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Abstract
lmbench is a micro-benchmark suite designed to

focus attention on the basic building blocks of many
common system applications, such as databases, simu-
lations, software development, and networking. In
almost all cases, the individual tests are the result of
analysis and isolation of a customer’s actual perfor-
mance problem. These tools can be, and currently are,
used to compare different system implementations
from different vendors. In several cases, the bench-
marks have uncovered previously unknown bugs and
design flaws. The results have shown a strong correla-
tion between memory system performance and overall
performance. lmbench includes an extensible
database of results from systems current as of late
1995.

1. Introduction
lmbench provides a suite of benchmarks that

attempt to measure the most commonly found perfor-
mance bottlenecks in a wide range of system applica-
tions. These bottlenecks have been identified, iso-
lated, and reproduced in a set of small micro-
benchmarks, which measure system latency and band-
width of data movement among the processor and
memory, network, file system, and disk. The intent is
to produce numbers that real applications can repro-
duce, rather than the frequently quoted and somewhat
less reproducible marketing performance numbers.

The benchmarks focus on latency and bandwidth
because performance issues are usually caused by
latency problems, bandwidth problems, or some com-
bination of the two. Each benchmark exists because it
captures some unique performance problem present in
one or more important applications. For example, the
TCP latency benchmark is an accurate predictor of the
Oracle distributed lock manager’s performance, the
memory latency benchmark gives a strong indication
of Verilog simulation performance, and the file system
latency benchmark models a critical path in software
development.

lmbench was dev eloped to identify and evaluate
system performance bottlenecks present in many
machines in 1993-1995. It is entirely possible that
computer architectures will have changed and
advanced enough in the next few years to render parts

of this benchmark suite obsolete or irrelevant.

lmbench is already in widespread use at many
sites by both end users and system designers. In some
cases,lmbench has provided the data necessary to
discover and correct critical performance problems
that might have gone unnoticed.lmbench uncovered
a problem in Sun’s memory management software that
made all pages map to the same location in the cache,
effectively turning a 512 kilobyte (K) cache into a 4K
cache.

lmbench measures only a system’s ability to
transfer data between processor, cache, memory, net-
work, and disk. It does not measure other parts of the
system, such as the graphics subsystem, nor is it a
MIPS, MFLOPS, throughput, saturation, stress, graph-
ics, or multiprocessor test suite. It is frequently run on
multiprocessor (MP) systems to compare their perfor-
mance against uniprocessor systems, but it does not
take advantage of any multiprocessor features.

The benchmarks are written using standard,
portable system interfaces and facilities commonly
used by applications, solmbench is portable and
comparable over a wide set of Unix systems.
lmbench has been run on AIX, BSDI, HP-UX, IRIX,
Linux, FreeBSD, NetBSD, OSF/1, Solaris, and
SunOS. Part of the suite has been run on Win-
dows/NT as well.

lmbench is freely distributed under the Free
Software Foundation’s General Public License [Stall-
man89], with the additional restriction that results may
be reported only if the benchmarks are unmodified.

2. Prior work
Benchmarking and performance analysis is not a

new endeavor. There are too many other benchmark
suites to list all of them here. We comparelmbench
to a set of similar benchmarks.

• I/O (disk) benchmarks: IOstone [Park90] wants to
be an I/O benchmark, but actually measures the mem-
ory subsystem; all of the tests fit easily in the cache.
IObench [Wolman89] is a systematic file system and
disk benchmark, but it is complicated and unwieldy.
In [McVoy91] we reviewed many I/O benchmarks and
found them all lacking because they took too long to
run and were too complex a solution to a fairly simple



problem. We wrote a small, simple I/O benchmark,
lmdd that measures sequential and random I/O far
faster than either IOstone or IObench. As part of
[McVoy91] the results from lmdd were checked
against IObench (as well as some other Sun internal
I/O benchmarks). lmdd proved to be more accurate
than any of the other benchmarks. At least one disk
vendor routinely useslmdd to do performance testing
of its disk drives.

Chen and Patterson [Chen93, Chen94] measure I/O per-
formance under a variety of workloads that are auto-
matically varied to test the range of the system’s per-
formance. Our efforts differ in that we are more inter-
ested in the CPU overhead of a single request, rather
than the capacity of the system as a whole.

• Berkeley Software Distribution’s microbench
suite: The BSD effort generated an extensive set of
test benchmarks to do regression testing (both quality
and performance) of the BSD releases. We did not use
this as a basis for our work (although we used ideas)
for the following reasons: (a) missing tests — such as
memory latency, (b) too many tests, the results tended
to be obscured under a mountain of numbers, and (c)
wrong copyright — we wanted the Free Software
Foundation’s General Public License.

• Ousterhout’s Operating System benchmark:
[Ousterhout90] proposes several system benchmarks to
measure system call latency, context switch time, and
file system performance. We used the same ideas as a
basis for our work, while trying to go farther. We
measured a more complete set of primitives, including
some hardware measurements; went into greater depth
on some of the tests, such as context switching; and
went to great lengths to make the benchmark portable
and extensible.

• Networking benchmarks: Netperf measures net-
working bandwidth and latency and was written by
Rick Jones of Hewlett-Packard.lmbench includes a
smaller, less complex benchmark that produces similar
results.

ttcp is a widely used benchmark in the Internet com-
munity. Our version of the same benchmark routinely
delivers bandwidth numbers that are within 2% of the
numbers quoted byttcp .

• McCalpin’s stream benchmark: [McCalpin95] has
memory bandwidth measurements and results for a
large number of high-end systems. We did not use
these because we discovered them only after we had
results using our versions. We will probably include
McCalpin’s benchmarks inlmbench in the future.

In summary, we rolled our own because we
wanted simple, portable benchmarks that accurately
measured a wide variety of operations that we con-
sider crucial to performance on today’s systems.
While portions of other benchmark suites include sim-
ilar work, none includes all of it, few are as portable,

and almost all are far more complex. Less filling,
tastes great.

3. Benchmarking notes

3.1. Sizing the benchmarks
The proper sizing of various benchmark parame-

ters is crucial to ensure that the benchmark is measur-
ing the right component of system performance. For
example, memory-to-memory copy speeds are dramat-
ically affected by the location of the data: if the size
parameter is too small so the data is in a cache, then
the performance may be as much as ten times faster
than if the data is in memory. On the other hand, if the
memory size parameter is too big so the data is paged
to disk, then performance may be slowed to such an
extent that the benchmark seems to ‘never finish.’

lmbench takes the following approach to the
cache and memory size issues:

• All of the benchmarks that could be affected by
cache size are run in a loop, with increasing sizes (typ-
ically powers of two) until some maximum size is
reached. The results may then be plotted to see where
the benchmark no longer fits in the cache.

• The benchmark verifies that there is sufficient mem-
ory to run all of the benchmarks in main memory. A
small test program allocates as much memory as it
can, clears the memory, and then strides through that
memory a page at a time, timing each reference. If
any reference takes more than a few microseconds, the
page is no longer in memory. The test program starts
small and works forward until either enough memory
is seen as present or the memory limit is reached.

3.2. Compile time issues
The GNU C compiler,gcc , is the compiler we

chose because it gav e the most reproducible results
across platforms. Whengcc was not present, we
used the vendor-suppliedcc . All of the benchmarks
were compiled with optimization-O except the
benchmarks that calculate clock speed and the context
switch times, which must be compiled without opti-
mization in order to produce correct results. No other
optimization flags were enabled because we wanted
results that would be commonly seen by application
writers.

All of the benchmarks were linked using the
default manner of the target system. For most if not
all systems, the binaries were linked using shared
libraries.

3.3. Multiprocessor issues
All of the multiprocessor systems ran the bench-

marks in the same way as the uniprocessor systems.
Some systems allow users to pin processes to a partic-
ular CPU, which sometimes results in better cache
reuse. We do not pin processes because it defeats the



MP scheduler. In certain cases, this decision yields
interesting results discussed later.

