Musings about virtualization and
the future of OS research.

1990

A bit of history

1994

1997 2001 2007

Hurricane Tornado

Toronto

IBM K42

VMware

Stanford Hive Disco

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Outline

* Virtualization will be pervasive
* Why does a 1960s technology make sense?

* New uses of virtualization:
— Application distribution
— Utility computing
— The OS of the future

Outline

* Virtualization will be pervasive
* Why does a 1960s technology make sense?

* New uses of virtualization:
— Application distribution
— Utility computing
— The OS of the future

Virtual is better than physical

vV v v vYvyvVvYyvyy

Suspend
Resume
Snapshot
Clone
Migrate
Record
Replay
etc.

Virtualization will be pervasive

* As of this year IBM, HP, Dell, FSC, NEC support
new embedded hypervisor on x86 systems,
although not yet pervasive

* |IBM has shipped on z/p/| for years, Sun & HP
shipping on non x86 HW.

— Gives HW vendor place to deploy function
— Gives much simpler out-of-the box experience

— Long term... virtualization will be pervasive on all
platforms.

* Requires fundamental changes.

Its got to get on a diet

VMM VMM

VMkernel

HAL and Device Drivers
_/

\\&

\&

~ —
Y ~—
Disk Footprint: 2 GB _ _
Disk Footprint: 32 MB
Percent of Patches >50% ISK Footprin

Its got to get on a diet

VMkernel

HAL and Device Drivers
_/

N~ —
~ —

Disk Footprint: 2 GB _ -
Percent of Patches >50% Disk Footprint: 32 MB

\\&

\&

Other requirements

e Support all requirements that HW might be
used for:
— Deterministic real time
— High assurance
— Embedded, Client & server

* We will need to move to much more
customizable design, where platform depends
on the modules installed.

Outline

* Virtualization will be pervasive
 Why does a 1960s technology make sense?
 New uses of virtualization:

— Application distribution

— Utility computing

— The OS of the future

How can virtualization be important?

* Virtualization invented to allow OS development
on massive mainframes.

— Allowed HW and OS developers to work
independently: everyone else had tight coupling, new
OS for each HW platform

— Allowed new stacks to be deployed & tested by
customer.

 Why is this technology important in a world of
cheap scale-out commodity computers?

— Much of the original value for HW virtualization
subsumed by virtualization levels in and above OS.

Modern OS Evolution

Commodity OSes had enormous
pressure to add function to support
new applications.

Security and reliability secondary
concern in the broad market, ->
feature creep...

The rich function of general purpose
OS became necessary for servers...

* Problems — Too complex

> Security
> Reliability
> Manageability

> Performance

2 |nnovation

The research community failed

Research community developed alternatives:
— Microkernels

— Exokernels

— Customizable OSes ...

No innovative technology could get sufficient
function to build up massive user base:

— User had to dedicate HW to the special purpose OS:
new innovation needs to be free to get community

— Had to support large complex HW

Existing OSes too complex to allow incremental
iInnovation

What virtualization gives us

A stable interface that the rich function of commodity
OSes runs above.

Allows new technology to be deployed alongside or
underneath commodity OSes.

— Zero cost to deploy innovation, if it solves a problem,
great!

— HW complexity disappears, way easier to develop new OS.

“Any problem in computer science can be solved with
another level of indirection” (David Wheeler)

Virtualization, as the level of indirection, allows us to
have massive adoption Innovation.

Outline

* Virtualization will be pervasive
* Why does a 1960s technology make sense?

* New uses of virtualization:
— Application distribution
— Utility computing
— The OS of the future

Problems with SW distribution model

Not so bad with MacQS, System Z... vendor controls it all, especially if application
specific to platform.

In the high volume MS and Linux space, lots of vendors, working at different
schedules...:

ISV must support many operating systems from a correctness and performance optimization
perspective.

ISV must support for all patches (e.g., app, websphere, DB2, OS), applying patch may break
any level, DLL hell...

Installation: user must install full OS, administer all the levels.
* 50% of support calls during install/configure cycle
* Installation different from what ISV expected, performance/function problems

Support hell: where does the problem come from

Backup, HA... tools different from what ISV tested

Patching hell: patch of any level may break others

Management and performance optimization complexity for user...

Multi-tiered application has multiple components that need to be configured and integrated
to operate together.

Huge barrier to entry for new SW:

* SW must have compelling value, solving many problems
* SW gets more complicated, and we are stuck in a vicious circle.

