A Comparison of Software
and Hardware Techniques
for x86 Virtualization

(Paper: ASPLOS 2006)

Keith Adams
Ole Agesen

vmware
Copyright © 2006 VMware, Inc. All rights reserved.

“Unnatural Acts” (WInHEC 2005)

Efficiencies Needed On x86
For Virtualization

® Virtualization on the existing x86 architecture requires
“unnatural acts” to achieve objectives

* This level of emulation and code rewriting is not required on other
architectures
* Existing approaches add performance overhead and
undue complexity, and leave security holes at the most
physical levels

* AMD’s Pacifica technology is designed to take the
complexity out of the hypervisor, putting it into the CPU
for higher performance, higher security, and lower
complexity (compared to traditional software- based
approaches)

® Pacifica brings the x86 into the 21st century
“ On to the Pacifica architecture...

Classical virtualization (IBM 360)

* Trap-and-emulate
- Run guest operating system deprivileged
- All privileged instructions trap into VMM

- VMM emulates instruction against virtual state
* E.g.: disable virtual interrupts, not physical interrupts
- Resume direct execution from next VM instruction

* This is just one implementation technique
* Popek and Goldberg permit others

Classical VM performance

* Native speed except for traps

- Overhead = trap frequency * avg trap cost

® Irap sources

- Privileged instructions
- Traces (page tables): most frequent trap cause
- Memory mapped devices (a form of trace)

Combining BT and direct execution

Faults, syscalls, interrupts i T IRET, sysret

CPLO Execution L T Traces, faults, interrupts, 1/0

BT mechanics

Input: BB Output: CCF

55 ff 33 c7 03 ... > translator »c5 £ff 33 ¢7 03 ...

* Each translator invocation

- Consume one basic block

- Produce one compiled code fragment
* Store CCF in translation cache

— Future reuse

- Amortize translation costs
- Not “patching in place”

IDENT and other translations

* Most code translated IDENT
* Runs at speed (Popek, Goldberg)

80304a69 push %ebp 25555b0
80403a6a push (%ebx)

push %ebp
25555b1 push (%ebx)

80403a6c mov (%ebx), ffffffff 25555b3 mov (%ebx), fEffffff
80403a72 mov %edx, %esp 25555b9 mov %edx, %esp
80403a74 mov %esp, 81c (%ebx) . 25555bb mov %esp, 81c (%ebx)
80403a7a push %edx 25555c1 push %edx
80403a7b mov %ebp, %eax 25555c2 mov %ebp, %eax
80403a7d call 80460ba4 25555c4 push 80403a82
E3E3 25555¢c9 int 3a

25555cb data: 80460ba4

CCF

25555c4: push return address
25555c9: invoke translator on callee

Primary and shadow structures

* Shadow page tables active on physical CPU
e Contain composite of two mappings:

- Guest “virtual” to “physical” mapping from primary
page tables

- Guest physical to machine memory mapping from
VMM pmap

* Result: physical TLB supports guest memory
access

Traces
* Shadow page tables are derived from primaries

- Must keep In sync
* Coherency protocol

- Trap guest writes by write-protecting primary: trace

- Propagate change from primary to shadow
* Compute new shadow page table entry
* Or just invalidate

- x86 permits deferred coherency
* Like hardware TLB

* INVLPG: synchronize one page's mapping
* CR3: synchronize entire address space

Adaptive BT

* Most translation run “at speed”

* Exception: writing traced memory
- #PF (trace fault 1*!)