3.4. Timing issues
• Clock resolution: The benchmarks measure the
elapsed time by reading the system clock via the
gettimeofday interface. On some systems this
interface has a resolution of 10 milliseconds, a long
time relative to many of the benchmarks which have
results measured in tens to hundreds of microseconds.
To compensate for the coarse clock resolution, the
benchmarks are hand-tuned to measure many opera-
tions within a single time interval lasting for many
clock ticks. Typically, this is done by executing the
operation in a small loop, sometimes unrolled if the
operation is exceedingly fast, and then dividing the
loop time by the loop count.

• Caching: If the benchmark expects the data to be in
the cache, the benchmark is typically run several
times; only the last result is recorded.

If the benchmark does not want to measure cache per-
formance it sets the size parameter larger than the
cache. For example, thebcopy benchmark by default
copies 8 megabytes to 8 megabytes, which largely
defeats any second-level cache in use today. (Note
that the benchmarks are not trying to defeat the file or
process page cache, only the hardware caches.)

• Variability : The results of some benchmarks, most
notably the context switch benchmark, had a tendency
to vary quite a bit, up to 30%. We suspect that the
operating system is not using the same set of physical
pages each time a process is created and we are seeing
the effects of collisions in the external caches. We
compensate by running the benchmark in a loop and
taking the minimum result. Users interested in the
most accurate data are advised to verify the results on
their own platforms.

Many of the results included in the database were
donated by users and were not created by the authors.
Good benchmarking practice suggests that one should

Name Vender Multi Operating SPEC List
used & model or Uni System CPU Mhz Year Int92 price
IBM PowerPC IBM 43P Uni AIX 3.? MPC604 133 ’95 176 15k
IBM Power2 IBM 990 Uni AIX 4.? Power2 71 ’93 126 110k
FreeBSD/i586 ASUS P55TP4XE Uni FreeBSD 2.1 Pentium 133 ’95 190 3k
HP K210 HP 9000/859 MP HP-UX B.10.01 PA 7200 120 ’95 167 35k
SGI Challenge SGI Challenge MP IRIX 6.2-α R4400 200 ’94 140 80k
SGI Indigo2 SGI Indigo2 Uni IRIX 5.3 R4400 200 ’94 135 15k
Linux/Alpha DEC Cabriolet Uni Linux 1.3.38 Alpha 21064A 275 ’94 189 9k
Linux/i586 Triton/EDO RAM Uni Linux 1.3.28 Pentium 120 ’95 155 5k
Linux/i686 Intel Alder Uni Linux 1.3.37 Pentium Pro 200 ’95 ˜ 320 7k
DEC Alpha@150 DEC 3000/500 Uni OSF1 3.0 Alpha 21064 150 ’93 84 35k
DEC Alpha@300 DEC 8400 5/300 MP OSF1 3.2 Alpha 21164 300 ’95 341 ? 250k
Sun Ultra1 Sun Ultra1 Uni SunOS 5.5 UltraSPARC 167 ’95 250 21k
Sun SC1000 Sun SC1000 MP SunOS 5.5-β SuperSPARC 50 ’92 65 35k
Solaris/i686 Intel Alder Uni SunOS 5.5.1 Pentium Pro 133 ’95 ˜ 215 5k
Unixware/i686 Intel Aurora Uni Unixware 5.4.2 Pentium Pro 200 ’95 ˜ 320 7k

Table 1. System descriptions.

run the benchmarks as the only user of a machine,
without other resource intensive or unpredictable pro-
cesses or daemons.

3.5. Using thelmbench database
lmbench includes a database of results that is

useful for comparison purposes. It is quite easy to
build the source, run the benchmark, and produce a
table of results that includes the run. All of the tables
in this paper were produced from the database
included in lmbench . This paper is also included
with lmbench and may be reproduced incorporating
new results. For more information, consult the file
lmbench-HOWTO in thelmbench distribution.

4. Systems tested
lmbench has been run on a wide variety of plat-

forms. This paper includes results from a representa-
tive subset of machines and operating systems. Com-
parisons between similar hardware running different
operating systems can be very illuminating, and we
have included a few examples in our results.

The systems are briefly characterized in Table 1.
Please note that the list prices are very approximate as
is the year of introduction. The SPECInt92 numbers
are a little suspect since some vendors have been
‘‘optimizing’’ for certain parts of SPEC. We try and
quote the original SPECInt92 numbers where we can.

4.1. Reading the result tables
Throughout the rest of this paper, we present

tables of results for many of the benchmarks. All of
the tables are sorted, from best to worst. Some tables
have multiple columns of results and those tables are
sorted on only one of the columns. The sorted col-
umn’s heading will be inbold.

5. Bandwidth benchmarks
By bandwidth, we mean the rate at which a partic-

ular facility can move data. We attempt to measure
the data movement ability of a number of different



facilities: library bcopy , hand-unrolled bcopy ,
direct-memory read and write (no copying), pipes,
TCP sockets, theread interface, and themmapinter-
face.

5.1. Memory bandwidth
Data movement is fundamental to any operating

system. In the past, performance was frequently mea-
sured in MFLOPS because floating point units were
slow enough that microprocessor systems were rarely
limited by memory bandwidth. Today, floating point
units are usually much faster than memory bandwidth,
so many current MFLOP ratings can not be main-
tained using memory-resident data; they are ‘‘cache
only’’ ratings.

We measure the ability to copy, read, and write
data over a varying set of sizes. There are too many
results to report all of them here, so we concentrate on
large memory transfers.

We measure copy bandwidth two ways. The first
is the user-level librarybcopy interface. The second
is a hand-unrolled loop that loads and stores aligned
8-byte words. In both cases, we took care to ensure
that the source and destination locations would not
map to the same lines if the any of the caches were
direct-mapped. In order to test memory bandwidth
rather than cache bandwidth, both benchmarks copy
an 8M1 area to another 8M area. (As secondary
caches reach 16M, these benchmarks will have to be
resized to reduce caching effects.)

The copy results actually represent one-half to
one-third of the memory bandwidth used to obtain
those results since we are reading and writing mem-
ory. If the cache line size is larger than the word
stored, then the written cache line will typically be
read before it is written. The actual amount of mem-
ory bandwidth used varies because some architectures
have special instructions specifically designed for the
bcopy function. Those architectures will move twice
as much memory as reported by this benchmark; less
advanced architectures move three times as much
memory: the memory read, the memory read because
it is about to be overwritten, and the memory written.

The bcopy results reported in Table 2 may be
correlated with John McCalpin’s stream
[McCalpin95] benchmark results in the following man-
ner: thestream benchmark reports all of the mem-
ory moved whereas thebcopy benchmark reports the
bytes copied. So our numbers should be approxi-
mately one-half to one-third of his numbers.

Memory reading is measured by an unrolled loop
that sums up a series of integers. On most (perhaps
all) systems measured the integer size is 4 bytes. The
loop is unrolled such that most compilers generate
code that uses a constant offset with the load, resulting

1 Some of the PCs had less than 16M of available
memory; those machines copied 4M.

in a load and an add for each word of memory. The
add is an integer add that completes in one cycle on all
of the processors. Given that today’s processor typi-
cally cycles at 10 or fewer nanoseconds (ns) and that
memory is typically 200-1,000 ns per cache line, the
results reported here should be dominated by the
memory subsystem, not the processor add unit.

The memory contents are added up because almost
all C compilers would optimize out the whole loop
when optimization was turned on, and would generate
far too many instructions without optimization. The
solution is to add up the data and pass the result as an
unused argument to the ‘‘finish timing’’ function.

Memory reads represent about one-third to one-
half of the bcopy work, and we expect that pure
reads should run at roughly twice the speed ofbcopy .
Exceptions to this rule should be studied, for excep-
tions indicate a bug in the benchmarks, a problem in
bcopy , or some unusual hardware.

