
RPC in the x-Kernel: Evaluating New Design Techniques*
Norman C. Hutchinson, Larry L. Peterson, Mark B. Abbott, and Sean O’Malley

Deparfmenf of Computer Science
University of Arizona

Tucson, AZ 85721

Abstract

This paper reports our experiences implementing remote
procedure call (RPC) protocols in the x-kernel. This exer-
cise is interesting because the RPC protocols exploit two
novel design techniques: virtual protocols and layered pro-

tocols. These techniques are made possible because the x-
kernel provides an object-oriented infrastructure that sup-
ports three significant features: a uniform interface to all
protocols, a late binding between protocol layers, and a
small overhead for invoking any given protocol layer. For
each design technique, the paper motivates the technique
with a concrete example, describes how it is applied to the
implementation of RPC protocols, and presents the results
of experiments designed to evaluate the technique.

1 Introduction

The x-kernel is a configurable operating system kernel de-
signed to simplify the process of implementing network
protocols. The x-kernel is implemented on Sun-3 work-
stations and supports multiple address spaces, a protected
kernel address space, light-weight processes, a library of
tools used to construct protocols, and an object-oriented in-
frastructure that supports the composition of protocols IS,
61. This infrastructure is similar to System V Unix streams
[16]. It differs from packet filters [91 because it supports
kernel-based rather than user-based protocol implemen-
tations and because it supports multiple demultiplexing
points.

To date, we have implemented standard protocol con-
figurations in the x-kernel with the intent of demonstrat-

*This work supported in part by National Science Foundation
Grants CCR-8811423 and CCR-8701516.

Permission to copy without fee all or part of this material is granted provided
that the copies arc not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-338-3/89/0012/0091 $1.50

ing that the x-kernel is general enough to accommodate
a variety of protocols without imposing a significant per-
formance penalty on any particular protocol. Our experi-
ence suggests that the x-kernel satisfies both ends of this
goal. On the one hand, we have implemented many dis-
similar protocols within the framework of the x-kernel;
examples include the Arpanet protocol suite [8,12,13,14,
15,191, the Psync many-to-many IPC protocol [II], sev-
eral application-level protocols (2,171, and numerous de-
vice drivers. On the other hand, performance studies show
that protocols implemented in the x-kernel run as fast as,
and sometimes faster than, their counter-part implemen-
tations in less structured environments. For example, the
user-to-user round trip delay using the UDP/IP protocol
suite is 2.00 msec in the x-kernel and 5.36 msec in SunOS
Release 4.0 (4.3BSD Unix). These times were measured on
Sun 3/75 workstations connected by a 1OMbps ethernet.

Instead of considering whether conventional protocol
suites can be implemented in the x-kernel, this paper ad-
dresses a different question: It explores the extent to which
the x-kernel architecture frees us to think about new proto-
col configurations not easily supported in other operating
systems. In particular, it considers how one can take advan-
tage of the x-kernel when implementing remote procedure
call (RX) protocols. The x-kernel has three distinguishing
features that suggest novel implementations are possible:

l The x-kernel supports a uniform interface to all pro-
tocols. Thus, if two or more protocols provide the
same semantics-e.g., an unreliable message deliv-
ery service-then it is easy to substitute one for an-
other.

l The x-kernel supports late binding between proto-
col layers. Rather than encode into a low-level pro-
tocol’s impIementation information about the high-
level protocols that depend on it, the high-level pro-
tocols “open” the low-level protocol at run time. It is
therefore possible to delay this binding so as to select
exactly the right protocol for a particular situation.

l Layers in the x-kernel are light-weight. Instead of re-
quiring a context switch, it costs only one procedure
call to pass a message from a high-level protocol to
a low-level protocol, and vice versa. This makes it
economical to explicitly divide a large protocol into
multiple layers.

This paper shows how two new design techniques that

91

take advantage of these features can be used to implement
RPC protocols. The first, called a virtunl protocol, postpones
the binding of the RPC protocol to a low-level message
delivery protocol. The second, called layered protocols, in-
volves decomposing a monolithic RPC protocol into a col-
lection of primitive building blocks and then composing
these building block protocols in different ways. While
most communication systems are layered-eg., the 7-layer
IS0 model-this technique refers to further subdividing an
individual layer. The paper motivates each technique with
a concrete problem that arises in existing systems, describes
how we applied the technique to the design of RF’C proto-
cols, and reports on experiments designed to evaluate the
technique.

2 Uniform Protocol Interface

This section gives a brief overview of the x-kernel’s uniform
protocol interface; a more complete description is given in
161.

When a message arrives at a network device, a kernel pro-
cess is dispatched to shepherd it upward through the ker-
nel. Should the message eventually reach the user/kernel
boundary, the shepherd process crosses the boundary and
continues executing in the user‘s address space. When a
user process generates a message, the process is temporar-
ily given kernel privileges and allowed to shepherd the
message downward through the kernel. Thus, whten a mes-
sage does not encounter contention for resources, it is pos-
sible to send or receive a message with no process switches.
When resource contention does occur, the shepherd process
blocks on a semaphore.

As a shepherd process flows through the kernel, it visits a
sequence of protocol and session objects that encapsulate the
various network protocols provided by the kernel. Loosely
speaking, each protocol object corresponds to a conven-
tional network protocol-e.g., IF’, UDP, TCP-where the
relationships between protocols are defined at the time a
kernel is configured. A session object is an instance of a
protocol object that contains a protocol interpreter and the
data structures that represent the local state of some net-
work connection. Figure l(a) illustrates a suite of proto-
cols that might be configured into a given instance of the
x-kernel. Figure l(b) gives a schematic overview of the x-
kernel objects corresponding to the suite of protocols in (a);
protocol objects are depicted as rectangles, the session ob-
jects associated with each protocol are depicted as circles,
and a shepherd process follows a path through the proto-
col and session objects.

