E6998 - Virtual Machines
Lecture 1
What is Virtualization?

Scott Devine

VMware, Inc.

Outline

 What is virtualization?
* Virtualization classification
* Monitor Architectures

What is Virtualization

o llo_|loo]l o |lo.-
oClloOlloolloo]|o®

Linux Linux (devel) XP Vista MacOSs

Virtual Machine Monitor

Hardware

Virtualization can be defined many ways. | will try to define it formally and also define it by
giving a few examples. However loosely, virtualization is the addition of a software layer
(the virtual machine monitor) between the hardware and the existing software that exports
an interface at the same level as the underlying hardware.

In the strictest case the exported interface is the exact same as the underlying hardware
and the virtual machine monitor provides no functionality except multiplexing the
hardware among multiple VMs. This was largely the case in the old IBM VM/360 systems.

However the layer really can export a different hardware interface as the case in cross-ISA
emulators. Also the layer can provide additional functionality not present in the operating
system.

| think of virtualization as the addition of a layer of software that can run the original
software with little or no changes.

Isomorphism

Formally, virtualization involves the construction of
an isomorphism from guest state to host state.

Virtualization software constructs an isomorphism from guest to host.

All guest state S is mapped onto host state S’ through some function V(S).

Additionally for every state changing operation e(S) in the guest there is a corresponding
state changing operation e’(S’) in the host.

Virtualization software must implement V() and e().

* |solation

Virtualization Properties

* Encapsulation
* Interposition

Virtualization has three main properties that give rise to all its applications.

Isolation

* Fault Isolation

— Fundamental property of virtualization
* Software Isolation

— Software versioning

— DLL Hell
* Performance Isolation

— Accomplished through cheduling and resource
allocation

First, virtualization provides isolation. Isolation is key for many applications and comes in
several flavors.

* Fault Isolation. If one virtual machine contains a buggy operating system, that OS can start
scribbling all over physical memory. These wild rights must be contained within the VM
boundaries.

* Performance Isolation. Ideally VMs performance would be independent of the activity
going-on on the hardware. This must be accomplished by smart scheduling and resource
allocation policies in the monitor.

* Software Isolation. Most of the issues with computers today are complex software
configurations. DLL hell on PCs, operating system and library versions, viruses, and other
security threats. VMs are naturally isolated for each other by running in separate software
environments.

Encapsulation

» All VM state can be captured into a file
— Operate on VM by operating on file
—my, cp, rm
* Complexity
— Proportional to virtual HW model
— Independent of guest software configuration

Encapsulation is the property that all VM state can be described and recorded simply. The
VM state is basically the dynamic memory, static memory, and the register state of the CPU
and devices. These items typically have a simple layout and are easy to describe. We can
checkpoint a VM by writing out these items to a few files. The VM can be moved and
copied by moving these files around. You can think about this as similar to doing a backup
at the block level vs. doing a backup by recording all the packages, configuration and data
files that encompass a file system.

Interposition

* All guest actions go through monitor
* Monitor can inspect, modify, deny operations
* EX

— Compression

— Encryption

— Profiling

— Translation

At some level all access to the hardware passes through the monitor first. This gives the
monitor and chance to operate on these accesses. The best example of this is encrypting all
data written to a disk. The advantage of this is that it does it without the knowledge of the
0sS.

Why Not the OS?

* It about interfaces
— VMMs operate at the hardware interface

— Hardware interface are typically smaller, better
defined than software interfaces

* Microkernel for commodity Operating Systems

* Disadvantages of being in the monitor
— Low visibility into what the guest is doing

This brings up a good point. Why not do these things in the OS. By splitting up the system
this way the OS functions more like a large application library. The VMM functions more
like a smart set of device drivers. This is a nice split and can simplify overall system design.
It also provides a natural administration boundary. However the monitor is often at a
disadvantage because it does not have the same insight into what’s happening as the OS
has. For example, the OS knows the distinction between data and metadata when
implementing an encrypted file system. So there is a tradeoff there.