Bcopy Memory
System unrolled libc read write

IBM Power2 242 171 205 364
Sun Ultra1 85 167 129 152
DEC Alpha@300 85 80 120 123
HP K210 78 57 117 126
Unixware/i686 65 58 235 88
Solaris/i686 52 48 159 71
DEC Alpha@150 46 45 79 91
Linux/i686 42 56 208 56
FreeBSD/i586 39 42 73 83
Linux/Alpha 39 39 73 71
Linux/i586 38 42 74 75
SGI Challenge 35 36 65 67
SGI Indigo2 31 32 69 66
IBM PowerPC 21 21 63 26
Sun SC1000 17 15 38 31

Table 2. Memory bandwidth (MB/s)

Memory writing is measured by an unrolled loop
that stores a value into an integer (typically a 4 byte
integer) and then increments the pointer. The proces-
sor cost of each memory operation is approximately
the same as the cost in the read case.

The numbers reported in Table 2 are not the raw
hardware speed in some cases. The Power22 is capa-
ble of up to 800M/sec read rates [McCalpin95] and HP
PA RISC (and other prefetching) systems also do bet-
ter if higher levels of code optimization used and/or
the code is hand tuned.

The Sun libc bcopy in Table 2 is better because
they use a hardware specific bcopy routine that uses
instructions new in SPARC V9 that were added specif-
ically for memory movement.

The Pentium Pro read rate in Table 2 is much
higher than the write rate because, according to Intel,

2 Someone described this machine as a $1,000 pro-
cessor on a $99,000 memory subsystem.



the write transaction turns into a read followed by a
write to maintain cache consistency for MP systems.

5.2. IPC bandwidth
Interprocess communication bandwidth is fre-

quently a performance issue. Many Unix applications
are composed of several processes communicating
through pipes or TCP sockets. Examples include the
groff documentation system that prepared this
paper, theX Window System , remote file access,
andWorld Wide Web servers.

Unix pipes are an interprocess communication
mechanism implemented as a one-way byte stream.
Each end of the stream has an associated file descrip-
tor; one is the write descriptor and the other the read
descriptor. TCP sockets are similar to pipes except
they are bidirectional and can cross machine bound-
aries.

Pipe bandwidth is measured by creating two pro-
cesses, a writer and a reader, which transfer 50M of
data in 64K transfers. The transfer size was chosen so
that the overhead of system calls and context switch-
ing would not dominate the benchmark time. The
reader prints the timing results, which guarantees that
all data has been moved before the timing is finished.

TCP bandwidth is measured similarly, except the
data is transferred in 1M page aligned transfers instead
of 64K transfers. If the TCP implementation supports
it, the send and receive socket buffers are enlarged to
1M, instead of the default 4-60K. We hav e found that
setting the transfer size equal to the socket buffer size
produces the greatest throughput over the most imple-
mentations.

System Libc bcopy pipe TCP

HP K210 57 93 34
Linux/i686 56 89 18
IBM Power2 171 84 10
Linux/Alpha 39 73 9
Unixware/i686 58 68 -1
Sun Ultra1 167 61 51
DEC Alpha@300 80 46 11
Solaris/i686 48 38 20
DEC Alpha@150 45 35 9
SGI Indigo2 32 34 22
Linux/i586 42 34 7
IBM PowerPC 21 30 17
FreeBSD/i586 42 23 13
SGI Challenge 36 17 31
Sun SC1000 15 9 11

Table 3. Pipe and local TCP bandwidth (MB/s)

bcopy is important to this test because the pipe
write/read is typically implemented as abcopy into
the kernel from the writer and then abcopy from the
kernel to the reader. Ideally, these results would be
approximately one-half of thebcopy results. It is
possible for the kernelbcopy to be faster than the C
library bcopy since the kernel may have access to

bcopy hardware unavailable to the C library.

It is interesting to compare pipes with TCP
because the TCP benchmark is identical to the pipe
benchmark except for the transport mechanism. Ide-
ally, the TCP bandwidth would be as good as the pipe
bandwidth. It is not widely known that the majority of
the TCP cost is in thebcopy , the checksum, and the
network interface driver. The checksum and the driver
may be safely eliminated in the loopback case and if
the costs have been eliminated, then TCP should be
just as fast as pipes. From the pipe and TCP results in
Table 3, it is easy to see that Solaris and HP-UX have
done this optimization.

Bcopy rates in Table 3 can be lower than pipe rates
because the pipe transfers are done in 64K buffers, a
size that frequently fits in caches, while the bcopy is
typically an 8M-to-8M copy, which does not fit in the
cache.

In Table 3, the SGI Indigo2, a uniprocessor, does
better than the SGI MP on pipe bandwidth because of
caching effects - in the UP case, both processes share
the cache; on the MP, each process is communicating
with a different cache.

All of the TCP results in Table 3 are in loopback
mode — that is both ends of the socket are on the
same machine. It was impossible to get remote net-
working results for all the machines included in this
paper. We are interested in receiving more results for
identical machines with a dedicated network connect-
ing them. The results we have for over the wire TCP
bandwidth are shown below.

System Network TCP bandwidth

SGI PowerChallenge hippi 79.3
Sun Ultra1 100baseT 9.5
HP 9000/735 fddi 8.8
FreeBSD/i586 100baseT 7.9
SGI Indigo2 10baseT .9
HP 9000/735 10baseT .9
Linux/i586@90Mhz 10baseT .7

Table 4. Remote TCP bandwidth (MB/s)

The SGI using 100MB/s Hippi is by far the fastest
in Table 4. The SGI Hippi interface has hardware sup-
port for TCP checksums and the IRIX operating sys-
tem uses virtual memory tricks to avoid copying data
as much as possible. For larger transfers, SGI Hippi
has reached 92MB/s over TCP.

100baseT is looking quite competitive when com-
pared to FDDI in Table 4, even though FDDI has
packets that are almost three times larger. We wonder
how long it will be before we see gigabit ethernet
interfaces.

5.3. Cached I/O bandwidth
Experience has shown us that reusing data in the

file system page cache can be a performance issue.
This section measures that operation through two



interfaces,read and mmap. The benchmark here is
not an I/O benchmark in that no disk activity is
involved. We wanted to measure the overhead of
reusing data, an overhead that is CPU intensive, rather
than disk intensive.

The read interface copies data from the kernel’s
file system page cache into the process’s buffer, using
64K buffers. The transfer size was chosen to mini-
mize the kernel entry overhead while remaining realis-
tically sized.

The difference between thebcopy and theread
benchmarks is the cost of the file and virtual memory
system overhead. In most systems, thebcopy speed
should be faster than theread speed. The exceptions
usually have hardware specifically designed for the
bcopy function and that hardware may be available
only to the operating system.

The read benchmark is implemented by reread-
ing a file (typically 8M) in 64K buffers. Each buffer is
summed as a series of integers in the user process.
The summing is done for two reasons: for an apples-
to-apples comparison the memory-mapped benchmark
needs to touch all the data, and the file system can
sometimes transfer data into memory faster than the
processor can read the data. For example,SGI’s XFS
can move data into memory at rates in excess of 500M
per second, but it can move data into the cache at only
68M per second. The intent is to measure perfor-
mance delivered to the application, not DMA perfor-
mance to memory.