Protocol objects serve two major functions: they create
session objects and they demultiplex messages received
from the network to one of their session objects. A pro-
tocol object supports three operations for creating session
objects:

session q open(participantset)
open-enable(invokingprotocol, participant-set)
session = opendone(participantset)

Intuitively, a high-level protocol invokes a low-level proto-
col’s open operation to create a session. Each protocol object
is given a capability at configuration time for the low-level
protocols upon which it depends. In the case of open-enable,
the high-level protocol passes a capability for itself to a low-
level protocol. When a message arrives from the network,
the latter protocol invokes the former protocol’s open-done
operation to complete the creation of the session. The par-
ticipant-set argument to all three operations identifies the set
of participants that are to communicate via the created ses-
sion. Participants identify themselves and their peers with
host addresses, port numbers, protocol numbers, and so on.
By convention, the first element of that set identifies the lo-
cal participant. In the case of open and open-done, all mem-
bers of the participant set must be given. In contrast, not all
the participants need be specified when open-enable is in-
voked, although an identifier for the local participant must
be present. Thus, the first operation is used by a client pro-
cess to actively create a session, while the second and third
operations, taken together, are used by a server to passively
create a session.

In addition to creating sessions, each protocol switches
messages received from the network to one of its sessions
with a

demux(message)

operation. demux takes a message as an argument, and ei-
ther passes the message to one of its sessions, or creates
a new session-using the open-done operation-and then
passes the message to it. Each protocol object’s demux op-
eration makes the decision as to which session should re-
ceive the message based on the appropriate fields in the
message’s header.

A session is an instance of a protocol created at runtime as
a result of an open or an open-done operation. Intuitively, a
session corresponds to the end-point of a network connec-
tion; i.e., it interprets messages and maintains state infor-
mation associated with a connection. For example, TCP ses-
sion objects implement the sliding window algorithm and
associated message buffers. Sessions support two primary
operations:

push(message)
pop(message)

The first is invoked by a high-level session to pass a mes-
sage down to some low-level session. The second is in-
voked by the demux operation of a protocol to pass a mes-
sage up to one of its sessions. Intuitively, we think of the
message as a stack, where the two operations push headers
onto and pop headers off of the stack.

Finally, both protocol and session objects support a

control(opcode,buffer,length)

operation. This operation is used to read and set certain
object-dependent parameters. For example, one might in-
voke a protocol object’s control operation to learn the max-
imum transmission unit (MTU) supported by the protocol.
As another example, one might invoke a session’s control
operation to learn a peer’s address.

92

TCP UDP Psync

\I/
IP

ETH

1

(4 (b)

Figure 1: Example x-Kernel Configuration

3 Design Techniques

This section describes virtual protocols and layered proto-
cols, and shows how they can be used to implement RPC
protocols. To make the discussion more concrete, we ap-
ply the two techniques to a specific RPC protocol-Sprite
RPC [201. We chose to experiment with Sprite RPC for four
reasons: (i) it supports at most once semantics; (ii) there are
published performance results on Sun 3/75 workstations
against which we can compare our results; (iii) the problem
solved by virtual protocols is a real problem faced by the
Sprite operating system; and (iv) it is easy to break Sprite
RPC into multiple sub-protocols in a way that facilitates a
fair evaluation of layered protocols.

3.1 Virtual Protocols
Consider the following problem. A remote procedure call
mechanism that serves as the heart of a distributed oper-
ating system is impIemented directly on top of an ether-
net. While this design is efficient, it limits the size of the
distributed system to a single ethernet. To accommodate
a larger system, one must insert an internet protocol (e.g.,
II’) between the RPC protocol and the ethernet, but this has
the undesirable consequence of adding a fixed overhead to
every RPC, even in the common case where the client and
server are on the same ethernet. To quantify the impact
of inserting IP between the RPC protocol and the ethernet,
consider the Sprite network operating system. The latency
of the x-kernel implementation of Sprite RPC directly on
the ethernet is 1.73 msec and the round trip cost of IP in the
x-kernel is .37 msec. Thus, inserting IP between Sprite RPC
and the ethernet automatically implies a 21% performance
penalty. Note that this problem is not specific to Sprite; it
will become increasingly common as more local area net-

work applications and systems are extended into the Inter-
net.

An alternative is to implement the RPC protocol on top
of a virtual protocol rather than either IP or the ethernet. A
virtual protocol is a header-less protocol that accepts mes-
sages from one or more high-level protocols and dynami-
cally multiplexes them onto a collection of low-level proto-
cols that provide approximately the same semantics. Vir-
tual protocols differ from other multiplexing protocols like
IP in that they do not add any functionality, and as a con-
sequence, they do not attach a header to messages.

For example, VIP (Virtual IF’) is a virtual protocol that
provides the same semantics as IF’--i.e., unreliable de-
livery of messages to a set of hosts identified with II’
addresses-but it multiplexes messages to IP and the eth-
ernet. Figure 2 gives an example protocol configuration,
where ETH is able to deliver 1500-byte packets to hosts on
the same ethernet and IP is able to deliver 64k-byte packets
to any host in the Internet. Notice that IP is in turn imple-
mented on top of ETH. Also note that multiple high-level
protocols can use the virtual protocol. That is, not only does
the virtual protocol make it easy to dynamically insert II’
under RPC, it also makes it possible to dynamically delete
IP from below protocols like Psync and UDP that normally
use IP.

