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Abstract

Next generation computer systems will have gigabytes

of physical memory and p~ocessors in the 200 MIPS range

or higher. While this trend suggests that memory man-

agement for most programs will be less of a concern,

memory-bound applications such as scientific simulations

and database management systems will require more so-

phisticated memory management support, especially in a

multiprogramming environment. Furthermore, new archi-

tectures are introducing new complexities between the pro-

cessor and memory, reclniriug techniques such as page col-

oring, variable page sizes and physical placement control.

We describe the design, implementation and evaluation

of a virtual memory system that provides application con-

trol of physical memory using externai page-cache manage-

men t.In this approach, a sophistical ed application is able

to monitor and control the amount of physical memory it

has available for execution, the exact contents of this merr-

ory, and the scheduling and nature of page-in and page-out

using the abstraction of a page frame cache provided by

the kernel. It is also able to handle multiple page sizes

and control the specific physical pages it uses. We claim

that this approach can significantly improve performance

for many memory-bound applications while reducing ker-

nel complexity, yet does not complicate other applications

or reduce their performance.
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1 Introduction

Next generation computer systems will measure their

physical memory in gigabytes, just as current systems are

rated in megabytes and previous generation systems were

rated in kilobytes. This trend has promptecl some to fore-

tell the demise of operating system virtual memory sys-

tems and even secondary storage. Yet, secondary storage

and networking growth places the effective external data

capacities in the terabyte range, maintaining the rough ra-

tio of main to secondary storage that has held for decades.

Thus, the real eflect of the arrival of gigabyte memories is

to clearly delineate applications with modest memory re-

quirements from those whose requirements are almost un-

bounded, such as large-scale simulation, or whose require-

ments grow proportional to external data capacities, such as

data base systems. The increasing speed of processors and

the lack of comparable improvement in 1/0 performance

makes the memory system performance a key limiting fac-

tor for these demanding applications. With a page fault

to secondary storage now costing close to a million instruc-

tion times, the “instruction budget” exists to take a more

intelligent approach to page management in virtual mem-

ory systems.

There are three major problems with current virtual

memory systems. Firstly, an application cannot know the

amount of physical memory it has available, it is not iw

formed when significant changes are made in the amount

of available memory, and it cannot control the specific phys-

ical pages it is allocated. Secondly, a plogram cannot ef-

ficiently control the contents of the physical memory allo-

cated to it. Finally, a program cannot easily control the

read-ahead, writ eback and discarding of pages within its

physical memory. Addressing these problems has signifi-

cant performance benefits for applications, as argued be-

low.

With knowledge of the amount of available physical

memory, an application may be able to make an intelligent

space-time tradeoff between different algorithms or modes

of execution that achieve its desired computation. For ex-

ample, M P 3D [7], a large scale parallel particle simulation

based on the Monte-Carlo method, generates a final result

based on the averaging of a number of simulation runs. The

simulation can be run for a shorter amount of time if it uses

many runs with a large number of particles. This applica-

tion could automatically adjust the number of particles it
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uses for a run, and thus the amount of memory it requires,

based on availability of physical memory. Similarly, a par-

allel database query processing program [17] can adapt the

degree of parallelism it uses, and thus its memory usage,

based on memory availability. Finally, a run-time memory

management library using garbage collection can adapt the

frequency of collections to available physicaf memory, if this

information is available to it.

With control of which specific physical page frames it

uses and their virtual memory mapping, an application

can optimize for efficient access based on the system mem-

ory organization and the application access patterns. For

example, in the DASH machine [13], physical memory is

distributed, even though the machine provides a consis-

tent shared memory abstraction using a cache consistency

protocol. In this type of machine, a large-scale applica-

tion can allocate page frames to specific portions of the

program based on a page frame’s physical location in the

machine and the expected access to this portion of menl-

ory. Similarly, an application can allocate physical pages

to virtual pages to minimize mapping collisions in physi-

cally addressed caches and TLBs, implementing page color-

ing [15] on an application-specific basis, taking into account

expected data access patterns at run-time.

With control of the portion of its virtual address space

mapped to physical memory, an application can operate far

more efficiently if it is using a virtual address space that ex-

ceeds the size of physical memory. For example, a database

management system can ensure that critical pages, such

as those containing central indices and directories, are in

physical memory. The query optimizer and transaction

scheduler can also benefit from knowing which pages are in

memory, because the cost of a page fault can significantly

increase the overall cost of a query. The latency of a page

fault also dramatically extends lock hold time times if locks

are held across a fault. With multiprocessor machines, an

unfortunate page fault can cost not just the elapsed time

of the fault, but that cost multiplied by the number of pro-

cesses blocked if they also hit the same page, or a lock held

the blocked process.

With control of read-ahead, writeback and page dis-

carding, an application can its minimize 1/0 bandwidth

requirements and the effect of 1/0 latencies on its exe-

cution. Scientific computations using large data sets can

often predict their data access patterns well in advance,

which allows the disk access latency to be overlapped with

current computation, if efficient application-directed read-

ahead and writeback are supported by the operating system

(and the requisite 1/0 bandwidth is available). For exam-

ple, the large-scale particle simulation cited above takes ap-

proximately 12 seconds to scan its in-memory data of 200

megabytes for each simulated time interval (on a machine

with eight 30-MIPS p~ocessors 1). Thus there is ample time

to overlap prefetching and writeback if the data cloes not

fit entirely in memory,

Extensions to virtual memory systems, such as page

pinning, external pagers [21, 5] and application-program

aclvisory system calls like the Unix 2 madvise attempt to

address some of these issues, but incompletely and with

significant increase in kernel comDlexitv. We are interested

in”exploring a significantly differ;nt m“odularization of the

1Silicon Graphics 4f3/380

2 UNIX is a trademark of AT&T

memory system implementation that both provides appli-

cation control and reduces kernel complexity.