Virtualization Applications

Server Consolidation

Data Center Management
— VMotion

High Availability

— Automatic Restart
Disaster Recovery
Fault Tolerance

Test and Development
Application Flexibility

10

Types of Virtualization

* Process Virtualization

— Language construction
* Java, .NET

— Cross-ISA emulation
* Apple’s 68000-PowerPC-Intel Transition

— Application virtualization
* Sandboxing, mobility
* Device Virtualization
— RAID
» System Virtualization
— VMware
— Xen
— Microsoft’s Viridian

In process virtualization, only a single process is run under the control of the virtualization
software. Typically both the process and the virtualization software run at user level in the
same context. The most common uses of process virtualization are language construction
and cross-ISA emulation. Dynamic binary optimization has also become popular in the
literature. Commercial another type of virtualization called Application Virtualization aims
to offer the same benefits of system virtualization by does it at the application level.

Typically the operating system is responsible for creating levels of abstraction on top of the
systems devices. However many of the techniques can be considered virtualization. For
example when the exported interface is at the same level as the underlying interface, |
would consider this device virtualization. Specifically, RAID is a type of disk virtualization.
NAT is a type of network virtualization. These virtualizations can be components of a larger
system virtualization or can be implemented at the lower level of the operating system.

System Virtualization aim to virtualize the entire system with enough accuracy to run
largely unmodified operating systems on top.

11

Taxonomy

Process VMs System VMs

Different
ISA

Different
ISA

Same

Multiprogrammed Dynamic Classic-System Whole-System
Systems Translators VMs VMs
Dynamic HLL VMs Hosted Co-designed
Binary . VMs VMs
Optimizers :

12

System Virtual Machine Monitor Architectures

* Traditional

* Hosted

— VMware Workstation
* Hybrid

— VMware ESX

— Xen

* Hypervisor

13

Traditional

o llo_|loo]l o |lo.-
oClloOlloolloo]|o®

Linux Linux (devel) XP Vista MacOSs

Virtual Machine Monitor

Hardware

* Examples: IBM VM/370, Stanford DISCO

Here the monitor needs to be self-sufficient. There is no help from an Operating System.
What does this mean the monitor needs to have:

CPU scheduler

Memory allocator

Device Drivers

File system

Network stack for administration

Hosted Virtual Machines

* Goal:
— Run Virtual Machines as an application on an
existing Operating System
* Why
— Application continuity
— Reuse existing device drivers

— Leverage OS support
* File system
* CPU Scheduler

— VM management platform

15

Hosted Monitor Architecture

O O O O @,
() () Cwma Guest OS (Linux)

o /

O O O

World Switch

Kernel
Module

Host OS (Window XP) Virtual Machine Monitor

The virtual machine monitor runs in its own address space at kernel level. The VMM time
shares the hardware with the host. When the UserApp runs in the host, it switches to the
VMM by way of a World Switch. The world switch save all the registers, page tables, etc of
the host and then loads the state of the VMM. Initially the state of the VMM is setup up by
the UserApp. This includes what the registers should be and the structure and contents of

the page tables. When the VMM voluntarily gives up the CPU, it World Switches back to the
host.

Hosted Monitor Architecture

O O O
O 0 OQO

() () User App Guest OS (Linux)

N
CPU / Memory

Virtualization
Host OS (Window XP) Virtual Machine Monitor |

Kernel
Module

Hardware

All CPU and Memory virtualization is handled internally to the VMM for performance. This
is the whole idea behind this architecture. The VMM has access to all the privileged state of
the CPU to provide the fastest CPU/memory virtualization possible.

Hosted Monitor Architecture

O O O
O 0 OQO

() () & Guest OS (Linux)

L |

— Devicel/O
T Network, Disk,
e

o Display, Keyboard,
Module Timer, USB

Host indow XP) Virtual Machine Monitor

To utilize OS abstractions and existing device drivers the VMM forwards all device requests
to the UserApp. The UserApp then uses system call interfaces to access the devices.