The x-kernel makes it easy to implement VIP because it
delays the binding between protocols until run time and it
provides a uniform interface to all protocols. The imple-
mentation of VIP involves work in the open and push oper-
ations. Consider each operation in turn.

When a high-level protocol invokes VIP’s open operation,
it identifies itself with an &bit IP protocol number and its
peer with a 32-bit IP host address. VIP’s open creates a
new session and in turn opens either an IP or an ETH ses-

93

\i/
VIP

/
IP

\
ETH

Figure 2: Example Protocol Suite

sion, or both, based on the destination address and the
size of messages to be sent by the invoking protocol. VIP
asks the invoking protocol about the size of messages it
expects the underlying protocol to support using a control
operation. For example, Sprite RPC reports that it never
sends a message greater than 1500-bytes (it has its own frag-
mentation mechanism for handling larger messages), while
UDP sends arbitrarily large messages (i.e., it depends on
IP to fragment large messages). We assume all protocols
also send messages smaller than their advertized maximum
size. VIP next decides if the destination host is reachable
via the ethernet by trying to resolve the II’ address using
ARP. If ARP can resolve the address, then the destination
host must be on the local ethernet; otherwise, the destina-
tion is not on the local network. If the destination is on the
local network and the high-level protocol reports a maxi-
mum message size smaller than or equal to the ethernet’s
MTU, then VIP invokes ETH’s open to establish a:n ethernet
session. If the destination host is not on the local network
then VIP invokes IP’s open to create an II’ session. Finally,
if the destination host is local but the maximum Ihigh-level
message size is greater than the ethernet’s MTU, VIP opens
both an ETH session and an IP session.

Notice that this approach assumes that all hosts on the lo-
cal ethernet also run VIP. A more general solution would be
to maintain a table of hosts on the local network that sup-
port VIP. This table could be dynamically main.tained by
running a broadcast-based protocol that advertizes the pro-
tocols that a given host supports; this approach is currently
used in 4.3BSD Unix to determine if trailers may be used.
Also note that when VIP needs to open an ethern’et session,
it must map II’ protocol numbers and host addresses into
ethernet types and host addresses. This is easy in the case
of the IP host address: it is done using ARP. In the case
of the II’ protocol field, the mapping is possible because
IP supports only 256 high-level protocols (i.e., its protocol
field is S-bits long), while the ethernet supports 65,536 high-
level protocols (i.e., its type field is 16-bits long). VIP maps
IP protocol numbers onto an unused range of 256 ethernet

types.
When the high-level protocol has a message to send, it

applies the push operation to the message and the session
returned by VIP’s open operation. VIP’s push operation, in

turn, inspects the length of the message. If the length is less
than the ethernet’s MTU and an ethernet session had been
created at open time, VIP pushes the message through the
ethernet session; otherwise it pushes the message through
the IP session. The x-kernel provides an inexpensive oper-
ation for determining the length of a given message. The
important point is that once a VIP session has been opened,
the only overhead it adds to message deiivery is the cost of
the single test in VIP push.

3.2 Layered Protocols
Consider the following problem. Many protocols need to
be able to send large messages (i.e., bigger than one ether-
net message) between a pair of hosts. For example, Sprite
RPC accommodates input arguments and return values of
up to 16k, Sun RPC [18] accommodates arguments and re-
turn values of up to 8k, and Psync accommodates messages
of up to 16k. The most common approach to this problem is
to separately embed a bulk transfer function in each proto-
col that needs it. While the different protocols may be able
to borrow the same strategy for implementing this function-
ality, they are seldom able to actually reuse code.

An alternative approach is to start with a carefully tuned
algorithm for transferring large messages, such as the one
found in an existing RPC-like protocol [4], and package it
as an independent protocol. Such a protocol could then be
composed with other protocols to form a fully functiona
transport service. The principle reason for supporting this
methodology is that is makes it easier to design and imple-
ment new protocols: existing protocol pieces can be reused
and each individual piece is easier to implement, debug,
and optimize. While this parts programming technique has
proven useful in other settings-for example, composing
Unix software tools and inserting filters in System V Unix
character streams-it has not been exploited in the imple-
mentation of network protocols. Instead, network proto-
cols are typically implemented as large, monolithic pro-
grams.

Note that carving a separate bulk transfer protocol out of
an RPC protocol is significantly different than using RPC as
a whole to transfer large messages. This is because RPC en-
capsulates too much functionality, and it particular, it pro-
vides functionality that is not compatible with all the high-
level protocols that might want to take advantage of its bulk
transfer capability. For example, while Psync could use a
protoco1 that sends large messages, it does not want at most
once RPC semantics. From the software tool perspective,
existing RPC protocols encapsulate several distinguishable
functions.

While many large protocols are described in terms of func-
tional layers, such descriptions only serve as a method for
organizing the presentation; they seldom translate into self
contained software modules. Moreover, even if one im-
plements a large protocol in separate modules according
to such a layered description, these modules cannot stand
alone as independent protocols. One reason is that the
header fields used by each layer are scattered throughout
the protocol’s header. Another reason is that in order for a

94

module to be an independent protocol that can be used by
multiple high-level protocols, it must have its own protocol
number (type) field.

To better understand the implications of composing pro-
tocol layers, we partitioned Sprite RPC into three indepen-
dent protocols, including a bulk transfer protocol that can
be reused by Psync. That is, each protocol layer was de-
signed with an eye towards being composed with other
protocols in addition to being composed with each other.
It is important to understand that the monolithic version
of Sprite RPC and the layered version of Sprite RPC are not
the same protocol in the sense that one could exchange mes-
sages with the other. They are in effect two different proto-
cols that provide the same level of service.