Hardware Appliance-Based Solutions:
PROS

Comes “pre-assembled” with all of the required
components for the solution (hardware, OS,
application bits)

Simple plug-and-play installation
Consistent stack makes support easier for vendor
Underlying lower levels (OS) can be “hidden”

from user

Hardware Appliance-Based Solutions:
= CONS

 Proliferation of non-standard hardware

 Hardware support provided by non-standard
vendor (possibly multiple vendors: one for
hardware, one for overall solution)

* Operations team has to learn how to support
both the hardware and the solution

 Hardware used for a single purpose may be
under utilized

 Hardware takes up rack-space, consumes
additional power, and requires additional
HVAC

What is a Virtual Appliance

* Pre-built, pre-configured and
ready-to-run software
application packaged with the
OS inside a Virtual Machine. Virtual Applb’:e

.0,

* Or packaged inside multiple
Virtual Machines

Virtual Applb’:e

00,

VA distribution model

ISV supports a single OS, and can full optimize

ISV controls the full environment, patches...

No installation effort

No finger pointing

Backup, HA... either integrated in appliance, or at the
VA level

Multi-tiered application configured by ISV

New SW can be easily deployed, tested, discarded,
does not need to solve all the worlds problems

Customer picks the HW

Where we are going long term

Ready-to-Go Music

Ready-to-Go Apps

¥ podeasts
& Party shutfie
Rac
& s
5 ml’m =

EEOEE

— [[

T [B
{3

)
ey

.

L] & &

What is needed

Tools for developing virtual appliances

Tools to allow ISV ongoing role in administering solution.
Standards in infancy: OVF

Meta data to describe expected role of components to VI

How do we make download cheap (streaming, de-duplication...)
Evolution of SW to separate installation from customization.

VI that can introspect on appliance, what level of trust in ISV
required?

Utility infrastructure
New OS model

Outline

* Virtualization will be pervasive
* Why does a 1960s technology make sense”?

* New uses of virtualization:
— Application distribution
— Utility computing
— The OS of the future

Grid and grid-like technologies are the future

Web applications being developed with scale-out
frameworks

MapReduce and related frameworks..., Data Intensive
Supercomputing

Utilities inside companies

Hosting companies like Rackspace

Shared utilities like Amazon’s EC2

The rise of SAAS like salesforce.com

HPC capacity and capability systems

Grid and Virtualization are complementary:

« Grid: motivated by analogy of power grid

 Virtualization: converts computation into a fungible commodity;
hugely simplifies realization of grid

Problems with grid

Security: grid job can compromise host
Isolation: resource isolation grid/host task
Service level guarantees: needed for enterprise
OS heterogeneity limits targets

Application needs to be re-written

Utilization of grid nodes

Management of hardware

Use of traditional OS:

— Large attack surface, high overhead, management
complexity...

Virtualization and the grid

Isolation:
— VM'’s can’t compromise other jobs or host
— Resources VMs isolated

Service level guarantees

OS can be created on demand
Application do not need to be re-written
Grid node can be fully used
Management of hardware

Can write special purpose OS:
— Reduce attack surface, increase reliability, simplicity...
— Lets grid job get closer to the metal.

Grid Computing

Jobs IN/OUT

Grid

Middleware

Virtualization based Grid

Grid Middleware

Jobs IN/OUT

Grid

job
m ESX Server ESX Server ESX Saerwver

eGrid middleware can focus on “core” Grid issues.

Virtual infrastructure provides simplified abstraction used
by Grid middleware and other applications.

Automatic load balancing across hosts

Distributed Resource > Dynamic Balancing
Scheduling (DRS) > Continuous Optimization

Adding and removing hosts

> Add/remove capacity on demand

Hot-plug machines > Distributed power optimization
> Improve application availabilit

' App ' App ' App
aep. aep.
ﬁ ‘ App ‘ App ‘TPP

UNE

Moving to Utility model

PHYSICAL VIRTUALIZED POOLED

.

>Logical Resource Pooling (RP)
> Distributed Resource Scheduler (DRS)

Research

Quality of service for different physical resources.
Detecting resource use and impact on
application.

Expressing application requirements to
infrastructure.

— Scale up/down web application?

— Co-scheduling of HPC applications.

— What is the right abstracting between grid/cloud
middleware... and virtual infrastructure.

Enabling very heterogeneous HW.

Outline

* Virtualization will be pervasive
* Why does a 1960s technology make sense”?

* New uses of virtualization:
— Application distribution
— Utility computing
— The OS of the future

What's the problem again?

Simple
Portable
Apps &
services

e Ll

Our general purpose OSes are a
compromise between:

— An execution environment for running
device drivers.

— An execution environment for running
complex general-purpose applications.

— An execution environment for portable
applications and services with few OS needs.

The general application support has gotten
enormously complicated.

They are enormously difficult to customize
to sup|oort new workloads, or to exploit new
specialized HW.

Massive investment to support all the
different OSes, e.g., validation in
application, device driver development...

Come with substantial management
overhead.