Libc File Memory File
System bcopy read read mmap

IBM Power2 171 187 205 106
HP K210 57 88 117 52
Sun Ultra1 167 85 129 101
DEC Alpha@300 80 67 120 78
Unixware/i686 58 62 235 200
Solaris/i686 48 52 159 94
DEC Alpha@150 45 40 79 50
Linux/i686 56 40 208 36
IBM PowerPC 21 40 63 51
SGI Challenge 36 36 65 56
SGI Indigo2 32 32 69 44
FreeBSD/i586 42 30 73 53
Linux/Alpha 39 24 73 18
Linux/i586 42 23 74 9
Sun SC1000 15 20 38 28

Table 5. File vs. memory bandwidth (MB/s)

The mmapinterface provides a way to access the
kernel’s file cache without copying the data. The
mmap benchmark is implemented by mapping the
entire file (typically 8M) into the process’s address
space. The file is then summed to force the data into
the cache.

In Table 5, a good system will haveFile read as
fast as (or even faster than)Libc bcopybecause as the
file system overhead goes to zero, the file reread case

is virtually the same as the librarybcopy case. How-
ev er, file reread can be faster because the kernel may
have access tobcopy assist hardware not available to
the C library. Ideally,File mmapperformance should
approachMemory readperformance, butmmap is
often dramatically worse. Judging by the results, this
looks to be a potential area for operating system
improvements.

In Table 5 the Power2 does better on file reread
than bcopy because it takes full advantage of the
memory subsystem from inside the kernel. The mmap
reread is probably slower because of the lower clock
rate; the page faults start to show up as a significant
cost.

It is surprising that the Sun Ultra1 was able to
bcopy at the high rates shown in Table 2 but did not
show those rates for file reread in Table 5. HP has the
opposite problem, they get file reread faster than
bcopy, perhaps because the kernelbcopy has access
to hardware support.

The Unixware system has outstanding mmap
reread rates, better than systems of substantially
higher cost. Linux needs to do some work on the
mmapcode.

6. Latency measurements
Latency is an often-overlooked area of perfor-

mance problems, possibly because resolving latency
issues is frequently much harder than resolving band-
width issues. For example, memory bandwidth may
be increased by making wider cache lines and increas-
ing memory ‘‘width’’ and interleave, but memory
latency can be improved only by shortening paths or
increasing (successful) prefetching. The first step
toward improving latency is understanding the current
latencies in a system.

The latency measurements included in this suite
are memory latency, basic operating system entry cost,
signal handling cost, process creation times, context
switching, interprocess communication, file system
latency, and disk latency.

6.1. Memory read latency background
In this section, we expend considerable effort to

define the different memory latencies and to explain
and justify our benchmark. The background is a bit
tedious but important, since we believe the memory
latency measurements to be one of the most thought-
provoking and useful measurements inlmbench .

The most basic latency measurement is memory
latency since most of the other latency measurements
can be expressed in terms of memory latency. For
example, context switches require saving the current
process state and loading the state of the next process.
However, memory latency is rarely accurately mea-
sured and frequently misunderstood.



Memory read latency has many definitions; the
most common, in increasing time order, are memory
chip cycle time, processor-pins-to-memory-and-back
time, load-in-a-vacuum time, and back-to-back-load
time.

• Memory chip cycle latency: Memory chips are
rated in nanoseconds; typical speeds are around 60ns.
A general overview on DRAM architecture may be
found in [Hennessy96]. The specific information we
describe here is from [Toshiba94] and pertains to the
THM361020AS-60 module andTC514400AJS DRAM
used inSGI workstations. The 60ns time is the time
from RAS assertion to the when the data will be avail-
able on theDRAM pins (assumingCAS access time
requirements were met). While it is possible to get
data out of aDRAM in 60ns, that is not all of the time
involved. There is a precharge time that must occur
after every access. [Toshiba94] quotes 110ns as the
random read or write cycle time and this time is more
representative of the cycle time.

• Pin-to-pin latency: This number represents the time
needed for the memory request to travel from the pro-
cessor’s pins to the memory subsystem and back
again. Many vendors have used the pin-to-pin defini-
tion of memory latency in their reports. For example,
[Fenwick95] while describing theDEC 8400 quotes
memory latencies of 265ns; a careful reading of that
paper shows that these are pin-to-pin numbers. In
spite of the historical precedent in vendor reports, this
definition of memory latency is misleading since it
ignores actual delays seen when a load instruction is
immediately followed by a use of the data being
loaded. The number of additional cycles inside the
processor can be significant and grows more signifi-
cant with today’s highly pipelined architectures.

It is worth noting that the pin-to-pin numbers
include the amount of time it takes to charge the lines
going to theSIMMs, a time that increases with the
(potential) number ofSIMMs in a system. More
SIMMs mean more capacitance which requires in
longer charge times. This is one reason why personal
computers frequently have better memory latencies
than workstations: the PCs typically have less memory
capacity.

• Load-in-a-vacuum latency: A load in a vacuum is
the time that the processor will wait for one load that
must be fetched from main memory (i.e., a cache
miss). The ‘‘vacuum’’ means that there is no other
activity on the system bus, including no other loads.
While this number is frequently used as the memory
latency, it is not very useful. It is basically a ‘‘not to
exceed’’ number important only for marketing rea-
sons. Some architects point out that since most pro-
cessors implement nonblocking loads (the load does
not cause a stall until the data is used), the perceived
load latency may be much less that the real latency.
When pressed, however, most will admit that cache
misses occur in bursts, resulting in perceived latencies

of at least the load-in-a-vacuum latency.

• Back-to-back-load latency: Back-to-back-load
latency is the time that each load takes, assuming that
the instructions before and after are also cache-
missing loads. Back-to-back loads may take longer
than loads in a vacuum for the following reason: many
systems implement something known ascritical word
first, which means that the subblock of the cache line
that contains the word being loaded is delivered to the
processor before the entire cache line has been
brought into the cache. If another load occurs quickly
enough after the processor gets restarted from the cur-
rent load, the second load may stall because the cache
is still busy filling the cache line for the previous load.
On some systems, such as the current implementation
of UltraSPARC, the difference between back to back
and load in a vacuum is about 35%.

lmbench measures back-to-back-load latency
because it is the only measurement that may be easily
measured from software and because we feel that it is
what most software developers consider to be memory
latency. Consider the following C code fragment:

p = head;
while (p->p_next)

p = p->p_next;

On aDEC Alpha, the loop part turns into three instruc-
tions, including the load. A 300 Mhz processor has a
3.33ns cycle time, so the loop could execute in slightly
less than 10ns. However, the load itself takes 400ns
on a 300 MhzDEC 8400. In other words, the instruc-
tions cost 10ns but the load stalls for 400. Another
way to look at it is that 400/3.3, or 121, nondependent,
nonloading instructions following the load would be
needed to hide the load latency. Because superscalar
processors typically execute multiple operations per
clock cycle, they need even more useful operations
between cache misses to keep the processor from
stalling.

This benchmark illuminates the tradeoffs in pro-
cessor cache design. Architects like large cache lines,
up to 64 bytes or so, because the prefetch effect of
gathering a whole line increases hit rate given reason-
able spatial locality. Small stride sizes have high spa-
tial locality and should have higher performance, but
large stride sizes have poor spatial locality causing the
system to prefetch useless data. So the benchmark
provides the following insight into negative effects of
large line prefetch:

• Multi-cycle fill operations are typically atomic
ev ents at the caches, and sometimes block other cache
accesses until they complete.

• Caches are typically single-ported. Having a large
line prefetch of unused data causes extra bandwidth
demands at the cache, and can cause increased access
latency for normal cache accesses.



In summary, we believe that processors are so fast
that the average load latency for cache misses will be
closer to the back-to-back-load number than to the
load-in-a-vacuum number. We are hopeful that the
industry will standardize on this definition of memory
latency.

6.2. Memory read latency
The entire memory hierarchy can be measured,

including on-board data cache latency and size, exter-
nal data cache latency and size, and main memory
latency. Instruction caches are not measured. TLB
miss latency can also be measured, as in [Saavedra92],
but we stopped at main memory. Measuring TLB
miss time is problematic because different systems
map different amounts of memory with their TLB
hardware.

