
Overshadow:
A Virtualization-Based Approach to

Retrofitting Protection in Commodity Operating Systems

Carl Waldspurger
VMware R&D

ASPLOS ’08
March 3, 2008

Mike Chen Tal Garfinkel E. Christopher Lewis
Pratap Subrahmanyam Carl A. Waldspurger

VMware, Inc.

Dan Boneh Jeffrey Dwoskin Dan R.K. Ports
Stanford Princeton MIT

Copyright © 2008 VMware, Inc. All rights reserved. 2

Motivation

Applications Handle Sensitive Data

Financial, medical, insurance, military …

Commodity Systems Vulnerable

Large and complex TCB, broad attack surfaces

OS kernel, file system, daemons, services …

Hard to configure, manage, maintain

Privilege escalation ⇒⇒⇒⇒ game over

Data Theft Soaring

Reached “unprecedented levels” in 2007

Identity theft, breach notification laws …

Copyright © 2008 VMware, Inc. All rights reserved. 3

Limitations of Existing Solutions

Rewrite OS / Applications

Split into low- and high-assurance portions
e.g. microkernels, Microsoft Palladium/NGSCB

Expensive, high barriers to adoption

Multiple Virtual Machines

Trusted/untrusted or specialized VMs (e.g. Proxos, Terra)

Cumbersome, still vulnerable to OS compromise

Hardware Approaches

Special-purpose secure co-processors (e.g. IBM 4758)

XOM and SP processor architectures

Require substantial modifications to hardware/OS/apps

Copyright © 2008 VMware, Inc. All rights reserved. 4

Goals

Protect Application Data

Privacy and integrity

In memory and on disk

Remove OS from TCB

Provide last line of defense

Even if attacker compromises guest OS

Backwards Compatibility

Unmodified commodity OS

Unmodified application binary

Non-Goal: Availability

Copyright © 2008 VMware, Inc. All rights reserved. 5

Overshadow Topics

Focus of Talk

Protecting application memory

Secure control transfers

Adapting system call interface

Performance

In Paper

Secure context identification

Managing protection metadata

Implications of malicious system call interface
(work in progress)

Copyright © 2008 VMware, Inc. All rights reserved. 6

Overshadow Architecture

VMM Protects App Memory

New virtualization barrier

App trusts VMM, but not OS

Cloaking: Two Views of Memory

App sees normal view

OS sees encrypted view

Shim: App/OS Interactions

Interposes on system calls,
interrupts, faults, signals

Transparent to application

Two Virtualization Barriers

ShimShim

Cloaked AppCloaked App

VMMVMM

HardwareHardware

Guest OS KernelGuest OS Kernel

Other AppsOther Apps
Other AppsOther Apps
Other AppsOther Apps

Virtual Machine

Copyright © 2008 VMware, Inc. All rights reserved. 7

Memory Mapping: OS

virtual physical

OS page table

Copyright © 2008 VMware, Inc. All rights reserved. 8

Memory Mapping: VMM

virtual physical machine

guest OS vmm

Copyright © 2008 VMware, Inc. All rights reserved. 9

Multi-Shadowing: Context-Dependent Views

virtual physical

machine1

guest OS
view2

view1

machine2

Copyright © 2008 VMware, Inc. All rights reserved. 10

Cloaking: Multi-Shadowing + Cryptography

virtual physical

plaintext

guest OS
sys
view

app
view

X
unmapped

machine

Copyright © 2008 VMware, Inc. All rights reserved. 11

Cloaking: System Accesses Page

virtual physical

plaintext

guest OS
sys
view

app
view

X

machine
encrypted

Fault into VMM: encrypt/hash contents, remap

Copyright © 2008 VMware, Inc. All rights reserved. 12

Cloaking: Application Accesses Page

virtual physical

guest OS
sys
view

app
view

X

machine
encrypted

Fault into VMM: verify hash, decrypt, remap

plaintext

Copyright © 2008 VMware, Inc. All rights reserved. 13

Cloaking Application Resources

Basic Strategy

Protect existing memory-mapped objects
e.g. stack, heap, mapped files, shared mmaps

