DejaView: A Personal Virtu
Computer Recorder

Jason Nieh

Columbia University

¥ Network Computing Laboratory at Columbia University - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ Network Computing Lab

Columbia University Department of Computer Science

Home

People
Publications

MISSION

The Network Computing Laboratory (NCL) pursues research in experimental software systems to make personalized computing
ubiquitously available, anytime and anywhere. Our research areas include operating systems, system resource management, interactive
web and multimedia systems, utility computing, thin-client computing, mobility, and performance evaluation.

CURRENT MEMBERS

Prof. Jason Nieh
Ricardo Baratto
Adrian Frel
Shariar Kazi
Taek Joo Kim
Oren Laadan
Ken Lee

Yves Petinot

Carlos Perez
Dan Phung
Shaya Potter

Matt Selsky
Alex Sherman

Dinesh Subhraveti

Nicolas Viennot
Haogiang Zheng

RESEARCH PROJECTS

SRCS: Secure Remote Computing Services

THINC: THin-client InterNet Computing

Zap: Checkpoint-Restart and Migration Using Operating System Virtuali
BPC: Computing Research for NYC High School Students
MobiDesk: A Hosted Desktop Computing Utility

SlowMotion Benchmarking: Measuring Thin-Client Performance
MOVE: Mobility with Persistent Network Connections

ksniffer. Measuring Client Perceived Response Time

GR3: O(1) Proportional Share Resource Management

SWAP: Automatic Dependency Detection and Scheduling
SMART: Scheduling for Multimedia And Real-Time

FiST. Stackable File Systems

ALUMNI (Join our Facebook group)

Vladislav Adzic Oz¢
Johan Andersen Fei
Raghu Arur Irine
Sarita Bafna Hut
Jonah Benton Do
Bhaygyashree Bohra llia
Tony Capra Aps
Bogdan Caprita Vije
Linda Chan Na¢
Rebecca Collins Day
Dave Coulthart Ste
Paolo de Dios Mal
Yuly Finkelberg Mai
Aner Fust Sar
Yong Gao Ma
Ravi Gadhia Ari
Akash Garg Goi
Joanna Gilberti Abt
Carla Goldburg Fra
Marshall Hayden Yue
Paul Henley Nik
Erik Hogstedt Rot
Michael Kalnicki Sus
Nate Kidwell Chr
Joeng Kim Suc
Leo Kim Bol
Shilpa Krishnappa S..
Pavan-Kumar Josyula-Venkata llho
Rahul Joshi Ere
Eugene Kim Lei
Albert Lai Hue

The NCL is sponsored in part by

AMDCli----

Deutsche PF&ES Office of === =
Telekom <-4, Seience

Semiconductor

o e QT

NYSTAR 4P Sun

Oren

Ricardo

Laadan Baratto
Dan Shaya
Phung Potter

The MEMEX Vision

“A device Iin which an individual
stores all his books, records, and
communications, and which is
mechanized so that it may be consulted
with exceeding speed and flexibility.”

Vannevar Bush, "As We May Think", July 1945

The MEMEX Machine

e |t is important to archive, search, view and
manipulate what we have seen

Are We There Yet ?

Google

Web Images Video News Maps more »

Advanced Sear
Preferences
Langquage Tool

Coogle Search | I'm Feeling Lucky

Advertising Programs - Business Solutions - About Google

©2006 Google

~ Are We There Yet ?

dvanced Sear
references
angquage Tool

DejaView

e A Personal Virtual Computer Recorder
that provides a complete recording of
a desktop computing experience

e designed for transparency
e fast enough for interactive use

DejaView

e Provides a Tivo-like experience for
the user's desktop
e record display
e to playback, browse, fast-forward, rewind

e record text and context
e to use as index to search the display record

e record execution state
e to revive and manipulate previous sessions

DejaView Architecture

DejaView Architecture

Virtual Text and Virtual
display context execution
index environment

Display Recording

e Need to record the display ...
e transparently
e efficiently
e at full-fidelity

Display system

applications

i1
window
system

I
I
device
driver

1

framebuffer

Possibilities

e \indow system commands?
e complex, non-determinism
e network limits

e Pixels?
e high bandwidth
e MPEG?