The Sprite Rl?C protocol conveys request and reply mes-
sages between client and server processes. The protocol
uses an implicit acknowledgement technique in which the
receipt of a reply message by a client process acknowledges
the receipt of the corresponding request message it sent
to the server, and the receipt of a request message by a
server process acknowledges the receipt of the previous re-
ply message it sent to the client [l]. If no messages are lost,
servers are prompt, and requests are frequent, then no extra
acknowledgement messages are needed. Otherwise, time-
outs trigger retransmissions which sometime elicit explicit
acknowledgements. Requests or replies which are larger
than the maximum packet size of the underlying network
are fragmented, but the fragments are treated as parts of a
single RPC; e.g., a reply implicitly acknowledges receipt of
all the fragments of the request message.

We decomposed Sprite RPC into three independent lay-
ers:

l SELECT: The selection layer maps Sprite commands
(procedure ids) onto procedure addresses (server
processes).

l CHANNEL: The channel layer pairs request mes-
sages with reply messages while preserving at most
once semantics.

l FRAGMENT: The fragmentation layer provides un-
reliable (delivery not guaranteed), but persistent (re-
covers from dropped fragments) transmission of
large messages,

We now consider the three layers from the bottom-up.
First, FRAGMENT supports unreliable delivery of large

messages between a pair of hosts. It is unreliable in the
sense that messages may be delivered out of order, du-
plicate copies of the same high-level message may be de-
livered, and a given message may not be delivered at all.
Specifically, each message pushed through FRAGMENT is
assigned a unique sequence number. The message is then
fragmented and transmitted, with a copy of the fragments
saved in the local state. The protocol is persistent in that if
a receiving host detects that it is missing one or more frag-
ments, it sends a request for the missing fragments to the
sending host.

FRAGMENT differs from how fragmentation is done in
Sprite RPC because the receiving host never sends a pos-
itive acknowledgement (implicit or explicit) when all the

message fragments have been successfully received. In-
stead, the sending host associates a timer with each mes-
sage it sends and discards the message when the timer
expires.’ Note that it is possible that a higher-level proto-
col that depends on FRAGMENT expects an acknowledge-
ment or reply message, in which case the higher-level pro-
tocol must maintain its own timer and potentially resend
a message through FRAGMENT. If this happens, FRAG-
MENT treats the second incarnation of the message as an in-
dependent message; i.e., it is assigned a new FRAGMENT-
level sequence number.

Second, CHANNEL supports request/reply transactions
with at most once semantics. Each channel is opened as a
separate r-kernel session and the algorithm supported by
each session is the same as in Sprite: A high-level proto-
col pushes a message into the session (channel) and a re-
ply message is returned. The only difficulty in implement-
ing CHANNEL as a separate protocol is to tune its time-
out mechanism to take into account that FRAGMENT exists
as a separate protocol; i.e., FRAGMENT and CHANNEL
each support a timeout mechanism. Specifically, CHAN-
NEL’s timer is a step function: for single fragment messages
CHANNEL’s timeout is small, while for multi-fragment
messages CHANNEL must wait long enough to be sure
that the fragmentation layer is not in the middle of trans-
mitting the message.

Finally, SELECT maps an RPC address (procedure id)
onto a procedure. The important aspect of the selection
level is that it implements the caching required for good
RPC performance. Since there are a fixed and predefined
number of channels in Sprite, the SELECT layer simply
chases one of the existing channels when an RPC is in-
voked; it blocks if there are none available. Since there can
only be a fixed number of CHANNEL sessions, SELECT is
optimized to have a fixed number of SELECT sessions. No-
tice that the reason for separating SELECT into a separate
protocol, rather than embedding it in CHANNEL, is that we
want to be able to support multiple schemes for address-
ing procedures. For example, we have built an alternative
selection layer that does forwarding. As another example,
it is trivial to build a reliable datagram protocol on top of
CHANNEL.

Note that in partitioning Sprite RIX into multiple layers,
we not only kept the monolithic version and the layered
version semantically equivalent, we also tried to keep them
as syntactically equivalent as possible. For example, FRAG-
MENT uses the same collection of header fields as does
the fragmentation portion of Sprite RPC, CHANNEL uses a
subset of the header fields that Sprite RPC uses, and so on.
In other words, the union of the FRAGMENT, CHANNEL,
and SELECT headers is nearly identical to the Sprite RPC
header. The only significant difference is that the layered
version duplicates certain fields; e.g., both FRAGMENT
and CHANNEL have their own sequence number field.
Also, because both FRAGMENT and CHANNEL are meant

‘The x-kernel allows multiple protocol layers to maintain refer-
ences to pieces of the same message. Thus, for one protocol to dis-
card its handle on the message does not mean that the actual mes-
sage is deleted.

95

to be used by multiple high-level protocols, their headers
each include a protocol number field. The header for each
protocol is given in the appendix.

4 Experiments

This section reports on a set of experiments designed to
evaluate virtual protocols and layered protocols. The ex-
periments involve measuring various protocol configura-
tions for latency and throughput. The latency tests, measure
the round trip delay for invoking a null procedure with null
request and reply messages. The throughput tests measure
the round trip delay for invoking a null procedure with a
series of large request messages (ranging in size from 1 k-
bytes to 16k-bytes) and a nul1 reply message. The large mes-
sages are fragmented into 1500-byte packets. All the exper-
iments are kernel-to-kernel; i.e., messages were n’ot passed
between user and kernel address spaces.

The experiments were conducted on a pair of Sun 3/75s
connected by an isolated 10Mbps ethernet. The x-kernel
and all the protocols it supports were compiled using the
standard SunOS Release 4.0 C compiler. The numbers pre-
sented in this section were derived through twos levels of
aggregation. Each experiment involved measuring the total
elapsed time needed to execute the test configuration 10,000
times, and dividing this time by 10,000. A given experiment
was then repeated several times, with the average of those
runs reported. Although we do not report the sta-ndard de-
viation of the various experiments, they were observed to
be small.