The benchmark varies two parameters, array size
and array stride. For each size, a list of pointers is cre-
ated for all of the different strides. Then the list is
walked thus:

mov r4,(r4) # C code: p = *p;

The time to do about 1,000,000 loads (the list wraps)
is measured and reported. The time reported is pure
latency time and may be zero even though the load
instruction does not execute in zero time. Zero is
defined as one clock cycle; in other words, the time
reported isonly memory latency time, as it does not
include the instruction execution time. It is assumed
that all processors can do a load instruction in one pro-
cessor cycle (not counting stalls). In other words, if
the processor cache load time is 60ns on a 20ns pro-
cessor, the load latency reported would be 40ns, the
additional 20ns is for the load instruction itself.3 Pro-
cessors that can manage to get the load address out to
the address pins before the end of the load cycle get
some free time in this benchmark (we don’t know of
any processors that do that).

This benchmark has been validated by logic ana-
lyzer measurements on anSGI Indy by Ron Minnich
while he was at the Maryland Supercomputer
Research Center.

Results from the memory latency benchmark are
plotted as a series of data sets as shown in Figure 1.
Each data set represents a stride size, with the array
size varying from 512 bytes up to 8M or more. The
curves contain a series of horizontal plateaus, where
each plateau represents a level in the memory hierar-
chy. The point where each plateau ends and the line
rises marks the end of that portion of the memory hier-
archy (e.g., external cache). Most machines have sim-
ilar memory hierarchies: on-board cache, external
cache, main memory, and main memory plus TLB
miss costs. There are variations: some processors are

3 In retrospect, this was a bad idea because we calcu-
late the clock rate to get the instruction execution time.
If the clock rate is off, so is the load time.
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Figure 1. Memory latency

missing a cache, while others add another cache to the
hierarchy. For example, the Alpha 8400 has two on-
board caches, one 8K and the other 96K.

The cache line size can be derived by comparing
curves and noticing which strides are faster than main
memory times. The smallest stride that is the same as
main memory speed is likely to be the cache line size
because the strides that are faster than memory are
getting more than one hit per cache line.

Figure 1 shows memory latencies on a nicely
made machine, aDEC Alpha. We use this machine as
the example because it shows the latencies and sizes
of the on-chip level 1 and motherboard level 2 caches,
and because it has good all-around numbers, espe-
cially considering it can support a 4M level 2 cache.
The on-board cache is 213 bytes or 8K, while the
external cache is 219 bytes or 512K.

Table 6 shows the cache size, cache latency, and
main memory latency as extracted from the memory
latency graphs. The graphs and the tools for extract-
ing the data are included withlmbench . It is worth-
while to plot all of the graphs and examine them since
the table is missing some details, such as theDEC
Alpha 8400 processor’s second 96K on-chip cache.

We sorted Table 6 on level 2 cache latency because
we think that many applications will fit in the level 2
cache. The HP and IBM systems have only one level
of cache so we count that as both level 1 and level 2.
Those two systems have remarkable cache perfor-
mance for caches of that size. In both cases, the cache
delivers data in one clock cycle after the load instruc-
tion.

HP systems usually focus on large caches as close
as possible to the processor. A older HP multiproces-
sor system, the 9000/890, has a 4M, split I&D, 2 way



Level 1 Level 2
cache cache Memory

System Clk. lat. size lat. size latency

HP K210 8 8 256K -- -- 349
IBM Power2 14 13 256K -- -- 260
Unixware/i686 5 5 8K 25 256K 175
Linux/i686 5 10 8K 30 256K 179
Sun Ultra1 6 6 16K 42 512K 270
Linux/Alpha 3 6 8K 46 96K 357
Solaris/i686 7 14 8K ? 48 256K 281
SGI Indigo2 5 8 16K 64 2M 1170
SGI Challenge 5 8 16K 64 4M 1189
DEC Alpha@300 3 3  8K 66 4M 400
DEC Alpha@150 6 12 8K 67 512K 291
FreeBSD/i586 7 7 8K 95 512K 182
Linux/i586 8 8 8K 107 256K 150
Sun SC1000 20 20 8K 140 1M 1236
IBM PowerPC 7 6 16K 164 ? 512K 394

Table 6. Cache and memory latency (ns)

set associative cache, accessible in one clock (16ns).
That system is primarily a database server.

The IBM focus is on low latency, high bandwidth
memory. The IBM memory subsystem is good
because all of memory is close to the processor, but
has the weakness that it is extremely difficult to evolve
the design to a multiprocessor system.

The 586 and PowerPC motherboards have quite
poor second level caches, the caches are not substan-
tially better than main memory.

The Pentium Pro and Sun Ultra second level
caches are of medium speed at 5-6 clocks latency
each. 5-6 clocks seems fast until it is compared
against the HP and IBM one cycle latency caches of
similar size. Given the tight integration of the Pen-
tium Pro level 2 cache, it is surprising that it has such
high latencies.

The 300Mhz DEC Alpha has a rather high 22
clock latency to the second level cache which is prob-
ably one of the reasons that they needed a 96K level
1.5 cache. SGI and DEC have used large second level
caches to hide their long latency from main memory.

6.3. Operating system entry
Entry into the operating system is required for

many system facilities. When calculating the cost of a
facility, it is useful to know how expensive it is to per-
form a nontrivial entry into the operating system.

We measure nontrivial entry into the system by
repeatedly writing one word to/dev/null , a
pseudo device driver that does nothing but discard the
data. This particular entry point was chosen because
it has never been optimized in any system that we
have measured. Other entry points, typicallygetpid
andgettimeofday , are heavily used, heavily opti-
mized, and sometimes implemented as user-level
library routines rather than system calls. A write to
the /dev/null driver will go through the system

call table towrite , verify the user area as readable,
look up the file descriptor to get the vnode, call the
vnode’s write function, and then return.

System system call

Linux/Alpha 2
Linux/i586 2
Linux/i686 3
Unixware/i686 4
Sun Ultra1 5
FreeBSD/i586 6
Solaris/i686 7
DEC Alpha@300 9
Sun SC1000 9
HP K210 10
SGI Indigo2 11
DEC Alpha@150 11
IBM PowerPC 12
IBM Power2 16
SGI Challenge 24

Table 7. Simple system call time (microseconds)

Linux is the clear winner in the system call time.
The reasons are twofold: Linux is a uniprocessor oper-
ating system, without any MP overhead, and Linux is
a small operating system, without all of the ‘‘features’’
accumulated by the commercial offers.

Unixware and Solaris are doing quite well, given
that they are both fairly large, commercially oriented
operating systems with a large accumulation of ‘‘fea-
tures.’’

6.4. Signal handling cost
Signals in Unix are a way to tell another process to

handle an event. They are to processes as interrupts
are to the CPU.

Signal handling is often critical to layered systems.
Some applications, such as databases, software devel-
opment environments, and threading libraries provide
an operating system-like layer on top of the operating
system, making signal handling a critical path in many
of these applications.

lmbench measure both signal installation and
signal dispatching in two separate loops, within the
context of one process. It measures signal handling by
installing a signal handler and then repeatedly sending
itself the signal.

Table 8 shows the signal handling costs. Note that
there are no context switches in this benchmark; the
signal goes to the same process that generated the sig-
nal. In real applications, the signals usually go to
another process, which implies that the true cost of
sending that signal is the signal overhead plus the con-
text switch overhead. We wanted to measure signal
and context switch overheads separately since context
switch times vary widely among operating systems.

SGI does very well on signal processing, espe-
cially since their hardware is of an older generation



System sigaction sig handler

SGI Indigo2 4 7
SGI Challenge 4 9
HP K210 4 13
FreeBSD/i586 4 21
Linux/i686 4 22
Unixware/i686 6 25
IBM Power2 10 27
Solaris/i686 9 45
IBM PowerPC 10 52
Linux/i586 7 52
DEC Alpha@300 6 59
Linux/Alpha 13 138

Table 8. Signal times (microseconds)

than many of the others.

