E6998 - Virtual Machines
Lecture 6
Topics in Virtual Machine Management

Scott Devine
VMware, Inc.

Outline

e Management Overview
* Live Migration
 Deterministic Execution

Covered in Later Lectures
* Virtual Appliances

* Resource Management
e Security

Simple VM Management Architecture

Web
Ul

Web
Service
API

Management
Daemon

%6
0O

%6
0O

oS

(01

oS

oS

Virtual Machine Monitor

Hardware

VMware VI SDK Example

login
Util::connect();

get VirtualMachineviews for all powered on VM"s
my $vm_views= Vim::find_entity views(view_type=> "VirtualMachine”,
filter => { "runtime.powerState® => "poweredOn® });

snapshot each VM
foreach(@$vm_views) {
$ ->CreateSnapshot(name=> “snapshot sample-,
description => "Snapshot created from workshop sample®
memory => 0,
quiesce => 0);
print "Snapshot complete for VM: " . $ ->name . "\n';

}

logout
Util::disconnect();

Multi-Host VM Management Architecture

Thick
Client

Console |«

Web
Client

Central
Server

Web
Service
Client

| Manage. O O O O O O
"| Daemon O O O
(0 1) (0 1) (0 1)
Host Machine
| Manage. O O O O O O
"| Daemon O O O
(0 1) (0 1) (0 1)
Host Machine
| Manage. O O O O O O
"| Daemon O O O
(0 1) (0 1) (0 1)

Host Machine

Virtualization Fabric

Email Database Email 2 Bug Build S
. . . Tracking . Control
Service Service Service . Service .
Service Service
oS oS oS (0 (0 (0
Virtualization Fabric
CPU CPU CPU CPU CPU CPU CPU CPU CPU
Memory Memory Memory Memory Memory Memory
| B | ll | B l; llllllllll ' llllllllllllll l IIIIIIIIIIIIIII l IIIIIIIIIIIII ' IIIIIIIIIII I
....... : }:
LAN

Resource Pools

Email
Service

oS

Database
Service

(O

Email 2
Service

Tracking

Bug

Service

Build
Service

Source
Control
Service

(0

(O

(O

Virtualization

Datacenter Enumeration Example

my $datacenter = Opts::get option(“datacenter®);
my $datacenter_view = Vim::find _entity view(view _type => "Datacenter”,
filter => { name => $datacenter });

iIf (1$datacenter_view) {
die "Datacenter "' . $datacenter . """ not found\n'';

}

get all hosts under this datacenter
my $host views = Vim::find_entity views(view_type => "HostSystem",
begin_entity => $datacenter_view);

print hosts
my $counter = 1;
print "Hosts found:\n";

foreach (@$host_views) {
print “"$counter: " . $ ->name . "\n'';
$counter++;

Datacenter Enumeration Example (cont.)

print vm®s
$counter = 1;
print "\nVM*s found:\n";

get all VM"s under this datacenter
my $vm_views = Vim::find _entity views(view_type => "VirtualMachine®,
begin_entity => $datacenter_view);

foreach (@$vm_views) {
print "$counter: " . $ ->name . ""\n";
$counter++;

}

disconnect from the server
util::disconnect();

Outline

* Live Migration

Naive Live Migration

Pause execution

Take snapshot, record
— Registers

— Memory

— Device State, Disk

Move snapshot

— Memory

— Disk

Restore snapshot
Restart execution

Naive Live Migration Speed

* Size
— Memory == 4 GBs
— Disk == 100 GBs

* Network

— 1 Gb/s Dedicated Network

e Downtime
— (104 Gb) + 1 Gb/s = 15 minutes

Live Migration - Storage Architecture

/" o '\
VM oS VM

oS oS
Host ”., “‘ Host
[2 *
2 *
0'.'. ’.‘
0’ “‘
/.7—:7\
\ vDisk
SAN

Live Migration Requires Shared Storage

Live Migration - Memory

* |terative Approach

— Mark all memory invalid
— Run VM on source while copying page to destination
— VM will "fault-in" pages

e These pages will need to be recopied
— Once all memory has been copied

If remaining memory is small enough

Snapshot and copy remaining VM

else
GOTO "Mark"

Live Migration — Memory

* Hopefully converges
— Based on memory footprint
— If remaining pages remain too large

e Tolerate longer downtime

e Don't move VM

Migration Management

 CPU matching
 ARP network
* Failure during copy

Storage VMotion

\
)

[

vDisk ! : \ vDisk

SAN

)
)

Ay

SAN

Outline

e Deterministic Execution

Deterministic Execution

e Deterministic execution
— Same results each time
— Execution path is identical

* Lock-Step
— Two or more runs
— Follow same execution path
— Stay close in execution timing

e Synchronized

Sources Non-Determinism

Initial State

— Memory

— Disk

Externally supplied data
Interrupts

— Timer
— 1/0

Multiple-processor memory interleaving
Exceptions?

Determinism in Single Threaded Process

* Execution must take the same path on control flow
— Control flow is dependent on machine state
— Started in same state
— Run deterministically until this point
— Control flow will be deterministic
e So... Initial state must be the same
— Either start from scratch or checkpoint
e Stop at precise point

— Count instructions

How to Count Instructions

* Binary Translation
— Instrument code to count each basic block
— Counter per basic block
— Multiply by block length
— SLOW!

 Hardware Performance Counters
— Count instruction, branches, etc
— Need to interrupt at certain count
— Counters must be precise
— Often not available, complete, or precise

Determinism with System Calls

System Calls are a form a External Data

Some syscalls can be handled with Inital Data

— Time, PID, etc can be checkpointed

— Need to intercept calls are return checkpointed values
— Files can be copied so process sees initial state

Some syscalls may not be allowed

— Ex: sockets are a form of multi-threaded execution

What other factors can influence execution?

Determinism in System Virtualization

* 1/O Data must be same

— General approach
e Record all data input into virtual machine in master run

e Replay data
— DMA must be handled specially

e Generally made atomic

* Interrupts must occur at precise points
— 1/O interrupts must be based on master
— Record instruction count for all interrupts
— Replay interrupt at precise cycle counts

Lock Step and Fault Tolerance

e Two VMs start off same initial state
— One is master
— Otheris slave

 Master runs as normal
— All interrupt timings, data inputs are shipped to slave
— Slave replays execution upto next event

 When master dies
— Slave can take over without any downtime
— Transactions continue
— Just need to worry about network routing

Multi-Threaded Determinism

 Messages already handled interrupt delivery

e Memory is the Problem

/* process 1 */

count = O;
flag = O;

while (1flag) {
count++;

}

printf(C'%d\n"",

count);

/* process 2 */
while (lcount) {

}

flag = 1;

Possible Solution

* Manage all memory sharing

— Writeable pages are only given exclusively to one process
— When other process touches page
e Take fault

e Steal page from owning process
e Record time

e Give page to faulting process

— On replay force page steal at given time

e Even if other process doesn't request it yet