Because the experiments involve comparing various com-
binations of protocols, we carefully identify each protocol
and configuration as follows:

N-RX: Native implementation of Sprite RPC in the
Sprite kernel [lo].

M-RPC: MonoIithic version of Sprite RI’C imple-
mented in the x-kernel.

L-RPC: Layered version of Sprite RPC implemented
in the x-kernel; consists of the composition of
SELECT-CHANNEL-FRAGMENT.

Also, we clearly denote the underlying delivery protocol;
e.g., MRPC-II’, M.RPC-VIP.

4.1 Virtual Protocols

To evaluate the impact of VIP on RPC performance, we
tested the latency and throughput of M.RPC on top of three
different message delivery protocols: ETH, IF’, and VIP. Ta-
ble 1 summarizes the results, where the Throughy;lut column
corresponds to the throughput measured using 16k-byte
messages and the lncrementul Cost column reports the incre-
mental cost for each additional 1 k-bytes sent in the through-
put tests. Note that the throughput reported for the native
implementation of Sprite RPC is an approximation.

First, observe that the x-kernel implementation of Sprite
RPC is faster than the native implementation in the Sprite

kernel: 1.73 msec versus 2.6 msec latency.2 Also, the x-
kernel implementation results in a better throughput rate:
860k-bytes per second versus just over 7OOk-bytes per sec-
ond. Note that we have not performed any fine-grained
optimization of M-RX; i.e., we have not made optimiza-
tions that exploit knowledge of the compiler or the hard-
ware. The only optimizations we have made are at the pro-
tocol level, for example, making sure each protocol touches
the header as little as possible.

That Sprite RPC runs faster in the x-kernel than it does
in the Sprite kernel is consistent with our experience im-
plementing other protocols in the x-kernel: the structure
imposed on protocols by the x-kernel’s underlying archi-
tecture leads to efficient implementations. On the other
hand, there are too many uncontrolled factors--e.g., ker-
nel coding techniques, process switch times, and so on-to

put too much weight in the x-kernel versus native Sprite
kernel comparison. The only reason we compare the two
implementations is to support the claim that the x-kernel
implementation of Sprite RPC is reasonable; i.e., it is not so
inefficient as to make the layered version look artificially
fast. All the interesting performance comparisons made in
this section are between various versions of Sprite RPC im-
plemented in the x-kernel.

Second, VIP imposes a negligible overhead in the local
case. That is, M-RPC-VIP has a round trip time of 1.79 msec,
implying VIP imposes a 0.06 msec overhead on the under-
lying protocols. Moreover, VIP offers a modest advantage
over using II’: the M-RPC-IP round trip delay is 2.10 msec.
Thus, as predicted in Section 3, II’ imposes a 21% latency
penalty on RPC. Using VIP instead of II’ eliminates most
of this penalty. Using VIP instead of II’ has a negligible
effect on RPC throughput. This is because both protocol
stacks drive the ethernet controIler at its maximum rate.
The M-RX-VIP stack does use less CPU time, however.

4.2 Layered Protocols

We now evaluate the cost of decomposing RPC into multi-
ple layers by comparing LRPC with MKI’C. Table II sum-
maries the results. For this experiment, both the monolithic
and layered versions of RPC were composed with VIP.

The experiment shows that layering imposes a 0.14 msec
penalty on Sprite RPC: layered RPC has a 1.93 msec latency
and monolithic RPC has a 1.79 msec latency. Layered and
monolithic RPC support approximately the same through-
put, although the layered version uses slightly less CPU
time. This is because only FRAGMENT-the bottom-most
layer-handles the individual packets that make up each
large message. That is, for each 16k-byte message, FRAG-
MENT handles 16 messages, but CHANNEL and SELECT

2The actual latency reported by Sprite is 2.8 msec, but this in-
cludes a 0.2 msec penalty for a crash/reboot detection mechanism
not included in the x-kernel implementation. Also, Sprite recently
reports a round trip time of 2.4 msec (2.2 msec without the crash
protocol) when QCC is used. This is consistent with our experience:
we have observed 10% to 20% speedups of the x-kernel when using
gee.

96

Configuration Latency Throughput Incremental Cost
(msec) (kbytes/sec) (msec/l k-bytes)

N..RPC 2.6 700+ 1.2
MRPC-ETH 1.73 863 1.04

MRPC-II’ 2.10 836 1.05
MRPC-VIP 1.79 860 1.04

Table I: Evaluating VIP

Configuration Latency Throughput Incremental Cost
(msec) (kbytes/sec) (msec/lk-bytes)

M-RPC-VIP 1.79 860 1.04
L-RI’C-VIP 1.93 839 1.03

Table II: Monolithic RPC versus Layered RPC

Configuration
I “Zz I

Incremental Cost
(msec/layer) I

VIP 1.12 NA
FRAGMENT-VIP 1.33 0.21

CHANNEL-FRAGMENT-VIP 1.82 0.49
SELECT-CHANNEL-FRAGMENT-VIP 1.93 0.11

Table III: Cost of Individual RPC Layers

handle only one message. FRAGMENT by itself (i.e., with-
out CHANNEL and SELECT) achieves a throughput rate of
865k-bytes/second.

In the case of latency, the overhead for layering imposed
by the x-kernel itself is negligible: It costs only a single pro-
cedure call to go from one layer to another. Thus, the cost
of layering is something inherent in the protocol, not the
operating system. To better isolate the layering overhead,
we measured the latency for the individual protocols that
make up LRPC. The results are reported in Table III.