In this paper, we describe the design, implementa-

tion and evaluation of a virtual memory system that pro-

vides application control of physical memory using what

we call external page-cache management. With external

page-cache management, the virtual memory system effec-

tively provides the application with one or more physical

page caches that the application can manage external to

the kernel. In particular, it can know the exact size of the

cache in page frames. It can control exactly which page is

selected for replacement on a page fault and it can control

completely how data is transferred into and out of the page,

including selecting read-ahead and writeback. It can also

has information about physical addresses, so that it can im-

plement schemes like page coloring and physical placement

control.

In essence, the kernel virtual memory system provides

a page frame cache for the application to manage, rather

than a conventional transparent virtual address space that

makes the main memory versus secondary storage division

transparent except j’or performance. A default process-level

manager provides page-cache management for such appli-

cations that do not want to manage their virtual memory,

The next section describes our design as implemented in

the V++ kernel. The following section evaluates external

page-cache management, drawing on measurements both

from the V++ implementation and a simulated database

transaction processing system. Section 4 describes related

work. We close with a discussion of conclusions and some

future directions.

2 External Page-Cache Management in V++

External page-cache management requires new kernel

operations and process-level modules to allow process-level

management of page frames. We first describe the ker-

nel support, followed by a discussion of application-specific

managers. We then discuss the the default manager. Fi-

nally we describe the module responsible for global mem-

ory allocation. Although this section focuses on the design

and implementation of external page-cache management in

V++j a new generation of the V distributed system, the ba-

sic approach is applicable to other systems, such as Unix.

2.1 Kernel Page Cache Management Support

Kernel page cache management support is provided in

V++ as operations on segments. A segment is a variable-

size address range of zero or more pages, similar to the con-

ventional virtual memory notion of segment [3]. Pages can

be added, removed, mapped, unmapped, read ancl writ-

ten using segment operations. A parameter to the seg-

ment creation call optionally specifies the page size to sup-

port machines such as those using the Alpha microproces-

sor [10] that support multiple page sizes. Segments are

used for cached and mapped files, portions of program ad-

dress spaces (such as the code segment, data segment, etc.)

as well as for program address spaces themselves, as illus-

trated in Figure 1. Referring to Figure 1, a program vir-

tual address space in V++ is a segment that is composed

by binding one or more regions of other segments. The fig-

ure illustrates a virtual address segment with a code, data

and stack segments bound into the code, data and stack

regions of the address space, respectively. A bound region
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Figure 1: Kernel Implementation of a Virtual Address

Space

associates a range of addresses (page-aligned and a multi-

ple of pages) in one segment with an equal-sized range of

blocks in another segment so that a memory reference to

an address covered by a bound region in first segment is

effectively a reference to the corresponding address in the

associated bound segment. The binding facilities also sup-

port a copy-on-write binding in which pages are effectively

bound to a source segment until modified. While this seg-

ment structure is similar to other virtual memory designs,

the novelty lies in the associated page cache management

support.

External page cache management is supported with

three significant additions over conventional virtual mem-

ory management operations, if one regards the V++ seg-

ment as roughly analogous to Unix open files and Mach

memory objects. Firstly, an explicit manager module is

associated with each segment, using the kernel operation,

Set SegmentManager( seg, manager )

Secondly, the kernel operation

MigratePages(srcSeg, dstSeg, srcPage, dstPage,

pages, sFlgs, cFlgs)

moves pages page frames from the source segment, starting

at srcPageto theclestination segment, starting at chrtPage,

setting the page flags specified by sFlgs and clearing the

page flags specified by cFlgs for each migrated page frame.

.A similar kernel operation,

ModifyPageFlags(seg, page, pages, sFlgs, cFlgs)

modifies the page flags without migrating the page frames.

The MigratePages and ModifyPageFlags operations allow

the manager to modify page state flags such as the dirty

flagin addition to the protection flags accessible with the

conventional Unix mprotect. Finally, the kernel operation

GetPageAttributes( seg, page, pages)

returns (pageAttributeArray)

returns the page flags, and the physical pageframe address,
of the specified set of page framm. Them operations are

used inconjunctiou with modest extensions ofconventional

virtual memory facilities, such as the ability to catch page

faults at user level, to implement external page cache man-

agement.

The segment manageris a module responsible for man-

aging the pages associated with the segment. In particular,

when a reference is made to a missing or protected page

frame in a segment, the event is communicated to the man-

ager. The manager handles the fault following the sequence

illustrated in Figure 2. Referring to this figure, when the

1
Application

Kernel Interfece

t 4. Migrats pege
KERNEL 5. Reeume

Figure 2: Page Fault Handling with External Page-Cache

Management

application references a page frame not present in its ad-

clress space, it traps to the kernel, which forwards the page

fault indication tothernanage r(stepl). Themanager allo-

cates apage framefrom another segment (often a free-page

segment), requests thedatafor the page frame from the file

server holding the data (step 2), and waits for the reply.

When the server replies with the data (step 3), the data

is copied into the previously allocated page frame, ancl the

kernel isinvoked (step 4)tomove ormigr-ate thepage frame

to the faulting page address in the application’s segment.

The manager responds to the application, allowing it to

resume (step 5). The figure assumes that the page data

must be retrieved from the file server. If the manager has

the page data available locally, steps 2 and 3 are replacecl

by an internal procedurein the manager which makes the

data available in the page frame allocated to the applica-

tion. With a copy-on-write fault the kernel performs the

copy after the manager has allocated a page.

Filling the page frame tends to clominate the other costs

of page fault handling because it usually requires either ac-

cessing backing store or copying from another page. Note

that the kernel manages hardware-supported VM transla-

tion tables such as page tables and TLBs to map pages

with the protections specified in the segment and bound

region data structures. A page fault trap only occurs when

a memory reference cannot be satisfied given the informa-

tion in these kernel data structures. In particular, simple

TLB misses are handled by the kernel.