e high overhead
e loss of display fidelity

DejaView Approach

e Virtual display driver
e no longer tied to a piece of hardware
e can redirect the display anywhere

o

Display
updates

Input
events

Virtual Display

applications

v ¢
window
system

display updates _ _
PE—— VI e (VP Mo [5YYi el
> driver

input events

Virtual Display

e Standard device interface
e provides full transparency

e Intercepts low level display updates
e records only changes
e fast, efficient, optimized for desktop

e Logs all display updates

e no loss of information

Text and Context Recording

e Need to record the text and context ...
e retain semantics
e transparently
e efficiently

Possibilities

e \indow system commands?
e not enough information

e OCR?

e {00 slow
e Inaccurate

DejaView Approach

e Leverage accessibility infrastructure

e used by screen readers to convert text to
speech, for the visually impaired

e available on most modern desktops
e incorporated into standard GUI toolkit

Accessibility Interfaces

e Accessibility infrastructure
e standard interface — transparent
e efficient — see evaluation

e Provides useful contextual information
about the contents, e.q:
e name and type of application
e which window has focus
e special properties (e.g. menu text)

Execution Recording

e Need to record execution state...

e to be able to revive at later time
e underlying system may change

e include the entire desktop session
e not only a single process

e fast enough to save frequently
e without degrading user experience

Possibilities

e Checkpointing using VMMs?
e t00 slow
e to0 much state

e Log and replay?
e need to replay from the middle
e SMP too hard/slow in practice

DejaView Approach

e Encapsulate only the user's desktop
and decouple it from the underlying OS

e repeatedly checkpoint the desktop session
to be able to revive at a later time

Desktop
session

Operating System

Hardware

Challenges

e Desktop consists of multiple processes
e processes have dependencies
e processes are a moving target
e need to capture globally consistent state

e Need to transparently support large
existing installed application base

Problem

int IChildPID;

if (IChildPID=fork()) {
[* parent does some work */
waitpid(iChildPID);

} else {
/* child does some work */
exit(0);

}

Resource consistency problem

Resource conflict problem

Resource dependency proble

Problem recap

resource consistency

e names can’'t change
resource conflict

e names can't be duplicates
resource dependency

e checkpoint must be complete

Pod solution

e POD (PrOcess Domain)
e can contain any number of processes

e migrated as a unit

e private virtual namespace

PID and IPC key virtualization

e create unique namespace for the pod
e names are virtualized

when entering a system call, replace pod
virtual identifiers with real ones

e Wwhen exiting a system call, replace real
return values with pod virtual ones

e mask out identifiers that do not belong to the
pod

Memory virtualization

e like IPC, create unique shared memory
namespace

e modern architectures support virtual
memory

Desktop POD

e Desktop PrOcess Domain (POD)

e encapsulate user’'s desktop

e Private, virtual namespace
e level of indirection
e isolated, self-contained

Virtual Execution Environment

e Interpose on operating system API
e transparent, lightweight

e Operating system virtualization
e confine dependencies among processes
e remove dependencies on OS instance

Execution Checkpoint

e Auxiliary checkpoint process

e Consistent checkpointing
(1) quiesce session
(2) save execution state
(3) save file system state (snapshot)
(4) let session resume

Quiescing the POD

e Freeze processes
e ensure global consistency

e Put processes in a known state
e easy to restore

e Use native SIGSTOP

e forced known state with minimal stack
e synchronization handled natively
e watch out for visible side-effects

Save Execution State

Process Dependencies

process
group .

process
session

process
relationships

shared
resources

open shared shared S
vz files signals __ memory

The Process Forest

e A-priori
e parent-child
® Session process process
relationship hierarchy
e threads
e A-posteriori shared

resources

® process group
e shared resources

DumpForest Algorithm

e The algorithm records the state of the
process forest in a consistent manner

e Goal: find creator, not just parent

e Input: available state at the time of the
checkpoint

e No logging or replay of events

e Output: a table that will hold a set of

instructions to recreate the forest

Save File System State

e L everage log-structured file system
e every transaction results in a snapshot

Optimize for Interactivity

e Remove work from critical path:
e pre-quiesce
e pre-snapshot
e incremental checkpoint
e COpy-on-write
e deferred write-back