The key observation is that SELECT-the least expensive
layer-costs 0.11 msec. In fact, this 0.11 msec cost is consis-
tent with our experience with other trivial protocols such
as UDP. Thus, in a situation where a monolithic protocol
is broken into arbitrarily many layers, we can expect each
layer to cost at least 0.11 msec on a Sun 3/75, making it rea-
sonable to think about protocol stacks with on the order of
ten layers. The extra time spent in CHANNEL-the most
expensive protocol-can be attributed to the cost of syn-
chronization and process switching that is intrinsic to the
request/reply paradigm.

4.3 Dynamically Removing Layers
Because we earlier claimed that the 0.37 msec penalty for
using IP instead of ETH was significant, one could also
conclude that the penalty for using layered RPC instead of
monolithic RPC is too high. However, it is important to
keep in mind the following two points. First, the cost of us-

ing IP instead of directly using ETH buys you nothing in the
common case of two hosts communicating over the same
ethernet. In contrast, the cost of layering buys you some-
thing significant. For example, in the case of FRAGMENT,
you get a bulk transfer protocol that can be reused by other
protocols. Second, even though layered RPC has higher la-
tency, it achieves nearly the same throughput as monolithic
RPC because both versions saturate the ethernet controller.

In addition, after having divided the RPC protocol into
three layers, we are able to improve performance in a
way not possible in monolithic RPC. Specifically, because
FRAGMENT is a self-contained protocol, it can be factored
out of the protocol stack. That is, we can use virtual proto-
cols to dynamically determine whether or not to include it
for each message sent by CHANNEL. Figure 4 (a) gives the
original configuration of protocols that we evaluated in Sec-
tion 4.2. Figure 4 (b) shows a new configuration that places
FRAGMENT beneath VIP instead of above it. Specifically,
the new configuration uses two different virtual protocols:
VIP,ize and VIP&d,. VII’~ize selects between FRAGMENT and
VIBa,&+ based on message size. Like VIP, VIP,i,, touches ev-
ery message sent through the protocol stack. VIPaddr se-
lects between ETH and IB. Unlike VIP, VIP&r is only in-
volved at open time; it opens a lower-level IP or ETH ses-
sion and returns it rather than returning a session of its own.
Thus, the overhead involved in the new configuration is the
same as in the old configuration because only one virtual
protocol-VIP,i,,-handles every message that is sent and
received.

97

SELECT SELECT

I
CHANNEL

CHANNEL

FRAGMENT

VIP

/
IP

\
ETH

vIp&

/
FRAGMENT

\
v’paddr

/
IP

\
ETH

(a) (b)

Figure 3: Altern.ative Configurations Using RPC Layers

Because VIP,;,, bypasses FRAGMENT when sending a
small message, one would expect to save 0.15 msec in
the round trip delay: subtracting 0.21 msec for bypass-
ing FRAGMENT and adding 0.06 msec for the overhead
Of VIP,ize. In fact, an experiment verifies this number:
SELECT-CHANNEL-VIP,i,, has a 1.78 msec latency. In
other words, we were able to eliminate the unnecessary
overhead of FRAGMENT only because we were able to iso-
late FRAGMENT as a separate protocol, and in (doing so,
we are able to achieve the same latency as the monolithic
version.

5 Discussion

This section discusses our experiences using virtual proto-
~01s and layered protocols to implement RPC. It also makes
several comments about protocol design and implementa-
tion in general.

Generality of Virtual Protocols: While VIP was easy to
implement-it consists of a little over 300 lines Iof C code
and took a couple of hours to write and debug-virtual pro-
tocols are in general hard to design. For example, adding
another internet protocol (e.g., PUP 131) would force us to
invent a new virtual address space; we could no longer
use II’ addresses as virtual addresses. As another exam-
ple, moving a simple protocol like UDP under VIP proved
to be very difficult, even though UDP supports the same
unreliable semantics as ETH or II’. This is because UDP ad-
dresses include two 16-bit port numbers which cannot be
completely mapped onto a single 8-bit IP protoco,l number.
There seems to be little hope of avoiding such difficuhies
without standardizing the size and format of protocol type
fields. As a final example, one would expect TCP to be able

to use VIP since VIP provides the same semantics as II’.
This doesn’t work in practice, however, because TCP de-
pends on the length field in the IP header (the TCP header
does not have a length field of its own) and TCP computes
a checksum that covers the II’ header. The conclusion we
draw from our experience trying to implement TCP on VIP
is that when designing protocols, one should eliminate un-
necessary dependencies on other protocols; i.e., protocoh
should be designed so they can be composed with any pro-
tocol that offers the same level of service. In this particular
case, having TCP depend on information in the IP header
contributes little to the efficiency of TCP, it is mostly an arti-
fact of TCP and IP being designed in conjunction with each
other. Despite the difficulties in implementing virtual pro-
tocols for conventional protocol stacks, we believe virtual
protocols will play an important role in network environ-
ments dominated by Iayered protocols. This is because the
taller protocol stacks resulting from subdividing protocols
will provide more opportunity for dynamically bypassing
individual layers.

Protocol Decomposition: Our experience strongly suggests
that decomposing protocols into their primitive functional
units is a good thing, independent of the exact performance
costs. As one would expect, such a methodology allows one
to concentrate on implementing a single function at a time.
More importantly, however, dividing large protocols into
smaller protocols means that (i) it is easier to test and de-
bug each piece, and (ii) one can do a better job of optimizing
each piece. This second point is critical: layering helps you
isolate and correct poor performance. The central difficulty
in decomposing protocols is understanding the right way
to break a large protocol into independent pieces. When
designing the FRAGMENT protocol, for example, we had
to choose between reliable and unreliable delivery seman-

98

tics; RPC could use it either way. We chose to make it
unreliable-i.e., not send positive acknowledgements-so
that it could also be used by Psync. Identifying protocol
pieces that are of general use is a topic of current research.