The MigratePages operation operates on the page

frames in bound regions by operating on the associated

segments. For example, migrating a page frame to the ad-

dress range corresponding totheclata region in the virtual

address segment in Figure 1 effectively migrates the page

frame to the segment labeled Data Segment. Migrating a

page frame to a segment is treated as a write operation for

the purposes of segment protection and copy-on-write be-

havior. The MigratePages operation isalsonse dtoreclaim

pages frames from segments as part of a page reclamation
FArategy.

Cached files, implemented assegments, can be accessed

using a kernel-provided file-like block read/write interface,

specifically the Uniform Input/Output Object (UIO)proto-

CO1[5]. A file read to a segment page that does not have an
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associated page frame causes a page fault event to be com-

municated to the manager of the segment, as for a regular

page fault. File write operations Iequiring page allocation

are handled similarly. File access performance is compa-

rable to that of a system with a kernel-resident file system

because. when the file is cached, the access is a single kernel

operation 3 and when the file is not cached, the access time

is dominated by secondary storage access costs.

The manager module can be executed by a process sep-

arate from the application or by the faulting process itself.

In the first case, the kernel suspends the faulting p~ocess

and communicates with the manager process using the in-

terprocess communication facility. In the second case, the

kernel transfers control to a procedure that is executed by

the page faulting process, similar to a conventional signal

or intemupt. This method is generally more efficient than

the fi~st method because no context switch is required. On

some hardware, such as the IvIIPS R3000-based machines,

resumption of the application after page faulting handling

can be performed directly from the manager without go-

ing through the kernel, further improving the efficiency.

Other systems, such as those using the i’vIC 680X0 mo-

cessors, recluire a return through the kernel to restore priv-

ileged pipeline state. With the potential of a variety of

high-performance uses for application page cache manage-

ment, we hope that future architectures will allow direct

application resumption after fault, as in the R3000.

When the faulting process executes its own segment

manager, some care is required in handling page faults on

that process’s stack to avoid infinitely recursive page fanlt-

ing. Our approach is to nse a separate fault-handling 01

signal stack that is always in memory, so a page fault in the

page fault handling does not occur. There can be a separate
signal stack per segment, so with a multi-threaded program,

each thread can have a separate signal stack, namely one

for its stack segment.

On initialization, the kernel creates a segment identi-

fied by a well-known segment identifier that includes all

the page frames in the memory system, in order of physical

acldress, with access limited to system processes, specifi-

cally the system page cache manager (see section 2.4). The

system page cache manager uses the MigratePages opera-

tion to allocate these page frames to the various segment

managers on demand. In a minimal configuration of the

system, such as in an embedded real-time application with

no demand paging, application processes can allocate pages

clirectly from this initial segment, obviating the need for any

process-level server mechanism. This scenario illustrates

how the kernel virtual memory support contains very little

extra mechanism beyond that required to support embed-

ded applications, yet can be configured with process-level

servers to implement a full demand-paging system with so-
phisticated application paging control.

In summary, the primary kernel extensions are: 1)

the ability to designate an explicit manager for a seg-

ment, 2) kernel operations such as MigratePages and

Modif yPageFlags to modify segments and page frame flags,

and 3) the kernel operation Get PageAttributes to deter-
mine the page attributes for a range of pages frames. With

the information andcontrol exported bythe kernel and the

efficient communication to segment managers on page fault

3Using the block interface the file is not mapped into the
address space of the reading process

and page protection fault events, a process-level module

can readily implement a variety of sophisticated schemes,

including replicated writeback, page compression and log-

ging and it can coordinate writeback with the application,

as is required for clean database transaction commit. In

comparison to the external pager approach supported by

the Mach kernel, the V++ kernel does no page reclamation

and no page writeback.

2.2 Application-Specific Segment Managers

In each sophisticated large-scale application, an

application-specific segment manager manages one or more

of the application’s memory segments. The management

actions include: 1) handling page faults, 2) ~eclaiming pages

from segments and 3) interacting with the system segment

manager to allocate additional pages ancl return pages, as

appropriate.

To handle page faults quickly, a segment manager typi-

cally maintains a free-page segment, just as is normally done

by the kernel virtual memory system in a conventional de-
sign. The free-page segment is mapped into the manager’s

address space so the manager can directly copy data to and

from the page frames as part of allocation and reclamation.

For example, as part of a conventional page fault, it may

read the page data from backing storage into a page in its

address space that corresponds to the page m the free-page

segment that has been allocated for this page fault. It then

migrates the page frame to the faulting segment and allows

the faulting process to continue.

More complex schemes are appropriate for some appli-

cations. For example, the segment manager for a database

management system (DBMS) may use temporary index

segments as free-page segments, and simply steal from these

scratch areas rather than maintain explicit free areas. A

DBMS segment manager may have a different free page

segment for each of indices, views and lelations, making it

easier to t] ack memo~y allocation to these different types of

data. A single application may also use different segment

manager modules for different segments or types of seg-

ments it uses. For example, it may maintain different free

page segments to handle distribntecl physical memory on

machines such as DASH [13] or for page coloring schemes.

These techniques rely on being able to request page frames

from the system page cache manager with specific physical

addresses, or in particular physical address langes.