The Linux/Alpha signal handling numbers are so
poor that we suspect that this is a bug, especially given
that the Linux/x86 numbers are quite reasonable.

6.5. Process creation costs
Process benchmarks are used to measure the basic

process primitives, such as creating a new process,
running a different program, and context switching.
Process creation benchmarks are of particular interest
in distributed systems since many remote operations
include the creation of a remote process to shepherd
the remote operation to completion. Context switch-
ing is important for the same reasons.

• Simple process creation. The Unix process cre-
ation primitive is fork , which creates a (virtually)
exact copy of the calling process. Unlike VMS and
some other operating systems, Unix starts any new
process with afork . Consequently,fork and/or
execve should be fast and ‘‘light,’’ facts that many
have been ignoring for some time.

lmbench measures simple process creation by
creating a process and immediately exiting the child
process. The parent process waits for the child pro-
cess to exit. The benchmark is intended to measure
the overhead for creating a new thread of control, so it
includes thefork and theexit time.

The benchmark also includes await system call
in the parent and context switches from the parent to
the child and back again. Given that context switches
of this sort are on the order of 20 microseconds and a
system call is on the order of 5 microseconds, and that
the entire benchmark time is on the order of a mil-
lisecond or more, the extra overhead is insignificant.
Note that even this relatively simple task is very
expensive and is measured in milliseconds while most
of the other operations we consider are measured in
microseconds.

• New process creation. The preceding benchmark
did not create a new application; it created a copy of
the old application. This benchmark measures the
cost of creating a new process and changing that

process into a new application, which. forms the basis
of every Unix command line interface, or shell.
lmbench measures this facility by forking a new
child and having that child execute a new program —
in this case, a tiny program that prints ‘‘hello world’’
and exits.

The startup cost is especially noticeable on (some)
systems that have shared libraries. Shared libraries
can introduce a substantial (tens of milliseconds)
startup cost.

fork fork, exec fork, exec
System & exit & exit sh -c & exit

Linux/Alpha 0.7 3 12
Linux/i686 0.4 5 14
Linux/i586 0.9 5 16
Unixware/i686 0.9 5 10
DEC Alpha@300 2.0 6 16
IBM PowerPC 2.9 8 50
SGI Indigo2 3.1 8 19
IBM Power2 1.2 8 16
FreeBSD/i586 2.0 11 19
HP K210 3.1 11 20
DEC Alpha@150 4.6 13 39
SGI Challenge 4.0 14 24
Sun Ultra1 3.7 20 37
Solaris/i686 4.5 22 46
Sun SC1000 14.0 69 281

Table 9. Process creation time (milliseconds)

• Complicated new process creation. When pro-
grams start other programs, they frequently use one of
three standard interfaces:popen , system , and/or
execlp . The first two interfaces start a new process
by invoking the standard command interpreter,
/bin/sh , to start the process. Starting programs this
way guarantees that the shell will look for the
requested application in all of the places that the user
would look — in other words, the shell uses the user’s
$PATH variable as a list of places to find the applica-
tion. execlp is a C library routine which also looks
for the program using the user’s $PATH variable.

Since this is a common way of starting applica-
tions, we felt it was useful to show the costs of the
generality.

We measure this by starting/bin/sh to start the
same tiny program we ran in the last case. In Table 9
the cost of asking the shell to go look for the program
is quite large, frequently ten times as expensive as just
creating a new process, and four times as expensive as
explicitly naming the location of the new program.

The results that stand out in Table 9 are the poor
Sun Ultra 1 results. Given that the processor is one of
the fastest, the problem is likely to be software. There
is room for substantial improvement in the Solaris
process creation code.



6.6. Context switching
Context switch time is defined here as the time

needed to save the state of one process and restore the
state of another process.

Context switches are frequently in the critical per-
formance path of distributed applications. For exam-
ple, the multiprocessor versions of the IRIX operating
system use processes to move data through the net-
working stack. This means that the processing time
for each new packet arriving at an idle system includes
the time needed to switch in the networking process.

Typical context switch benchmarks measure just
the minimal context switch time — the time to switch
between two processes that are doing nothing but con-
text switching. We feel that this is misleading because
there are frequently more than two active processes,
and they usually have a larger working set (cache foot-
print) than the benchmark processes.

Other benchmarks frequently include the cost of
the system calls needed to force the context switches.
For example, Ousterhout’s context switch benchmark
measures context switch time plus aread and a
write on a pipe. In many of the systems measured
by lmbench , the pipe overhead varies between 30%
and 300% of the context switch time, so we were care-
ful to factor out the pipe overhead.

• Number of processes.The context switch bench-
mark is implemented as a ring of two to twenty pro-
cesses that are connected with Unix pipes. A token is
passed from process to process, forcing context
switches. The benchmark measures the time needed
to pass the token two thousand times from process to
process. Each transfer of the token has two costs: the
context switch, and the overhead of passing the token.
In order to calculate just the context switching time,
the benchmark first measures the cost of passing the
token through a ring of pipes in a single process. This
overhead time is defined as the cost of passing the
token and is not included in the reported context
switch time.

• Size of processes.In order to measure more realis-
tic context switch times, we add an artificial variable
size ‘‘cache footprint’’ to the switching processes.
The cost of the context switch then includes the cost
of restoring user-level state (cache footprint). The
cache footprint is implemented by having the process
allocate an array of data4 and sum the array as a series
of integers after receiving the token but before passing
the token to the next process. Since most systems will
cache data across context switches, the working set for
the benchmark is slightly larger than the number of
processes times the array size.

It is worthwhile to point out that the overhead
mentioned above also includes the cost of accessing
the data, in the same way as the actual benchmark.

4 All arrays are at the same virtual address in all pro-
cesses.

However, because the overhead is measured in a single
process, the cost is typically the cost with ‘‘hot’’
caches. In the Figure 2, each size is plotted as a line,
with context switch times on the Y axis, number of
processes on the X axis, and the process size as the
data set. The process size and the hot cache overhead
costs for the pipe read/writes and any data access is
what is labeled assize=0KB overhead=10 . The
size is in kilobytes and the overhead is in microsec-
onds.

The context switch time does not include anything
other than the context switch, provided that all the
benchmark processes fit in the cache. If the total size
of all of the benchmark processes is larger than the
cache size, the cost of each context switch will
include cache misses. We are trying to show realistic
context switch times as a function of both size and
number of processes.
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Figure 2. Context switch times

Results for an Intel Pentium Pro system running
Linux at 167 MHz are shown in Figure 2. The data
points on the figure are labeled with the working set
due to the sum of data in all of the processes. The
actual working set is larger, as it includes the process
and kernel overhead as well. One would expect the
context switch times to stay constant until the working
set is approximately the size of the second level cache.
The Intel system has a 256K second level cache, and
the context switch times stay almost constant until
about 256K (marked as .25M in the graph).



• Cache issuesThe context switch benchmark is a
deliberate measurement of the effectiveness of the
caches across process context switches. If the cache
does not include the process identifier (PID, also
sometimes called an address space identifier) as part
of the address, then the cache must be flushed on
ev ery context switch. If the cache does not map the
same virtual addresses from different processes to dif-
ferent cache lines, then the cache will appear to be
flushed on every context switch.

If the caches do not cache across context switches
there would be no grouping at the lower left corner of
Figure 2, instead, the graph would appear as a series
of straight, horizontal, parallel lines. The number of
processes will not matter, the two process case will be
just as bad as the twenty process case since the cache
would not be useful across context switches.