— Decode instruction

- Interpret

— Fire trace callbacks

- Resume execution

* Can take 1000s of cycles

callout

Adaptive BT: fast trace handling

—

e Detect and track trace faults

* Splice in TRACE translation
- Avoid #PF

- No re-decoding

- Faster resumption

* Order of magnitude faster traces

callout

Adaptation in general

—

>
<

APIC

Adapt to guest
behavior by
moving JMPs
around to select
active translation

Software VMM evaluation

¢ Benefits * Costs
- Adaptation - Running translator
_ Fast traces - Path lengthening
- Fast I/0O emulation - System call
- Flexibility slowdown

- Complexity

AMDel, Inc.

e Summer 2001 at AMDel, Inc.
* Architecting the Penteron 3++, due in 2005
e Virtualization is hot, hot, hot

* How can the next-generation Penteron support
virtualization?

100% direct execution

* VMMs nowadays are slow
* VMMs in the mainframe era weren't so slow
* VMMs nowadays use binary translation

* BT must be slowing things down. QED

Host

VT/SVM Architecture

Guest

*Y-axis: old school x86
privilege (CPL)

« X-axis: virtualization
privilege

-Unmodified OS'es run
In host mode, guest
mode

*In guest mode,
sensitive operations
“trap out” to host mode

VMCB
- Virtual Machine Control Block
VMM controlled, hardware-walked
- Buffers simple exits
-Communicates guest state to HW, VMM
*In VT, read/written via special instructions

Guest and host mode execution

A

Page faults, interrupts, Ready to run guest

I/0O, traces, etc.

What SVM/VT are not

e “CPL -17

- No special mode for VMM

- VMM no more privileged than a regular OS
* Pure trap-and-emulate

- Many privileged ops buffered by VMCB

- Special accommodations for some ops
* E.g., RDTSC (cycle counter) can have offset applied

Hardware VMM evaluation

* Benefits * Costs
- Simplicity (no BT) - Exits: 1000+ cycles
- Fast system calls * Traces
- No translator * /O
overheads - Stateless model

- No adaptation
- No SW flexibility

Match lineup

 System: Intel Pentium 4 672, 3.8 GHz, VT
e Software VMM: VMware Player 1.0.1
e Hardware VMM: VMware Player 1.0.1 (same!)

Pure computation (SPEC)

12@ T T T T T T T T T

T T
Software VMM m—
Hardware MMM oo

108
2@
6@
4@
2@

G

gzip U mzf craftyparser eon perlbmk gap vortex bzip2 twoldf specjkhb

iz better?

X of native Chigher

A tougher set of benchmarks

1a@ T T T T
Software MMM m—
Hardware MMM oo
=15]
T
I
+
+
o
o
n eo
I
o
=
]
=
o
Z am
+
m
I~
.
o
o
j=15]
5]

compilelin compilelin Apachelin Apachelin LargeRAM charaphics

Microbenchmark: forkwait

int main(int argc, char *argv[]) {
for (int 1 = 0; 1 < 40000; 1i++) {
int pid = fork();
1f (pid < 0) return -1;
1if (pid == 0) return 0;
waitpid(pid);
}

return 0;

}

Native: 6.0 seconds
Software VMM: 36.9 seconds
Hardware VMM: 106.4 seconds

Nano vs. micro benchmarks

* Forkwalit: pathologically rich mix of

- Context switches
- Page table updates
- Page faults

e But still a mixture of operations

e Nano-benchmark idea

- measure each event in isolation
- often “single-instruction” events

iz better?

CPU cycles t=maller

188888

180888 |

1888

i1@a

18

Nanobench

marks

T T
Software VMM m—
Hardware MMM oo

Hatiuve —

ihiilll

syscall

=TSNl

callret

pofault

divzero ptemod

Decomposing a macro-benchmark
- XP64 boot/halt

T
MMMMMMMMMMM
aaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Outline

* Virtualization primer

Software VMM
Hardware VMM
Performance comparison

Lessons learned
Conclusions

| essons learned

* Current HW support not a uniform win

- Sometimes a bit better (e.g., system calls)
- Sometimes quite a bit worse (MMU virtualization)

* |deal: combine strengths of SW/HW

- Unfortunately: HW support is all or nothing
- Does not complement existing SW techniques

Virtualization 1s everywhere

Server consolidation

Disaster recovery

Security

Resource management

Power efficiency

Avallability (fail-over to other VM)
Software delivery (“virtual appliances”)
Test and development

Mobility . . .