The manager can implement stanclard page frame

reclamation strategies, such as the various “clock” algo-

rithms [12]. In particular, it can periodically migrate page

frames from the segments it manages back to a free-page

segment using MigratePages, keeping track of the segment

and page number for each page frame it migrates, and writ-
ing back the dirty page data. If a given page frame is refer-

enced through the original segment before the page f~ame is

reused, the manager simply migrates it back to the original

segment. The manager is also informed when a segment

it manages is closed or deleted, so that it can reclaim the
segment page frames at that time,

The manager can nse applicatiowspecific strategies,

such as cleleting whole segments of temporary data that

it knows are no longer needed or that are better to discard

and regenerate in their entirety (rather than be paged out

and back in, or regenerated a page at a time). Similarly,

in a large-scale matrix computation, the manager may be
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able to prefetch pages of matrices to minimize the effect

of disk latency on the computation while recognizing that

it can simply discard dirty pages of some intermediate ma-

trix rather than writing them back, thereby conserving 1/0

bandwidth.

On initialization, a segment manager recp~ests the cre-

ation of its free-page segments with initial page frame al-

locations from the system page cache manager. It then

creates further segments, possibly on demand from the ap-

plication, to handle application data, specifying itself as the

manager for these segments.

The issue of the page faults on segment manager code

and data can be handled in two ways. First, the cocle and

data can reside in segments that are managed by another

manager, such as the default segment manager, described

in the next section. Then, in the case of the fi~st manager

incurring a page fault on its code or data segment, this sec-

ond fault is handled by the other segment manager before

the first manager continues with the page fault handling.

This approach is simple to implement, but does not pro-

vide predictable performance for the application segment

manager. The alternative approach is for the application

manager to manage the segments containing its code and

data, and to ensure that these segments are not paged out

while the program is active, effectively locklng this portion

in memory. In this approach, when an application starts ex-

ecution, these segments are under the control of the default

segment manager. The application manager accesses these

pages at this point to force them into memory, then as-

sumes management of these segments, and then reaccesses

these segments, ensuring they are still in memory. A page

fault after assuming ownership causes this initialization se-

quence to be retried until it sncceecls4 Once the manager

has completed this initialization, it excludes its own page

frames from being candidates for replacement. In this ap-

proach, to avoid all page faults in the page fault handling

code itself, all segments must use a signal stack that is part

of this effectively pinned data, not just the stack segments,

as described earlier.

The same approach can be used when an application is

swapped out to secondary storage. In particular, the ap-

plication segment manager swaps the application segments

except for its code and data segments. It then returns own-

ership of these latter segments to the default segment man-

ager, and indicates it is ready to be swapped. The applica-

tion manager is then suspended, and its segment pages are

then swapped out as well. On resumption of the applica-

tion, the manager gains control and repeats the initializa-

tion sequence described above.

An application segment manager can be “specialized”

from a generic or standard segment manager using inher-

itance in an object-oriented implementation. The generic

implementation provides data structures for managing the

free page segment and basic page faulting handling. The

page replacement selection routines and page fill routines

can be easily specialized to particular application require-

ments. Thns, the application programmer’s effort to pro-

4This scheme assumes that the amount of memory required
for the manager is small compared to the amount of physical
memory. We do assume a large system memory configuration
suitable for running the class of memory-bound applications mo-
tivating these techniques, where this assumption is invariably
true. It is not clear that our approach is workable in general if
the system memory resources are meager relative to the working
set size of servers and other real-time or interactive modules.

vide page cache management is minimized, and focused on

the application-specific policies and techniques, rather than

the task of developing a segment manage~ from scratch.

2.3 Default Segrment Manager

A default segment manager implements cache manage-

ment for conventional programs, making them oblivious to

external-page management. This manager executes as a

server outside the kernel. In V++, the default segment

manager is currently created as part of the “first team”, a

memory-resident set of systems servers started immediately

after kernel initialization. Thus, the default manager does

not itself page-fault.

In the V++ implementation, the lJIO Cache Directory

Server ( UCDS) [5] has been extended to act as default

segment manager. This server manages the V++ virtnal

memory system effectively as a file page cache. All ad-

dress spaces are realized as bindings to open files, as in

SunOS 5. The original role of the UC~DS was to handle

file opens and closes so it could add files to the cache on

demand and remove them as appropriate. In this origi-

nal form, page faults were handled by the kernel once the

mappings were established. The modifications for external

page-cache management required extensions to this server

to manage a free-page segment and to handle page fault re-

clnests, page reclamation and writeback. However, because

it was already maintaining information about cached files

on a per-file basis, the extensions to its data structures and

overall fnnctionalit y were relatively modest.

To determine the memory reclnirements of applica-

tions using the default segment manager, the default man-

ager implements a clock algorithm [12] that allocates page

frames to each requester based on the number of page

frames it has referenced in some interval. The inlplementa-

tion of this algorithm requires passing a fault to the man-

ager when a process first references a page after the page

protection bits are set to disallow all references. The han-

dling of the fault requires changing the protection of the

referenced page. To recluce the overhead of handling these

faults, the default manager changes the protection on a

number of contiguous pages, rather than a single page,

when a fault occurs. In general, the default manager can

implement whatever algorithms that the corresponding ker-

nel module would in a conventionally structured system,

including page coloring and the like, if appropriate. Thus,

the performance with the default segment manager should

be competitive with conventional systems, as indicated by

our measurements in Section 3.2.

2.4 System Page Cache Manager

The System Page Cache Manager (SPCM ) is a process-

level module that manages the allocation of the global

memory pool among the segment managers. A manager

requests some number of page frames from the SPCM in

order to satisfy its memory requirements. The SPCM can

grant, defer or refuse the request, based on the compet-

ing clemands on the memory and memory allocation Pol-

icy. The SPCM returns page frames to its local free page
segment when returned by a segment manager, or when a

segment manager terminates.