Potential Pitfalls of Layering: Layering provides a great op-
portunity for having disastrous performance. A single mis-
take repeated at multiple layers can quickly lead to unac-
ceptable performance. Although we are confident that the
results presented in Section 4 accurately reflect the intrinsic
costs of layering rather any replicated errors, we did dis-
cover two problems that can significantly influenced the
performance of layered protocols. First, unnecessarily es-
tablishing and freeing state information at each level de-
grades performance. The implementation of layered RPC
avoids this problem by caching open sessions at all three
levels. Second, the cost of manipulating message headers
can be significant. In an earlier version of the x-kernel, we
used a buffer management scheme that allocated a buffer
for each new header added to a message. In contrast, the
current version pre-allocates a single buffer that is large
enough to hold all the headers and simply adjusts a pointer
for each new header. The original approach resulted in a
0.50 msec minimum cost for each layer, whereas the cur-
rent approach has a minimum cost of 0.11 msec per layer.

lnfo~mation Loss: Layering, in general, has the potential
to hide information that is available in a monolithic piece
of code. Such information is commonly used to make de-
cisions that affect protocol performance. Whereas a mono-
lithic protocol learns information by looking in global data
structures, a layered protocol is able to learn the same in-
formation by invoking control operations. While one might
guess that an unwieldy number of different control opera-
tions would be necessary to access all the information pro-
tocols need, our experience is that a relatively small number
of control operations is sufficient; i.e., on the order of two
dozen. By using these control operations, layered protocols
are able to gain the same advantage as monolithic proto-
cols at the negligible cost of calling a procedure rather than
reading a shared variable.

Mix and Match RPCs: In addition to experimenting with
Sprite RPC, we also experimented with decomposing Sun
RPC 1181. Specifically, we have divided Sun RPC into
SUN-SELECT and REQUEST-REPLY layers, and we treat
the various authentication mechanisms as a library of op-
tional protocol layers. We have two main observations re-
garding this exercise. The first is that layering provides
a natural methodology for inserting or removing optional
sub-pieces such as authentication. Much of the complexity
in the Sun RPC code concerns the optional authentication
component. The second is that layering makes it possible to
define new RPC protocols from existing pieces. For exam-
ple, one can compose SUNSELECT and REQUEST-REPLY
with FRAGMENT rather than having to depend on IP to
fragment large messages. FRAGMENT is superior to IP as
a bulk transfer protocol because it is persistent. As another
example, one can replace the REQUESTREPLY protocol
(which has zero or more semantics) with the CHANNEL pro-
tocol (which has at most once semantics). The downside of

this flexibility is that applications must agree to use a partic-
ular protocol stack. We believe it is reasonable to customize
a protocol stack on an application by application basis, but
probably not on a per-connection basis.

Optimizing Protocol Performance: As pointed out in Section
4.1, the performance numbers for the x-kernel correspond
to protocol implementations that have not been heavily op-
timized. The important point is that these protocols need
not be heavily optimized in order to be efficient. This is
because the x-kernel is highly tuned for implementing pro-
tocols. As a consequence, in order to implement a given
protocol efficiently, one has only to apply a small collec-
tion of high-level “efficiency rules”, such as always to cache
open sessions, not touch the header any more than neces-
sary, and so on. Our experience is that these rules apply
uniformly across all protocols.

Performance Predicfability: The predictability of protocol
performance in the x-kernel is comforting, and in fact, it is
necessary when one is designing new protocols. For ex-
ample, by knowing the cost of individual protocol layers,
one is able to predict the cost of composing those proto-
cols. While it sounds reasonable that all operating systems
have such a “predictability” characteristic, our experience
is that this property is not universal. For example, to send
a message using the protocol stack UDP-IP-ETH in SunOS
Release 4.0 costs @than sending it using the IP-ETH pro-
tocol stack. The predictability of the x-kernel is a direct con-
sequence of its uniform protocol interface, and conversely,
the unpredictability in Unix is due to the lack of uniformity
in the socket i.nterface.

6 Conclusions

This paper describes how to take advantage of virtual pro-
tocols and layered protocols to implement RPC in the x-
kernel. A set of experiments designed to evaluate the use of
virtual protocols and layered protocols show that both are
cost effective techniques for implementing RPC.

First, we show that VIP, a specific example of a virtual
protocol, offers modest latency and throughput improve-
ment over using IF’ to exchange messages over the same lo-
cal area network. Moreover, VIP imposes very little over-
head on end-to-end protocols that directly use the ether-
net. Being able to dynamically remove II’ from the protocol
stack will be increasingly important as localized distributed
systems migrate onto the Internet. In general, we believe
virtual protocols will play a significant role in a network
environment dominated by layered protocols. In such an
environment, being able to dynamically insert and delete
individual protocols into and out of the protocol stack will
make it possible to improve performance.

Second, we demonstrate that a layered version of RPC can
achieve latency and throughput performance that is com-
parable to a monolithic version of RPC. Because layering
facilitates reuse, makes it possible to dynamically remove
unnecessary layers, and makes protocols easier to debug
and optimize, we conclude that decomposing monolithic

99

protocoIs into their primitive functional units is both desir-
able and economical. The remaining challenge is to identify
and isolate important functions that can be used ,to build
more complex composed protocols. As one examp1.e of our
effort in this area, we are experimenting with using Psync
as a building block protocol for implementing various pro-
tocol stacks for fault-tolerant distributed programs [71. As
another example, we have applied the technique to stream-
oriented protocols with modest success. Finally, we are
experimenting with a meta-protocol that establishes a set of
“rules” for protocol design. For example, the meta-protocol
defines a standard protocol type field. The idea is that pro-
tocols that adhere to the meta-protocol will be moire easily
composed.