2 processes 8 processes
System 0KB 32KB 0KB 32KB

Linux/i686 6 18 7 101
Linux/i586 10 163 13 215
Linux/Alpha 11 70 13 78
IBM Power2 13 16 18 43
Sun Ultra1 14 31 20 102
DEC Alpha@300 14 17 22 41
IBM PowerPC 16 87 26 144
HP K210 17 17 18 99
Unixware/i686 17 17 18 72
FreeBSD/i586 27 34 33 102
Solaris/i686 36 54 43 118
SGI Indigo2 40 47 38 104
DEC Alpha@150 53 68 59 134
SGI Challenge 63 80 69 93
Sun SC1000 107 142 104 197

Table 10. Context switch time (microseconds)

We picked four points on the graph and extracted
those values for Table 10. The complete set of values,
as well as tools to graph them, are included with
lmbench .

Note that multiprocessor context switch times are
frequently more expensive than uniprocessor context
switch times. This is because multiprocessor operat-
ing systems tend to have very complicated scheduling
code. We believe that multiprocessor context switch
times can be, and should be, within 10% of the unipro-
cessor times.

Linux does quite well on context switching, espe-
cially on the more recent architectures. By comparing
the Linux 2 0K processes to the Linux 2 32K pro-
cesses, it is apparent that there is something wrong
with the Linux/i586 case. If we look back to Table 6,
we can find at least part of the cause. The second
level cache latency for the i586 is substantially worse
than either the i686 or the Alpha.

Given the poor second level cache behavior of the
PowerPC, it is surprising that it does so well on con-
text switches, especially the larger sized cases.

The Sun Ultra1 context switches quite well in part
because of enhancements to the register window han-
dling in SPARC V9.

6.7. Interprocess communication latencies
Interprocess communication latency is important

because many operations are control messages to
another process (frequently on another system). The
time to tell the remote process to do something is pure
overhead and is frequently in the critical path of
important functions such as distributed applications
(e.g., databases, network servers).

The interprocess communication latency bench-
marks typically have the following form: pass a small
message (a byte or so) back and forth between two
processes. The reported results are always the
microseconds needed to do one round trip. For one
way timing, about half the round trip is right. How-
ev er, the CPU cycles tend to be somewhat asymmetric
for one trip: receiving is typically more expensive than
sending.

• Pipe latency. Unix pipes are an interprocess com-
munication mechanism implemented as a one-way
byte stream. Each end of the stream has an associated
file descriptor; one is the write descriptor and the other
the read descriptor.

Pipes are frequently used as a local IPC mecha-
nism. Because of the simplicity of pipes, they are fre-
quently the fastest portable communication mecha-
nism.

Pipe latency is measured by creating a pair of
pipes, forking a child process, and passing a word
back and forth. This benchmark is identical to the
two-process, zero-sized context switch benchmark,
except that it includes both the context switching time
and the pipe overhead in the results. Table 11 shows
the round trip latency from process A to process B and
back to process A.

System Pipe latency

Linux/i686 26
Linux/i586 33
Linux/Alpha 34
Sun Ultra1 62
IBM PowerPC 65
Unixware/i686 70
DEC Alpha@300 71
HP K210 78
IBM Power2 91
Solaris/i686 101
FreeBSD/i586 104
SGI Indigo2 131
DEC Alpha@150 179
SGI Challenge 251
Sun SC1000 278

Table 11. Pipe latency (microseconds)

The time can be broken down to two context
switches plus four system calls plus the pipe overhead.



The context switch component is two of the small pro-
cesses in Table 10. This benchmark is identical to the
context switch benchmark in [Ousterhout90].

• TCP and RPC/TCP latency. TCP sockets may be
viewed as an interprocess communication mechanism
similar to pipes with the added feature that TCP sock-
ets work across machine boundaries.

TCP and RPC/TCP connections are frequently
used in low-bandwidth, latency-sensitive applications.
The default Oracle distributed lock manager uses TCP
sockets, and the locks per second available from this
service are accurately modeled by the TCP latency
test.

System TCP RPC/TCP

Linux/i686 216 346
Sun Ultra1 162 346
DEC Alpha@300 267 371
FreeBSD/i586 256 440
Solaris/i686 305 528
Linux/Alpha 429 602
HP K210 146 606
SGI Indigo2 278 641
IBM Power2 332 649
IBM PowerPC 299 698
Linux/i586 467 713
DEC Alpha@150 485 788
SGI Challenge 546 900
Sun SC1000 855 1386

Table 12. TCP latency (microseconds)

Sun’s RPC is layered either over TCP or over
UDP. The RPC layer is responsible for managing con-
nections (the port mapper), managing different byte
orders and word sizes (XDR), and implementing a
remote procedure call abstraction. Table 12 shows the
same benchmark with and without the RPC layer to
show the cost of the RPC implementation.

TCP latency is measured by having a server pro-
cess that waits for connections and a client process
that connects to the server. The two processes then
exchange a word between them in a loop. The latency
reported is one round-trip time. The measurements in
Table 12 are local or loopback measurements, since
our intent is to show the overhead of the software.
The same benchmark may be, and frequently is, used
to measure host-to-host latency.

Note that the RPC layer frequently adds hundreds
of microseconds of additional latency. The problem is
not the external data representation (XDR) layer —
the data being passed back and forth is a byte, so there
is no XDR to be done. There is no justification for the
extra cost; it is simply an expensive implementation.
DCE RPC is worse.

• UDP and RPC/UDP latency. UDP sockets are an
alternative to TCP sockets. They differ in that UDP
sockets are unreliable messages that leave the retrans-
mission issues to the application. UDP sockets have a

System UDP RPC/UDP

Linux/i686 93 180
Sun Ultra1 197 267
Linux/Alpha 180 317
DEC Alpha@300 259 358
Linux/i586 187 366
FreeBSD/i586 212 375
Solaris/i686 348 454
IBM Power2 254 531
IBM PowerPC 206 536
HP K210 152 543
SGI Indigo2 313 671
DEC Alpha@150 489 834
SGI Challenge 678 893
Sun SC1000 739 1101

Table 13. UDP latency (microseconds)

few advantages, however. They preserve message
boundaries, whereas TCP does not; and a single UDP
socket may send messages to any number of other
sockets, whereas TCP sends data to only one place.

UDP and RPC/UDP messages are commonly used
in many client/server applications. NFS is probably
the most widely used RPC/UDP application in the
world.

Like TCP latency, UDP latency is measured by
having a server process that waits for connections and
a client process that connects to the server. The two
processes then exchange a word between them in a
loop. The latency reported is round-trip time. The
measurements in Table 13 are local or loopback mea-
surements, since our intent is to show the overhead of
the software. Again, note that the RPC library can add
hundreds of microseconds of extra latency.

TCP UDP
System Network latency latency

Sun Ultra1 100baseT 280 308
FreeBSD/i586 100baseT 365 304
HP 9000/735 fddi 425 441
SGI Indigo2 10baseT 543 602
HP 9000/735 10baseT 592 603
SGI PowerChallenge hippi 1068 1099
Linux/i586@90Mhz 10baseT 2954 1912

Table 14. Remote latencies (microseconds)

• Network latency. We hav e a few results for over
the wire latency included in Table 14. As might be
expected, the most heavily used network interfaces
(i.e., ethernet) have the lowest latencies. The times
shown include the time on the wire, which is about
130 microseconds for 10Mbit ethernet, 13 microsec-
onds for 100Mbit ethernet and FDDI, and less than 10
microseconds for Hippi.

• TCP connection latency. TCP is a connection-
based, reliable, byte-stream-oriented protocol. As part
of this reliability, a  connection must be established
before any data can be transferred. The connection is



accomplished by a ‘‘three-way handshake,’’ an
exchange of packets when the client attempts to con-
nect to the server.

Unlike UDP, where no connection is established,
TCP sends packets at startup time. If an application
creates a TCP connection to send one message, then
the startup time can be a substantial fraction of the
total connection and transfer costs. The benchmark
shows that the connection cost is approximately half
of the cost.