The SPCM can support segment manager recluests for

particular page frames by physical address or by physical

5SunOS is a trademark of Sun MicroSystenw Inc.
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address range, as required for physical placement control

and page coloring. If the SPCM cannot satisfy an alloca-

tion request because of physical address constraints, it is

handled the same as a conventional (unconstrainecl) page

frame request for which the size of memory requested is

larger than that available, That is, it allocates and provides

as many page frames as it can or is willing to. Futther ex-

tensions can easily be provided for future architectures by

mollifying the SPCM, rather than complicating and desta-

bilizing the kernel.

A “memory market” model of system memory alloca-

tion has been developed for the SPCM, and is explored in

depth in a separate report [9]. In brief, the SPCM imposes a

charge on a ~rocess for the rnemorv that it uses over a given

period of time in an artificial monetary unit we call a dram.

That is, a process holding 11 megabytes of memory over T

seconds is charged M * D *T drams, if the charging rate is D

drams per megabyte-second. A process is provided with an

income of 1 drams per second of its existence, the value of

1 depending on the ;nrnber of competing processes and the

administration policy of allocating for the system. A seg-

ment manager as part of an application process thus must

manage its dram supply to balance the cost of the memory

used bv the application versus its income. In Particular, it. .
must return memory to the SPCM when it can no longer

affo~d to “pay” for the memory. The SPCM has the ability

to force the return of memory from processes that have ex-

hausted their dram supply, treating such process behavior

as faulty.

For batch programs the application segment manager

suspends and swaps the program until it has saved enough

drams to afford enough memory for a reasonable time slice

of execution. By queries to the SPCM, it can determine

the demand on memory and possibly identify trade-offs be-

tween running in a small amount of memory soon ver~ns

waiting longer to get a larger amount of memory. When

the process has enough drams to afford the memory, it re-

quests the memory from the SPCM and runs as soon as

the memory request is granted. At the end of its time

slice, when its dram savings are running low, it pages out

the data and returns to a cluiescent state in which it has a

very low memory requirement. As a further refinement,, the

SPCM can allow a process to continue to use memory at

no charge when there are no outstanding memory requests.

Also, there is a savings tax imposed to avoid demand clra-

matically exceeding supply, given this is basically a fixed

price, fixed supply market. Finally, there is a charge for

1/0 that is based on the trade-off between memory and

1/0 in, for example, scan-structured programs, which pre-

vents such programs from avoiding the memory charge with

excessive 1/0.

This monetary model allows the SPCi’vI to allocate

memory resources to programs according to the income snp-
pliecl to each program, reflecting aclministrational policy, In

particular, we claim that if each user account receives equal

income, its programs also receive an equal share of the ma-

chine over time among the active users. This claim assumes

a multiprocessor machine in which the primary limiting re-

sources are memory and 1/0. The monetary model also

allows applications to decide how best to structure their

computation relative to system resources, choosing for in-

stance between computing with a large amount of memory

for short timeslices versus computing for longer time slices

with less memory. Finally, it provides a model that allows

the segment managers to predict how long they can exe-

cute and the amount of memory available for that time.

In the conventional approaches used for global page man-

agement developed during the 1960’s and 70’s, the applica-

tion does not have any idea of when it might lose pages or

be swapped. Moreover, implementing conventional work-

ing set algorithms would appear to either require trusting

the application segment managers for information or largely

duplicating their monitoring of the page access behavior

our results to date suggest that this approach results

in a stable, efficient global memory allocation mechanism

for large-scale computations that provides applications to

considerable flexibility in making application-specific trade-

offs in the use of memorv, thus matching well with the.,
application control provided by the mechanisms described
in this paper.

The V++ system page cache manager together with the

default segment manager and the basic kernel virtual mem-

ory management provide the equivalent functionality of a

conventional virtual memory system but in a more modular

form. In particular, all the page 1/0, replacement policies

and allocation strategies have been moved outside the ker-

nel, This is in line with our V++ objective of providing

a minimal-sized kernel that is suitable for embedded real-

time applications as well as conventional timesharing and

interactive workstation Ilse.

The small number of kernel extensions required for ex-

ternal page cache management COLLIC1be added to a colL-

ventional [Tuix system, for example, to plovicle the benefits

of application-controlled paging without the major surgery

that would be requirecl to revise the system design to match

the moclnlarity of V++. In particular, kernel extensions

would be recluirecl to designate a mapped file as a page-

cache file, meaning that page frames for the file would not

be reclaimed (without sufficient notice), just as with the

segments in V++. Also, a kernel operation, such as an ex-

tension to the ioctl system call, would be required to set

the managing process associated with a given file and to al-

locate pages. (The kernel woLdcl be the default manager, as

it effectively is now. ) Finally, the ptrace and signal/wait

mechanism can be used to communicate page faults to the

process-level segment manager. The simpl&t solution to

protecting the manager against page faults on its code and

p~ivate data is simply to lock its pages in memory, a facil-

ity alreacly available in Unix (although this may require the

manager to run as a privileged process).

3 Evaluation

We have taken a two-pronged approach to evaluating

external page-cache management. Firstly, we implemented

external page-cache management in the V++ kernel and

systems servers to work through the cletails of the design
and evaluate its complexity and performance. Secondly, we

evaluated the benefits of using external page cache nlan-

agement in a simulation of a database management system
that uses a large amount of memory.

3.1 Measurements of System Primitives

External page-cache management was implemented in

the V++ system by modification to the kernel virtual mem-

ory manager ancl extensions to the UCDS. [n the kernel

that uses external page-cache management, the machine

independent virtual memory module is approximately 4500
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lines of C code, as compared to approximately 6900 lines for

the previous version. Most of the excised code is migratecl

to the page-cache managers so there is no real saving in the

total amount of the code required for the same function-

ality. However it is significant in reducing the size of the

kernel, (as well as providing greater external functionality).

The performance of the implementation was evaluated

cm a DECstation 5000/200. (R3000 processor with 25 MHz

clock) which has a 4 kilobyte page size.