Virtualization has made it worse...

it

Il

It

' DD execution H DD execution H DD execution H DD execution

il

DD execution

DD execution

DD execution

DD execution

=Y e S SO

i =S

= Y Y

e Application’s with reduced needs can be moved off of general purpose OS.
e Application OS can be a reduced OS, or a highly customized library OS:
e more easily exploit new HW, massive multi-core, extra blades
e Java applications require restricted interfaces, native code that invokes OS services
can be shipped to legacy environment.
e Cluster services require highly deterministic real-time environment.
e HPC applications require specialized services (e.g., scheduling & memory
management)
e Security services can be implemented with a reduced TCB

Example: Libra/Prose

General-
Purpose
(0 1)

Abstractions {
Multiplex
hardware

Hardware Hardware

Prose and J9/Libra Architecture

Control Partition (DomO)

Vs

Proxy Process

User Console
Environment
VAR
Authority

Gz

N

File System

Network

A

Inferno (9p Server)

N)

Linux]

Storage

—

[/

| Threads | |Memory mgm’r.|
| 9p Client |
| | in channel | |
~ out channel | |

User Partition (DomuU)

()\

Application
J9 (JVM)
| J9 port layer
4 "\
Libra
| Libra AP |

| File Ops || Sockets | Sys Svc |

~_ |
N

J

Hypervisor (Xen)

9P2000 Characteristics

Simple architecture-independent
asynchronous RPC driven resource sharing
protocol with built-in support for mutual
authentication and encryption

Only requires an underlying reliable, in-order
interface

Based on 11 primitive operations, most
common file operations

Integrated support for hierarchical namespace

Time (ms)

30000

27500

25000

22500

20000

17500

15000

12500

10000

7500

5000

2500

Sparse Memory Benchmark

Performance

1 T
2 4 8

16
Size (MB)

32

T
64

1
128

PPPPP

Noise Control w/PROSE & Hypervisors

e Allow strict control of percentage of CPU
devoted to application versus system
daemons and I/O requests

e Can eliminate jitter associated with
Interrupt service routines

* Provides a higher degree of determinism
that vanilla Linux, but does so at a
performance cost

FWQ Completion Time (ms)

FWQ Completion Time (ms)

Noise Comparison

Linux Idle

108

107

106

104

103

99

98 _wmﬂwwwﬂwwwﬂw

Timae

PROSE Idle

133

132

130

129

128

126

125 —

Time

FWQ Completion Time (ms)

FWQ Completion Time (ms)

Linux Loaded

L
Tinmana

PROSE | oaded

L 4

Libra target workload: Java, Nutch/Lucene Query

distribute

= C

Optimizations

* File cache:

— average Iseek() & read() cost for back-end:

J9/Linux: 2.25 usec
J9/Libra: 0.9 usec

* Socket streaming:
— stage socket data into/out of Libra partition
— New requests are always available locally
— Results are sent asynchronously in batches

* We never got to:
— “safe-points” to support type-accurate garbage collection

— Real-Time Java support
— TLB control

= jess & jack: file cache
= javac: open/stat
= db: large pages

SPECjvm98

1.4 -

1.2 1

[J9/Libra, no cache
B J9/Libra, with cache

1.0 1

0.8 1

0.6 1

Speedup over J9/Linux

0.4 1

0.2 1

SPECjbb2000

Speedup over J9/Linux, 1 Warehouse

1.4 1

=
N
N

=
=)

o
)

o
o

I
>

o
[N)

0.0

ﬁb »
L d4
L 2
&

—— J9/Linux
J9/Libra
—*— J9/Libra, small pages

3 4 5 6 7

Number of Warehouses

Java Grande Forum: Multi-threaded Benchmarks

®m Barrier:Simple

19/Libra vs J9/Linux = Barrier:Tournament
@ ForkJoin:Simple

O Sync:Method
O Sync:Object

Speedup over J9/dom(

2 3 4 5 6 7 8
Number of threads

BEA Liquid VM

BEA JVM

Operating System

L 9 7 B e A B WE sorases

) Virtual Infrastructure e o

Hardware

50% less memory consumption

' -
Do More Total Work With WLS-VE in LiquidVM 5: bea
Over Standard Virtualized OS Container Think liquid.

A

'

Total Throughput (ops/s)
Total Throughput (ops/s)

Java on LiquidVM Java on Linux

Virtual Machines Virtual Machines

BEAREHONNR @ BhBkEGED

« 3-Tier client-server Java benchmark measuring num. of business transactions per sec.

- Intel Xeon 3.2 GHz, 2 GB RAM, VMware ESX 3.0, BEA LiquidVM 1.1, BEA JRockit R27.3, BEA WLS
9.2 MP2, RHEL 4.0.

« Each VM allocated 1 vCPU and 1 GB vMem. JVM -Xmx=800MB, 135 MB live data.

Research

How tiny for grid applications?
Scalable deployment for HPC.
Communication protocol.
Developing library OS that is re-usable.
— Minimizing library dependencies.
Scalability for massive multi-core.

Migration to and from generic OS.
— Real time
— Scalability

Control of TLB for managed code
Code and file system sharing

Conclusions

* Virtualization is going to be ubiquitous
* Gives us the opportunity to re-vitalize OS
research.

— Ability to deploy new innovations without the
problems we had previously in the OS community.

— New model for data center as a utility.
— New model for application specific OSes