Connection cost is measured by having a server,
registered using the port mapper, waiting for connec-
tions. The client figures out where the server is regis-
tered and then repeatedly times aconnect system
call to the server. The socket is closed after each con-
nect. Twenty connects are completed and the fastest
of them is used as the result. The time measured will
include two of the three packets that make up the three
way TCP handshake, so the cost is actually greater
than the times listed.

System TCP connection

HP K210 238
Linux/i686 263
IBM Power2 339
FreeBSD/i586 418
Linux/i586 606
SGI Indigo2 667
SGI Challenge 716
Sun Ultra1 852
Solaris/i686 1230
Sun SC1000 3047

Table 15. TCP connect latency (microseconds)

Table 15 shows that if the need is to send a quick
message to another process, given that most packets
get through, a UDP message will cost asend and a
reply (if positive acknowledgments are needed,
which they are in order to have an apples-to-apples
comparison with TCP). If the transmission medium is
10Mbit Ethernet, the time on the wire will be approxi-
mately 65 microseconds each way, or 130 microsec-
onds total. To do the same thing with a short-lived
TCP connection would cost 896 microseconds of wire
time alone.

The comparison is not meant to disparage TCP;
TCP is a useful protocol. Nor is the point to suggest
that all messages should be UDP. In many cases, the
difference between 130 microseconds and 900
microseconds is insignificant compared with other
aspects of application performance. However, if the
application is very latency sensitive and the transmis-
sion medium is slow (such as serial link or a message
through many routers), then a UDP message may
prove cheaper.

6.8. File system latency
File system latency is defined as the time required

to create or delete a zero length file. We define it this
way because in many file systems, such as the BSD
fast file system, the directory operations are done syn-
chronously in order to maintain on-disk integrity.
Since the file data is typically cached and sent to disk
at some later date, the file creation and deletion
become the bottleneck seen by an application. This
bottleneck is substantial: to do a synchronous update
to a disk is a matter of tens of milliseconds. In many
cases, this bottleneck is much more of a perceived per-
formance issue than processor speed.

The benchmark creates 1,000 zero-sized files and
then deletes them. All the files are created in one
directory and their names are short, such as "a", "b",
"c", ... "aa", "ab", ....

System FS Create Delete

Linux/i686 EXT2FS 751 45
HP K210 HFS 579 67
Linux/i586 EXT2FS 1,114 95
Linux/Alpha EXT2FS 834 115
Unixware/i686 UFS 450 369
SGI Challenge XFS 3,508 4,016
DEC Alpha@300 ADVFS 4,255 4,184
Solaris/i686 UFS 23,809 7,246
Sun Ultra1 UFS 18,181 8,333
Sun SC1000 UFS 25,000 11,111
FreeBSD/i586 UFS 28,571 11,235
SGI Indigo2 EFS 11,904 11,494
DEC Alpha@150 ? 38,461 12,345
IBM PowerPC JFS 12,658 12,658
IBM Power2 JFS 13,333 12,820

Table 16. File system latency (microseconds)

The create and delete latencies are shown in Table
16. Notice that Linux does extremely well here, 2 to 3
orders of magnitude faster than the slowest systems.
However, Linux does not guarantee anything about the
disk integrity; the directory operations are done in
memory. Other fast systems, such as SGI’s XFS, use a
log to guarantee the file system integrity. The slower
systems, all those with ˜10 millisecond file latencies,
are using synchronous writes to guarantee the file sys-
tem integrity. Unless Unixware has modified UFS
substantially, they must be running in an unsafe mode
since the FreeBSD UFS is much slower and both file
systems are basically the 4BSD fast file system.

6.9. Disk latency
Included withlmbench is a small benchmarking

program useful for measuring disk and file I/O.
lmdd , which is patterned after the Unix utilitydd ,
measures both sequential and random I/O, optionally
generates patterns on output and checks them on
input, supports flushing the data from the buffer cache
on systems that supportmsync , and has a very flexi-
ble user interface. Many I/O benchmarks can be



trivially replaced with aperl script wrapped around
lmdd .

While we could have generated both sequential
and random I/O results as part of this paper, we did
not because those benchmarks are heavily influenced
by the performance of the disk drives used in the test.
We intentionally measure only the system overhead of
a SCSI command since that overhead may become a
bottleneck in large database configurations.

Some important applications, such as transaction
processing, are limited by random disk IO latency.
Administrators can increase the number of disk opera-
tions per second by buying more disks, until the pro-
cessor overhead becomes the bottleneck. Thelmdd
benchmark measures the processor overhead associ-
ated with each disk operation, and it can provide an
upper bound on the number of disk operations the pro-
cessor can support. It is designed for SCSI disks, and
it assumes that most disks have 32-128K read-ahead
buffers and that they can read ahead faster than the
processor can request the chunks of data.5

The benchmark simulates a large number of disks
by reading 512byte transfers sequentially from the raw
disk device (raw disks are unbuffered and are not read
ahead by Unix). Since the disk can read ahead faster
than the system can request data, the benchmark is
doing small transfers of data from the disk’s track
buffer. Another way to look at this is that the bench-
mark is doing memory-to-memory transfers across a
SCSI channel. It is possible to generate loads of more
than 1,000 SCSI operations/second on a single SCSI
disk. For comparison, disks under database load typi-
cally run at 20-80 operations per second.

System Disk latency

SGI Challenge 920
SGI Indigo2 984
HP K210 1103
DEC Alpha@150 1436
Sun SC1000 1466
Sun Ultra1 2242

Table 17. SCSI I/O overhead (microseconds)

The resulting overhead number represents alower
bound on the overhead of a disk I/O. The real over-
head numbers will be higher on SCSI systems because
most SCSI controllers will not disconnect if the
request can be satisfied immediately. During the
benchmark, the processor simply sends the request
and transfers the data, while during normal operation,
the processor will send the request, disconnect, get

5 This may not always be true: a processor could be
fast enough to make the requests faster than the rotating
disk. If we take 6M/second to be disk speed, and divide
that by 512 (the minimum transfer size), that is 12,288
IOs/second, or 81 microseconds/IO. We don’t know of
any processor/OS/IO controller combinations that can do
an IO in 81 microseconds.

interrupted, reconnect, and transfer the data.

This technique can be used to discover how many
drives a  system can support before the system
becomes CPU-limited because it can produce the
overhead load of a fully configured system with just a
few disks.

7. Future work
There are several known improvements and exten-

sions that could be made tolmbench .

• Memory latency. The current benchmark measures
clean-read latency. By clean, we mean that the cache
lines being replaced are highly likely to be unmodi-
fied, so there is no associated write-back cost. We
would like to extend the benchmark to measure dirty-
read latency, as well as write latency. Other changes
include making the benchmark impervious to sequen-
tial prefetching and measuring TLB miss cost.

• MP benchmarks. None of the benchmarks in
lmbench is designed to measure any multiprocessor
features directly. At a minimum, we could measure
cache-to-cache latency as well as cache-to-cache
bandwidth.

• Static vs. dynamic processes. In the process cre-
ation section, we allude to the cost of starting up pro-
cesses that use shared libraries. When we figure out
how to create statically linked processes on all or most
systems, we could quantify these costs exactly.

• McCalpin’s stream benchmark. We will probably
incorporate part or all of this benchmark into
lmbench .

• Automatic sizing. We hav e enough technology that
we could determine the size of the external cache and
autosize the memory used such that the external cache
had no effect.

• More detailed papers. There are several areas that
could yield some interesting papers. The memory
latency section could use an in-depth treatment, and
the context switching section could turn into an inter-
esting discussion of caching technology.

8. Conclusion
lmbench is a useful, portable micro-benchmark

suite designed to measure important aspects of system
performance. We hav e found that a good memory
subsystem is at least as important as the processor
speed. As processors get faster and faster, more and
more of the system design effort will need to move to
the cache and memory subsystems.
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