Table 1 summarizes the performance of V++ relative

to ULTRIX 4.1.

Measurement

Faulting Process

Minimal Fault

Default Segment Manager

i’vIinimal Fault

Read 4KB

Write 4KB

v++

107

379

222

203

Ult rix

Equivalent

175

175

211

311

Table 1: System Primitive Times: times in microseconds

The minimal cost page fault (as measured in Table 1)

occurs when the manager just has to migrate the page frame

from its free page segment to the faulting process’s segment.

This case occurs frequently, such as on the first access to

a heap page, on copy-on-write faults, and when write ap-

pending a new page to a segment.

The table measurements suggest that handling the min-
imal page fault is faster using the faulting process in V++

than through the Ultrix kernel. Most of the difference in

cost (75 microseconds) is the cost of page zeroing that the

Ultrix kernel performs on each page allocation. In Ultrix,

zeroing is required for security because the page may be re-

allocated between applications, whereas this is not the case

in V++ unless the page is being given to another user.

Referring to the second row of the table, the cost of fault

handling by the default manager is higher than in ULTRIX

but this does not significantly affect the performance of

applications as our measurements in the next subsection

show.

Low overhead page fault handling allows efficient imple-

mentation of user level algorithms that use page protection

hardware, like those described in [2]. Examples of these

algorithms include mechanisms for concurrent garbage col-

lection and concurrent checkpointing. In ULTRIX 4.1 on

a DECktation 5000/200, the cost of a user level fault han-

dler 6 for a protected page that simply changes the pro-

tection of the page is 1.52 microseconds. This is over 50V0

higher than the cost of handling a full fault using exter-

nal page-cache management. ULTRIX is competitive at

user level fault handling with other systems like Mach or

SunOS. For example, in Appel and Li’s measurements for

the DECstation 31OO [2] the overhead of Mach fault han-

dling operations was over twice the overhead of ULTRIX

for similar operations.

The final measurements in the table are the costs of
reading and writing a 4KB block in a cached file. In the

case of V++ the accesses use the block read-write interface

6In ULTRIX a user-level fault handler can be implemented us-
ing a signal hancller and the mprot ect system call, which changes
the protections of an application program’s memory.

(discussed in Section 2.1). For ULTRIX we measured the

cost of the read and write system calls. The V++ write

cost is 34y0 less than ULTRI.X. The V++ reacl cost is 5.2~o

higher than ULTRIX for reads. These numbers show that

providing external page-cache management does not have

a large negative effect on the performance of common op-

erations like accesses to cached files.

3.2 Default Segment Manager

We ran a number of standard IJNIX applications on

V++ using the default segment manager with instrnnlenta-

tion to measure the overhead of executing real application

programs using the default segment manager. For com-

parison we compiled the same source code (with different

operating system dependent libraries] for ULTRIX 4.1.

The applications were:

cliff compare two 200KB files generating a differences

file of 240KB.

uncompress: nncompress an 800KB file generating a file

of 2MB.

latex: format a 100K input document generating a 23

page document.

In both cases the harclware was a DECstation 5000/200

with 128 megabytes of memory. The page size on this ma-

chine is 4KB. There are some differences between the two
hardware configurations. The ULTRIX machine had a lo-

cal disk. The V++ machine was diskless with file storage

provided by a server running on a DECstation 3100 running

ULTRIX 4.1.

These applications were run with the files they read

cached in memory to eliminate differences in 1/0 perfor-

mance that is irrelevant to the virtual memory system de-

sign factors we are measuring. These scenarios are also the

worst-case for our approach because there is no network or

file access latency to hide the cost of going to the V++

process-level manager.

There are some notable differences between V++ and

ULTRIX. The unit of 1/0 transfer in ULTRIX is 8KB. The

unit of 1/0 transfer in V++ is 4KB. This means that V++

makes twice as many read and write operations to the ker-

nel as ULTRIiX. Ultrix allocates pages in 41< units. The

V++ default manager allocates pages in 41< units, except

for appends to a file in which case it allocates pages in 16K

units. The unit of page allocation is significant because al-

location in V++ reclnires going to the segment manager.

At the low levels of the virtual memory system, Ultrix uses

page tables to describe address spaces. V++ augments the

segment and bound region data structures with a global

641{ entry direct mappecl hash table with a 32 entry over-

flow area.

Table 2 shows the mean elapsed time for executing the

programs under V++ and ULTRIX.

The measurements here show that the performance of

applications in V++ is comparable to the performance of
the same applications uncler ULTRIX.

To attempt to account specifically for the clifferences in

performance, we also measured the virtual memory system

activity of each progam, as shown in Table 3.
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Table 2: Application Elapsed Time in Seconds

Table 3: VM System Activity and Costs

Column 1 shows the number of times during the exe-

cution of the program that the manager was invoked, ill-

clnding requests forwarded by the kernel for operations like

closing a file as well as ~eqnests for a page frame. Col-

umn 2 shows the number of times the manager invoked

MigratePages, This column basically shows that almost

all manager calls were to hanclle page faults rather segment

releases or other management operations. Column 3 shows

the cost in milliseconds of using the V++ manager, cal-

culated as the difference in cost between a minimal page

fault to the default segment manager in V++ and the cor-
responding cost in Ultrix (from Table 1 ) multiplied by the

number of manager calls.

The cost of the V++ process-level handling of page

faults is a small percentage of program execution time even

for the measured case where there is no disk or network

access ( 1.9% for cliff, 0.63~0 for nncornpress and 0.35% for

latex).

The differences in application performance between
V+-I- and Ultrix in Table 2 not accounted for by Table 3 we
attribute to differences in the run-time library implemen-

tations in V++ and Ultrix. Of the applications rneasnrecl,

only latex under V++ is significantly slower, and we are

continuing to investigate the reason. However, our mea-

surements in Table 3 indicate that the external page cache

management is not responsible for more than 51 millisec-

onds or about 4.8~0 of the difference in execution times.