The essence of the MMU problem

* Three cost components

— Trace costs
— Context switch costs
- Hidden page faults (demand-validation of shadows)

* These trade against each other:

- Fewer traces implies more hidden #PFs (lazy) or
more expensive context switches (eager)

e Hardware VMM Iincreases costs of all three
components!

Improving virtual MMU performance

e Hardware VMM still uses software MMU

- Drives MMU state machine with VT exits
- Our software MMU was designed for BT costs
e Software option:
- MMU redesign to hit different point in 3-way tradeoff
- Less use of traces
* Hardware option:

— Support MMU virtualization
- Nested page tables

Conclusions

e Described software VMM and hardware VMM
* Performance comparison

— From macro to micro to nano
e Current hardware VMM not a win over software

* Key problem to solve:

- Not: how to execute virtual instruction stream
- But: how to virtualize MMU efficiently
- Combining HW support with SW flexibility?

WIin2000 boot/halt translation stats

------- input---—---- output
units size instr cycles size cyc/ins ins/unit
0] 38690 336k 120k 252M 924k 2097 3.11
1 48839 500k 169k 318M 1164k 1871 3.48
2 108k 1187k 392k 754M 2589k 1920 3.61
3 29362 264k 89749 287M 951k 3197 3.06
4 96876 1000k 337k 708M 2418k 2100 3.48
5 58553 577k 193k 403M 1572k 2078 3.31
6 19430 148k 50951 148M 633k 2904 2.62
7 13081 87811 30455 124M 494k 4071 2.33

Translator buzzwords

* Binary: input is x86 “hex” not source

* Dynamic: interleave translation and execution

e On demand: translate only what we are about to execute (lazy)
* System level: make no assumptions about guest code

* Subsetting: full x86 to safe subset

* Adaptive: adjust translations in response to guest runtime behavior

Outline

* Virtualization primer

Software VMM

Hardware VMM
Performance comparison
Lessons learned
Conclusions

Dealing with x86

* Not classically virtualizable (popf)
* Want instruction-level control over guest

e Non-solutions:
— Code patching

* Problem: guest can inspect its own code
- Prescanning pages for nonvirtualizable instrs

* Problem: guest can jump into middle of instr
* Problem: what if we find badness?

- Interpretation
* Problem: inefficient — x86 decoding slow

Binary translation of guest code

No need for traps
Satisfies Popek and Goldberg

- Fidelity: instruction-level semantic precision
- |Isolation: translate from full x86 to safe subset

- Performance: most instructions need no change
It is a VMM

Mature technology
- Smalltalk, JVMs, Shade, Pin, Embra, Dynamo, etc.

Outline

* Virtualization primer

Software VMM
Hardware VMM
Performance comparison

_essons learned
Conclusions

Market size => hardware support

* First round shipping now:

- Intel: VT-x (Vanderpool)
- AMD: SVM (Pacifica)

* Transition from sw to hw VMM can start

e But should it?

- We compare and contrast sw/hw techniques
- Metrics: performance, flexibility, complexity

Popek and Goldberg (1974)

* A Virtual Machine Monitor (VMM)
provides:

- Fidelity
- Performance
- Safety (isolation)

Xx86 virtualization has grown up

* From the desktop (1999)

- “Run windows on your linux computer”
* To enterprise data centers (2000)

- Bare-metal hypervisor
- Virtual SMP support

- Large memories

- 64 bit support

e All In software, on standard x86 hardware!

Outline

* Virtualization primer

Software VMM
Hardware VMM
Performance comparison

_essons learned
Conclusions

Outline

* Virtualization primer

Software VMM
Hardware VMM
Performance comparison

_essons learned
Conclusions