References

[l] A. BirreIl and B. Nelson. Implementing remote pro-
cedure calls. ACM T~unsactions on Computer Systems,
2(1):39-59, Feb. 1984.

[2] A. Black, N. C. Hutchinson, E. Jul, H. M. Levy, and
L. Carter. Distribution and abstract types in Emer-
ald. IEEE Transactions on Software Engineering, SE-
13(1):65-76, Jan. 1987.

[3] D. I’. Boggs, J. F. Shoch, E. A. Taft, and R. M. Metcalfe.
Pup: an internetwork architecture. 1EEE Transactions
on Communications, COM-28(4):612-623, Apr. 1989.

141 D. R. Cheriton. VMTP: a transport protocol for
the next generation of communications systems.
In Proceedings of the SIGCOMM ‘86 Symposium,
pages 406-415, Aug. 1987.

151 N. C. Hutchinson, S. Mishra, L. L. Peterson, and
V. T. Thomas. Tools for implementing network pro-
tocols. Sofiware-Practice and Experience, 198!3. To ap-
pear.

[6] N. C. Hutchinson and L. L. Peterson. Design of the x-
Kernel. In Proceedings of the SIGCOMM ‘88 Symposium,
pages 65-75, Stanford, Calif., Aug. 1988.

[7] S. Mishra, L. L. Peterson, and R. D. Schlichting. Imple-
menting fault-tolerant replicated objects using Psync.
In Eighth Symposium on Reliable Distributed Systems,
Oct. 1989. To appear.

[8] P. Mockapetris. Domain Names-Zmplemenlation and
Specification. Request For Comments 1035, USC Infor-
mation Sciences Institute, Marina de1 Ray, Calif., Nov.
1987.

[91 J. C. Mogul, R. F. Rashid, and M. J. Accetta. The packet
filter: an efficient mechanism for user-level network
code. In Proceedings of the Eleventh ACM Symposium on
Operating System Principles, pages 39-51, Nov. 1987.

[lo] J. K. Ousterhout, A. R. Cherenson, F. Douglis,
M. N. Nelson, and B. B. Welch. The sprite network
operating system. IEEE Computer, 23-36, Feb. 1988.

[ll] L. L. Peterson, N. Buchholz, and R. D. SchlichLting. Pre-
serving and using context information in interprocess

communication. ACM Transactions on Computer Sys-
tems, 7(3):217-246, Aug. 1989.

[121 D. Plummer. An Ethernet Address Resolution Protocol.
Request For Comments 826, USC Information Sciences
Institute, Marina de1 Ray, Calif., Nov. 1982.

[13] J. Postel. Internet Message Control Protocol. Request
For Comments 792, USC Information Sciences Insti-
tute, Marina de1 Ray, Calif., Sep. 1981.

[14] J. Postel. Internet Protocol. Request For Comments 791,
USC Information Sciences Institute, Marina de1 Ray,
Calif., Sep. 1981.

[151 J. Postel. User Datugram Protocol. Request For Com-
ments 768, USC Information Sciences Institute, Marina
de1 Ray, Calif., Aug. 1980.

[16] D. M. Ritchie. A stream input-output system. AT&T
Bell Laboratories Technical Journal, 63(8):311-324, Oct.
1984.

[171 Network File System. Sun Microsystems, Inc., Moun-
tain view, Calif., Feb. 1986.

[18] Remote Procedure Call Programming Guide. Sun Mi-
crosystems, Inc., Mountain view, Calif., Feb. 1986.

[19] USC. Transmission Control Protocol. Request For Com-
ments 793, USC Information Sciences Institute, Marina
de1 Ray, Calif., Sep. 1981.

[20] B. B. Welch. The Sprite Remote Procedure Call Sys-
tem. Technical Report UCB/CSD 86/302, University
of California Berkeley, Berkeley, Calif., June 1988.

Appendix

The C structures that define the headers for monolithic
RPC, SELECT, CHANNEL, and FRAGMENT, respectively.
Note that while Sprite provides for 32-bit host numbers, our
implementation uses IP addresses (also 32-bits) to identify
hosts.

typedef struct sprite-hdr {
unsigned short flags;
IPaddr clnthost;
IPaddr srvrhost;
unsigned short channel;
unsigned short srvr-process;
unsigned sequencenum;
unsigned short num-frags;
unsigned short frag.mask;
unsigned short command;
unsigned booLid;
unsigned short datalsz;
unsigned short data2sz;
unsigned short datalatfset;
unsigned short data2-offset;

> SPRITEHDR;

typedef struct select-hdr {
unsigned char type;

100

unsigned short command;
unsigned char status;

) SELECTHDR;

typedef struct channel-hdr {
unsigned short ftags;
unsigned short channet;
unsigned int protocol-num;
unsigned int sequence.num;
unsigned short error;
unsigned boot-id;

} CHANNEL-HDR;

typedef struct fragment-hdr {
unsigned char type;
IPaddr clnt-host;
IPaddr w-w-host;
unsigned int protocol-num;
unsigned int sequencenum;
unsigned short numfrags;
unsigned short frag-mask;
unsigned short len;

} FRAGMENT.HDR;

Note that layered RPC does not make use of the dual data
size and offset fields. Having two separate fields serves no
purpose in the x-kernel because of the support il provides
for building and tearing apart messages.

101