Hosted Monitor Architecture

O O O
O 0 OQO

() () User App Guest OS (Linux)

J Interrupts
Kern " ;5:'{_-
Mo,
Host OS (Window XP) Virtual Machine Monitor

Hardware

Because the VMM does not handle devices it simply forwards all interrupts on to the host.

Note the VMM must handle CPU generated exceptions like page faults and illegal
instruction faults.

Hosted Monitor Scheduling

O O
| O O
O O O

Q Guest 0S Guest 05
User App User App (Linux) (Vista)
Kernel
Module
Virtual Machine Virtual Machine
Host 0S (Window XP) Monitor Monitor

Q User App User App

N\

___o
oC
O

Hosted Monitor Scheduling

o
O

Guest OS
(Linux)

Guest OS
(Vista)

\

2)
Scheduler rnel

Module

Host OS (Window XP)

Virtual Machine
Monitor

Hardware

Virtual Machine
Monitor

1. The CPU scheduler runs the blue UserApp .

2. The UserApp switches to its VMM.

3. The blue guest is run and gets CPU time.

21

Hosted Monitor Scheduling

O O
| O O
O O O

Q Guest 0S Guest OS
User App User App (Linux) (Vista)

e SR)
Scheduler -
Module
Virtgal Machine Virtual Machine
Host 0S (Window XP) onitor Monitor

4. A time interrupt comes in.
5. The VMM forwards the timer interrupt to the host. The host scheduler runs.

Hosted Monitor Scheduling

S H G
| O ®
O O O

Q Guest 0S Guest OS
User App User App (Linux) (Vista)

CPU o

Scheduler Kernel
Module

Virtual Machine Virtual Machine
Host 0S (Window XP) Monitor Monitor

6. The host scheduler deschedules the blue UserApp and schedules the green UserApp.
7. The green UserApp switch to its VMM.
8. The green guest gets CPU Time

How is the time run in VM accounted for?

i

ooocaa B

88

3 &

 HEE8R8RRBS88A

8B8

The associated UserApp (VMX) gets it.

24

Hosted Architecture Tradeoffs

* Positives

— Installs like an application
* No disk partitioning needed
» Virtual disk is a file on host file system
* No host reboot needed
— Runs like an application
* Uses host schedulers

* Negatives
— 1/O path is slow
* Requires world switch

— Relies on host scheduling
* May not be suitable for intensive VM workloads

25

VMware ESX 2.0

Virtual Machines

ESX Server 2

—
ua
Monitor (YMM) VMkernel

Hardware Interface Layer

Figure 1: E5X Server architecture

Source: http://www.vmware.com/pdf/esx2_performance_implications.pdf

Traditional arch for cpu scheduling, memory allocation, virtual disk, virtual network.
Console OS is there for legacy devices, USB, and as a management platform, i.e. it has the
network stack.

26

Hybrid Ex 2 - Xen 3.0

M2

I pvemima)] senvinma |1 ixaniimma 1

— Linux Guest

[S S
ndl uwdale-

supported

— Unmodified Devi || Frontena [}

virtualization
DE‘\M:P Dnvers

Windows

VM3

Front-End

Isolated Device

UTivers

Xen Hypervisor

{ Hardvare (SMP. MMU, physical memory, Ethemet, SCSUIDE)

Source: Ottawa Linux Symposium 2006 presentation.

http://www.cl.cam.ac.uk/netos/papers/

Vi
AMDV
g H VM "

27

Hypervisor

* Hardware-supported
single-use monitor

* Characteristics
— Small size

— Runs in a special
hardware mode

— Guest OS runs in
normal priviledge level

* Uses
— Security
— System management
— Fault tolerance

O
O5 0 = s
o 0O

o e Kernel
perating System Mode
. Monitor
Hypervisor
L Mode

Hardware

28