Overall, assuming that the applications we have mea-

sured are representative of those to be run under the default

segment manager in V++, we conclude that minimizing the

kernel using external page cache management does not in-

troduce a significant overhead on normal programs. In fact,

we expect that the V++ overhead suggested by the mea-

surements has been somewhat overstated because a svstem

under normal conditions would have a significant number

of page faults that include disk or network 1/0, whereas

we have eliminated these costs in the measurements to pro-
vide a worst-case for V++ and to avoid spurious differences

arising from device behavior

3,3 Application-Specific Page-Cache

Management

To explore the performance benefits of application-
specific page-cache management we developed a program
that simulates a database transaction processing system

that exploits a space-time tradeoff in its use of indices for

efficient join processing. If memory is plentiful, it is more

efficient to perform large joins by generating indices for the

relations in advance. If however, the creation and references

to the indices would result in additional paging, it is better

to discard indices for which there is not enough space, and

regenerate them in memory when they are needed.

The program was run using 6 processors of a Silicon

C;raphics 4/380 on a 120 megabyte database. The transac-

tion arrival rate was 40 transactions per second, The trans-

action mix was 95’XO small Debit Credit type transactions

with the remaining 5% being joins of two relations to np-

date a third. A hierarchical locking scheme is used for con-

currency control.

The program is a mixture of implementation and simn-

latiou. The locks were implemented and the parallelism is

real. However, the execution of a transaction is simulated

by looping for some number of instructions and a page fault

is simulated by a delay that is equivalent to the time re-

quired to handle a page fault on the SGI 4/380.

The measurements in Table 4 show the performance

differences between four configurations of the database pro-

gram.

Configuration Average Worst-case

Response Response

No index 866 3770
Inclex in memory 43 410
Index with paging 575 3930

Index regeneration 55 680

Table 4: Effect of Memory Usage on Transaction Response

(ins)

The first configuration shows the response time when

no index is used for joins. The second configuration shows

the reduction in response time achieved by using an index

for accessing relations for performing a join, in the case

where the inclices are always in memory. In the case of the

configuration labeled “index with paging”, a one megabyte

index is pagecl in every 500 transactions (on average ev-

ery 12.5 seconds) because the size of the virtual memory

used by the program exceeds the memory allocated to the

program by 1 megabyte.

These measurements show that indices are of signif-

icant benefit to response time if the (physical) memory

is available, but are of limited benefit if the size of the
database system’s virtual memory exceeds the available

physical memory by less than 1YO and there is a modest

amount of paging.

If the clatabase system is informed that its virtual mem-

ory size exceeds the physical memory allocated to it, it can

discard some indices and regenerate them when necessary.

The “index regeneration” entry shows the performance ben-

efits of this approach after the physical memory allocated
to the database system is reduced by 1 megabyte. In this

case, the average response time is an order of magnitude

less than the paging case and is only 27% worse than the

“index m memory” case.

This example demonstrates a case of application-
contro]led page cache management having significant ben-
efits even though the application’s virtual memory only

slightly exceeded available physical memory. We expect

similar benefits with other memory-intensive applications.
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4 Related Wosk

The inadequacy of the conventional “transparent” vir-

tual memory moclel is apparent in recent developments and

papers in several areas. For example, Hagmanu [1 I] pro-

posed that the operating system has become the wrong

place for making decisions about memory management. He

discussed the problems with current VM systems, but did

not present a design that addresses these problems.

The conventional approach of pinning pages in memory

cloes not provide the application with complete informa-

tion on the pages it has in memory because the application

typically does not, and cannot, pin all the pages it has

in memory. The operating system cannot allow a signifi-

cant percentage of its page frame pool to be pinned with-

out compromising its ability to share this resource among

applications. The amount of pinning that is feasible is

dependent on the availability of physical memory. These

complications have led many systems, particularly differ-

ent versions of Unix, to restrict memory pinning to privi-

leged systems processes or to impose severe limits on the

number of pages that can be pinned by a process. The

extension of pinning to “notification” locks, so a process

is notifiable when a pinned page is to be reclaimed, woulcl

allow more pinning but WOUIC1still not give the application

cont~ol over which page frames can be reclaimed. With ex-

ternal page cache management in V++, the system page

cache manager can reclaim page flames from applications,

but the application’s segment manager(s) have complete

control over which page frames to surrender. We expect

that, with the appropriate generic segment manager soft-

ware, developing an application-specific segment manager

should be no harcler than developing a “pin” manager mocl-

ule. However, fn~ther experience is required in this area

before firmer conclusions can be drawn.

The external pagers in Mach [21] and V [5] provide the

ability to implement application-specific read- ahead and

writeback using backing servers or external pages. How-

ever, these extensions C1Onot address application control

of the page cache and are primarily focnsecl on the han-

clling of backing storage. The PREMO extensions to Mach

[14] address some of the shortcomings of Mach noted in

Young’s thesis [22]. PREMO supports user-level page re-

placement policies. The PREMO implementation involves

aclcling more mechanism to the Mach kernel, to deal with

one aspect of the page-cache management problem – page

replacement, thus complicating rather than simplifying the

kernel, as we have clone. PREMO also C1OMnot export in-

formation to the application level about how much memory

is allocateci to a particular program.

In [18] Subramanian describes a Mach external pager

that takes account of dirty pages that C1Onot neecl to be

written back. She shows significant pe~formauce improve-

ments for a number of ML programs by exploiting the fact

that garbage pages can be discarded without writeback.

