tion on smartphones that run multiple location-based applications.
The authors present four design principles that minimize energy,
i.e., accelerometer-based suppression, location-sensing piggyback-
ing, substitution of location-sensing mechanisms, and adaptation
of sensing parameters when battery is low. Our work complements
these works with different focus and methodology.

Partitioning applications. Prior works [16, 15, 20] investigated
strategies for reducing the energy consumption of mobile phones
by executing code remotely. Flinn et al. [16, 15] propose strategies
on how to partition a program, how to handle state migration and
adaptation of program partitioning scheme to changes in network
conditions. Osman et al. [20] and Chun et al. [12] propose using
full process or VM migration to allow remote execution without
modifying the application code.

Cuervoy et al. [13] proposed a way to offload heavy computa-
tions to a server cloud and have the mobile phone display the re-
sults. In the context of web browsing, one could offload image ren-
dering to the cloud and display the results back to the phone. While
this works well for many applications, our experiments suggest that
this approach does not improve browser efficiency. We showed that
front-end offloading, as done by SkyFire [6] and Opera [7], can
greatly reduce energy use on the phone.

Several previous studies [14, 21] also investigated the use of au-
tomatic program partitioning. Hunt et al. [14] develop strategies
to automatic partitioning of DCOM applications into client and
server components without modifying the application source code.
Weinsberg et al. [22] propose an approach to offload computation
to specialized disk controllers and processors (i.e., NICs).

7. SUMMARY AND DISCUSSION
While web pages are often optimized for speed and beauty, little

attention is given to the amount of power needed to download and
render the page.

We presented an experimental framework for measuring the
power consumption of web pages, including specific components
on the page. Our approach gives another dimension for evaluat-
ing mobile web sites and helps web developers build more energy
efficient sites.

Designing energy-efficient web sites. Based on our experi-
ments, we briefly summarize a few guidelines for designing energy-
efficient web sites:

• Our experiments suggest that JPEG is the best image format for
the Android browser and this holds for all image sizes.

• Gmail, the most “green” mobile site we found, uses HTML
links to open email messages that the user clicks on. The desk-
top version of Gmail uses Javascript instead. Our experiments
suggest that using links instead of Javascript greatly reduces the
rendering energy for the page. Thus, by designing the mobile
version of the site differently than its desktop version, Gmail
was able to save energy on the phone.

• We found a number of static pages that could have been locally
cached and displayed without any network access. Unfortu-
nately, these sites link to Google Analytics, a tool that helps

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

49

monitor site usage. Javascript used by Google Analytics forces
a dynamic network request that cannot be cached. Thus, even
though the site could have been rendered from cache, the phone
still has to pay the high cost of setting up a 3G session. We
hope this paper will help web sites understand the cost of link-
ing to these third party tools. Alternatively, if browsers exposed
the state of the radio to Javascript then Google Analytics could
choose not to report usage if the 3G radio is in low-power mode.

• AOL is able to save rendering energy by using a simple HTML
table element to position elements on the page. Other sites that
position elements using CSS need far more energy to render.

• On all the mobile sites we tested ads were small JPEG files and
had little impact on overall power usage.

• Sites like apple.com are particularly energy hungry. We hope
this paper demonstrates the importance of building a mobile
site optimized for mobile devices. Sites who do not, end up
draining the battery of visiting phones. This can potentially
reduce traffic to the site.

Future work. Our experiments focused on the energy consumption
of specific pages with the goal of improving the energy signature
of those pages. It would be interesting to extend these results and
study the energy signature of an entire browsing session at a site
where the user moves from page to page at that site. During the
session, web elements such as CSS and images will be cached lo-
cally. Therefore, we cannot estimate the energy cost of a session
by simply summing the energies of pages visited during the ses-
sion. Measuring an entire typical session may help optimize the
power signature of the entire web site.

Another interesting direction is to more accurately model the en-
ergy consumption of the 3G radio as the browser fetches web pages.
Our model from Section 2.5 works well for web pages with a lim-
ited number of components, but breaks down for other pages. We
conjecture that a detailed understanding of the shape of the traf-
fic generated by the browser will be needed to estimate the energy
used by the radio. Understanding how the radio is used when the
browser fetches a web page could help browser vendors optimize
the browser’s multi-threaded system for downloading pages.

Acknowledgments
The fourth author was supported by Deutsche Telekom and NSF.