Make everything else look like one
e.g. emulate file read/write using mmap

OS Still Manages Application Resources

Including demand-paged application memory

Moves cloaked data without seeing plaintext contents

Encryption/decryption typically infrequent

Copyright © 2008 VMware, Inc. All rights reserved. 14

Shim: Supporting Unmodified Applications

Challenges

Securely identify which app is running

Secure control transfers between OS and app

Adapting system calls

Solution: Shim

OS-specific user-level program

Linked into application address space

Mostly cloaked, plus uncloaked trampolines and buffers

Communicates with VMM via hypercalls

Copyright © 2008 VMware, Inc. All rights reserved. 15

Shim: Handling Faults and Interrupts

1. App is executing

2. Fault traps into VMM

Saves and scrubs registers

Sets up trampoline to shim

Transfers control to kernel

3. Kernel executes

Handles fault as usual

Returns to shim via trampoline

4. Shim hypercalls into VMM

Resume cloaked execution

5. VMM returns to app

Restores registers

Transfers control to app

Copyright © 2008 VMware, Inc. All rights reserved. 16

Shim: Handling System Calls

Extra Transitions

Superset of fault handling

Handlers in cloaked shim

interpose on system calls

System Call Adaptation

Arguments may be pointers
to cloaked memory

Marshall and unmarshall

via buffer in uncloaked shim

More complex: pipes,

signals, fork, file I/Omarshallunmarshall

Copyright © 2008 VMware, Inc. All rights reserved. 17

Protecting Data Integrity

Challenges

Enforce integrity, ordering, freshness

For code, data, memory-mapped files …

VMM Manages Per-Page Metadata

Tracks what’s “supposed to be” in each memory page

IV – randomly-generated initialization vector

H – secure integrity hash

Copyright © 2008 VMware, Inc. All rights reserved. 18

Implementation

Overshadow System

Based on 32-bit x86 VMware VMM

Shim for Linux 2.6.x guest OS

Full cloaking of application code, data, files

Lines of code: + 6600 to VMM, ~ 13100 in shim

Not heavily optimized

Runs Real Applications

Apache web server, PostgreSQL database

Emacs, bash, perl, gcc, …

Copyright © 2008 VMware, Inc. All rights reserved. 19

Microbenchmark Performance

System Calls

Simple PASSTHRU

MARSHALL args

Processes

FORKW – fork/wait

process creation,
COW overheads

File-Backed mmaps

MMAPW – write word
per page, flush to disk

MMAPR – read words

back from buffer cache

0

20

40

60

80

100

PASSTHRU MARSHALL FORKW MMAPW MMAPR

%
 U

n
c

lo
a

k
e

d
 P

e
rf

o
rm

a
n

c
e

Copyright © 2008 VMware, Inc. All rights reserved. 20

Benchmark Performance

Web

Apache web server

caching disabled

Remote load generator

ab benchmark tool

Database

PostgresSQL server

DBT2 benchmark

Compute

SPECint CPU2006

gcc – worst individual

SPEC benchmark

0

20

40

60

80

100

Apache DBT2 SPEC gcc

Full Cloaking Without File Cloaking

%
 U

n
c

lo
a

k
e

d
 P

e
rf

o
rm

a
n

c
e

Copyright © 2008 VMware, Inc. All rights reserved. 21

Conclusions

Promising New Approach

VM-based protection of application data

Privacy and integrity, even if OS compromised

Backwards compatible

Powerful New Mechanisms

Multi-shadowing, cloaking

Shim extends reach of VMM

Future Directions

Security implications of a malicious OS

Additional uses of multi-shadowing

Copyright © 2008 VMware, Inc. All rights reserved. 22

Questions?

For More Information

Read the paper

Send feedback to mailing list
overshadow@vmware.com

Job Opportunities

VMware is hiring!

Interns and full-time positions

Feel free to contact me directly
carl@vmware.com

Copyright © 2008 VMware, Inc. All rights reserved. 23

Backup Slides

Copyright © 2008 VMware, Inc. All rights reserved. 24

What is a Virtual Machine?

Hardware-Level Abstraction

Virtual hardware: processors,
memory, chipset, I/O devices, etc.

Encapsulates all OS and
application state

Virtualization Software

Extra level of indirection
decouples hardware and OS

Multiplexes physical hardware

across multiple “guest” VMs

Strong isolation between VMs

Manages physical resources,

improves utilization

Copyright © 2008 VMware, Inc. All rights reserved. 25

Basic Cloaking Protocol

State Transition Diagram

Single cloaked page

Privacy and integrity

Single Page, Two Views

App (A) sees plaintext

via application shadow

Kernel (K) sees ciphertext

via system shadow

Protection Metadata

IV – randomly-generated

initialization vector

H – secure hash

Copyright © 2008 VMware, Inc. All rights reserved. 26

Secure Context Identification

Application Contexts

Must identify uniquely to switch shadow page tables

Must work even with adversarial OS

Shim-Based Approach

Cloaked Thread Context (CTC) in cloaked shim

Initialized at startup to contain ASID and random value

Random value is protected in cloaked memory

Transitions from uncloaked to cloaked execution
use self-identifying hypercalls with pointer to CTC

VMM verifies expected ASID and random value in CTC

Copyright © 2008 VMware, Inc. All rights reserved. 27

Cloaked File I/O

Interpose on I/O System Calls

Read, write, lseek, fstat, etc.

Uncloaked files use simple marshalling

Cloaked Files

Emulate read and write using mmap

Copy data to/from memory-mapped buffers

Decrypted automatically when read by app;
Encrypted automatically when flushed to disk by kernel

Shim caches mapped file regions (1MB chunks)

Prepend file header containing size, offset, etc.

Copyright © 2008 VMware, Inc. All rights reserved. 28

Protection Metadata: Details

Protected Resource

Need indirection to support sharing and persistence

(RID, RPN) – unique resource identifer, page offset

Ordered set of (IV, H) pairs in VMM “metadata cache”

Protected Address Space

Shim tracks mappings (start, end) → (RID, RPN)

VMM caches in “metadata lookaside buffer”

VMM upcalls into shim on MLB miss

Metadata Lookup

(ASID, VPN) → (RID, RPN) → (IV, H)

Persistent metadata stored securely in guest filesystem

Copyright © 2008 VMware, Inc. All rights reserved. 29

Managing Protection Metadata