She proposes adding support to the kernel for discardable

pages to remedy two problems associated with supporting

discar(lable pages outsicle the Mach kernel. First, an ex-

ternal pager does not have knowledge of physical memory

availability. Second, there are unnecessary zero-fills (for se-
curity) when a page ia reallocated to the same application.

Both of these problems are addressed by external page-

cache management without adding

the kernel.

Database management systems

special mechanism to

have demanded. and

operating systems have provided, facilities for pinning pages

(such as the Unix repin and mlock calls) ancl limited advi-

sory capability, such as the Berkeley Unix madvise call.

However, these approaches provide simple ways to prevent

page out or to influence paging behavior, not a real nlea-

sure of control of the page cache by a program, as we have

proposed. Support for application-designatecl page replace-

ment on a per-page basis ancl notification of changes in

available physical memory are well beyond the scope of the

clesign, as well as the implementation, of these current fa-

cilities.

Discontent with current virtual memory system func-
tionality is eviclent in the database literature, both in com-

plaints about the virtual memory system compromising

database performance, and in the calls for extencled virtual

memory facilities [16, 19] or the elimination of the virtual

memory system altogether. We see our approach as provid-

ing the database management systems with the information

and control of page management clemanded in this litera-

ture. We achieve this without compromising the integrity

of the operating system or its general purpose functionality.

This work has some analogy to proposed operating sys-

tem support for parallel application management of proces-

sors. For example, Tucker and ~upta [20] show significant

improvements in simultaneous parallel application execw

tion if the applications are informed of changes in the num-

bers of available processors and thereby allowed to aclapt,

as compared to the conventional transparent, oblivious ap-

proach. Anderson et al. [1] and Black [4] have proposed

kernel mechanisms for exporting more control of proces-

sor management to applications, Jnst as in our work, thib

processor-focused work is targeted to the demanding ap-

plications whose requirements exceecl what are, by normal

standards, plentiful hardware resources. Both our work and

the processor-focusecl work are not targeted towards im-

proving the performance of conventional applications such

as software development tools and utilities. Our work corrl-

plements this other work by focusing on application control

of physical memory, rather than control of processor allo-

cation.

5 Concluding Remarks

External page-cache mclnagernenf is a promising ap-

proach to acldress the demands of memory-bound appli-

cations, providing them with control over their portion of

the system memory resources without significantly conlpli-

cating system facilities, particularly the kernel.

We have argued that the cost of a page fault is too high

to be hidden from the application, except for its effect on

performance. Our measurements of a simple simulated par-

allel database transaction processing application support

this view, showing that a small amount of paging can elim-

inate any performance benefit of algorithms that use vir-

tual aclclress space just slightly in excessive of the amount

of physical memory available, comparecl to those more eco-

nomical in space. This behavior is consistent with memory

thrashing behavior we have observed with memory-bound

applications in general. It is strange that, while the space.
time tradeoff is well-recognized by the algorithms commu-
nity and a choice of algorithms exists fo~ many problems

that offer precisely this t~adeoff, virtual memory systems

have not previously exported the information and control

to the applications to allow them to make the choice of al-

gorithm intelligently. With the cost of a page fault to disk
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in the hundreds of thousands of instructions for the foresee-

able future, an application can only expect to trade space

for time if the space is real, not virtual.

External page-cache management, as implemented in

the V++ system, requires relatively simple extensions to

the kernel, and provides performance for user page fault

handling times that are less than 110 microseconds on cur-

rent conventional hardware. Our approach also subsumes

the external pager mechanism of Mach and V. External

page-cache management obviates the need to provide ker-

nel support for the various application-specific advisory and

monitoring modules that would otherwise be required in

the future, causing a significant increase in kernel code and

complexity. That is, we argue that the complexity and

code size benefits are best appreciated by considering the

size and complexity of a Unix madvise module that could

cleaf with the memory management problems raised in this
paper. In that vein, we expect that other considerations,

such as page coloring, physical placement control aucl and

cache line software control, as in paraDiCTM [8], to place

further demands on memory management software in the

future.

Finally, we have exploited the new external page cache

management kernel operations to further reduce the size of

the V++ kernel by implementing system page cache man-

agement and a default segment manager outside the kernel.

These changes have lead to a significantly simplified ker-

nel, because page reclamation, most copy-on-write support

and distributed consistency are all removed to process-level

managers.

A primary focus of our on-going work is on the devel-

opment of application-specific segment managers, based on

a generic manager, using object-oriented techniques to spe-

cialize this infrastructure to particular application require-

ments. The goal is to minimize the burden on application

programs while providing the benefits of application con-

trol. We are also investigating the market model of system-

wide memory management ancl its performance in sharing

system memory resources between competing applications.

With our primary focus on batch processing, results to date

have been promising.

The external page cache management approach devel-

ops fnrther a principle of operating system design we call

eficient completeness, described previously in the context

of supporting emulation [6]. The operating system kernel,

in providing an abstraction of hardware resources, should

provide efficient and complete access to the functionality

and performance of the hardware. In the context of mem-

ory management, the complete and efficient abstraction of

this hardware resource is that of a page-cache. Fair mul-

tiplexing of memory among the multiple competing appli-

cations is achieved by managing the page frame allocation
among these page caches. It also generally leads to a rel-

atively low-level service interface, thereby being in concert

with the goals of minimalist kernel design, as we have shown

with external page cache management.

In summary, we believe that external page-cache man-

agement is a good technique for structuring the next gen-

eration of kernel virtual memory systems, addressing the

growing complexity of memory system organizations and
the growing demands of applications while reducing the size

of kernel virtual memory support over conventionally struc-

tured systems. Once this facility is commonly available in

commercial systems, we expect the most exciting memory

management improvements may well come from the devel-

opers of database management systems, large-scale com-

putations and other demanding applications whose perfor-

mance is currently badly hindered by the haphazard behav-

ior of conventional virtual memory management.
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