8. REFERENCES
[1] Agilent 34410A Digital Multimeter. http://www.home.agilent.

com/agilent/product.jspx?pn=34410A.
[2] Android Developer Phone 2 (ADP2).

http://developer.htc.com/google-io-device.html.
[3] Android Developers - Activity. http://developer.android.

com/reference/android/app/Activity.html.
[4] Android Developers - Intents. http://developer.android.com/

reference/android/content/Intent.html.
[5] NetMarketShare. http://www.netmarketshare.com/report.

aspx?qprid=61&sample=37.

[6] SkyFire. http://skyfire.com.
[7] The Opera browser. http://opera.com.
[8] WebKit. http://webkit.org.
[9] A. Rahmati, C. Shepard, A. Nicoara, L. Zhong, J. Singh. Mobile TCP

Usage Characteristics and the Feasibility of Network Migration
without Infrastructure Support. In Proc. of ACM 16th International
Conference on Mobile Computing and Networking (MobiCom’10),
Chicago, Illinois, USA, 2010.

[10] A. Rahmati, L. Zhong. Context-for-Wireless: Context-Sensitive
Energy-Efficient Wireless Data Transfer. In Proc. of ACM 5th
International Conference on Mobile Systems, Applications, and
Services (MobiSys’07), Puerto Rico, 2007.

[11] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande, C.
Grunewald, K. Jain, V. N. Padmanabhan. Bartendr: A Practical
Approach to Energy-aware Cellular Data Scheduling. In Proc. of
ACM 16th Annual International Conference on Mobile Computing
and Networking (MobiCom’10), Chicago, USA, 2010.

[12] Byung-Gon Chun, Petros Maniatis. Augmented Smartphone
Applications Through Clone Cloud Execution. In Proc. of the 12th
Conference on Hot Topics in Operating Systems, 2009.

[13] E. Cuervoy, A. Balasubramanian, D-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, P. Bahl. MAUI: Making Smartphones Last Longer with
Code Offload. In Proc. of ACM 8th Intl. Conf. on Mobile Systems,
Applications, and Services (MobiSys’10), San Francisco, USA, 2010.

[14] G. C. Hunt, M. L. Scott. The Coign Automatic Distributed
Partitioning System. In Proc. of the 3rd Symposium on Operating
Systems Design and Implementation (OSDI’99), Louisiana, 1999.

[15] J. Flinn, D. Narayanan, M. Satyanarayanan. Self-Tuned Remote
Execution for Pervasive Computing. In Proc. of the 8th Workshop on
Hot Topics in Operating Systems (HotOS), Germany, 2001.

[16] J. Flinn, S. Park, M. Satyanarayanan. Balancing Performance,
Energy, and Quality in Pervasive Computing. In Proc. of the 22nd
International Conference on Distributed Computing Systems
(ICDCS’02), Vienna, Austria, 2002.

[17] J. Huang, Q. Xu, B. Tiwana, A. Wolman, Z. M. Mao, M. Zhang, P.
Bahl. Anatomizing Application Performance Differences on
Smartphones. In Proc. of ACM 8th Intl. Conf. on Mobile Systems,
Applications, and Services (MobiSys’10), San Francisco, USA, 2010.

[18] N. Balasubramanian, A. Balasubramanian, A. Venkataramani.
Energy Consumption in Mobile Phones: A Measurement Study and
Implications for Network Applications. In Proc. of ACM SIGCOMM
Internet Measurement Conference (IMC’09), Chicago, USA, 2009.

[19] S. Nirjon, A. Nicoara, C. Hsu, J. Singh, J. Stankovic. MultiNets:
Policy Oriented Real-Time Switching of Wireless Interfaces on
Mobile Devices. In Proc. of 18th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’12), China, 2012.

[20] S. Osman, D. Subhraveti, G. Su, J. Nieh. The Design and
Implementation of Zap. In Proc. of the 5th Symposium on Operating
Systems Design and Implementation (OSDI’02), Boston, USA, 2002.

[21] U. Kremer, J. Hicks, J. M. Rehg. Compiler-Directed Remote Task
Execution for Power Management. In Proc. of The Workshop on
Compilers and Operating Systems for Low Power (COLP), 2000.

[22] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, P. Wyckoff.
Tapping into the Fountain of CPUs - On Operating System Support
for Programmable Devices. In Proc. of the 13th International Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’08), Seattle, WA, USA, 2008.

[23] Z. Zhuang, K. Kim, J. Singh. Improving Energy Efficiency of
Location Sensing on Smartphones. In Proc. of ACM 8th Intl. Conf. on
Mobile Systems, Applications, and Services (MobiSys’10), San
Francisco, USA, 2010.

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

50