Checkpoint Policy

e Only checkpoint on display updates
e this Is what interests the user

e Only when there are enough updates

e skip unnecessary checkpoints to reduce
storage requirements

e Limit checkpoint rate
e SO runtime overhead is manageable

Reviving Execution

e Revive to a previous checkpoint
(1) restore file system state
(2) restore execution state
(3) let session resume

Restore file system state

e Leverage union file system

e combine the read-only snapshot with a
fresh read-write file system layer on top

Restore execution state

e |In-context

e Restore process forest

e leverage existing process creation
functionality

e Restore process state

e Resume session

Parallel Worlds

e Revived session has own environment
e Multiple sessions can run concurrently

DejaView

Operating System

Hardware

DejaView Performance

Implementation

e X windows virtual display driver
e GNOME accessibillity infrastructure

e Tsearch with PostgreSQL

e User-space utilities and Linux kernel
module

No application, window system, or base
kernel changes

Performance Evaluation

e System overhead:
e runtime overhead of recording
e impact on system interactivity
e storage requirements

e Access to data:
e search and browse latency
e playback speed
e session revive latency

Application Scenarios

e Benchmarks

e Web - rapid-fire browsing

e video - full screen playback

e untar - untar of kernel source files

® gzip - compress kernel source tar fil
e make - kernel make

e octave - matlab clone calculation

e cat - cat of a large file to screen

e usage - real desktop usage

Recording Runtime Overhead

2.5
O
8 W Display Recording
= Process Recording
o 2.0 I Text Recordin
S g
o Full Recording
c
O 15
whd
-
o
%
w 1.0 - —
g
()
N
© 0.5 |
=
S
2

0.0 -

web video untar gzip make octave cat

e Display and execution recording overhead is low

Checkpoint Latency

200

B Total time
180 — Downtime [
160 —
140 7

-
N
o

Time [ms]
© o
o o

(o})
o

1N
o

web video untar gzip make octave cat usage

N
o

o

e Downtime low enough for interactive usage
e Total time low enough for frequent checkpoints

Time [ms]

200

180
160

. = §
N A O 0O O NN »
o O O o o o o o

Checkpoint Latency

I Writeback

B FS Snapshot

—— M Capture
Quiesce

Pre-Checkpoint

web video untar gzip make octave cat

usage

Recording Storage Growth

25
m Uncompressed
Compressed
E 20
01]
E ”ll“
— 15
9
©
14
= 10
3
o 1 :M
O > — W
| I

web video untar gzip make octave cat usage

eStorage requirements are lower than PVR with equivalent displa
resolution

Recording Storage Growth

25

Display W Index W Filesystem Process (compressed) M Process

N
o

-
8)

-
(=]

Growth Rate [MB/s]

x

o

web video untar gzip make octave cat usage

Browse and Search Latency

250

Browse
Search

200

-
N
o

Time [ms]

N

o

o
\

N
o
|

web video untar make octave cat usage

eSearching and browsing are fast enough to support interactive
use

Playback Speedup

300

250

200 —

Speedup
o
o
|

100 BE— —

50 - —

web video untar make octave cat usage

e Faster than real-time visual search through the display recording

Session Revive

cold cache
®» warm cache

:WWMM 1" L

I I

web video untar cat make octave cat usage

e Latency to revive a session (from cold cache) is within a few
seconds

Conclusions

e DejaView: a new personal virtual
computer recorder model

e novel use of virtual display, virtual
execution environment and accessibility

e users can find, access and manipulate data
they have previously seen

e allows recording, playback, browsing,
searching, and reviving live desktop

e modest performance overhead, fast enough
for interactive use

Future Work

e A new paradiagm for desktop search
e how to determine relevance?
e relationship to desktop file search?
e user interface issues

e Collaborative DejaView

More Info

Network Computing Laboratory
http://ncl.cs.columbia.edu

Reviving the Network

e \What is the network state after revive ?
e like resuming a hibernated laptop
e stateful protocols: drop all connections
e stateless protocol: don't care

e \What about network access ?
e disabled by default
e enable per application, or globally

Virtualization

Xen
W Zap
™ Linux SM
= Zap SMP

©0
w o A

Normalized latency
RN N
= O D O
\

Yo B

m

