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Abstract cache, but the exokernel allows cached pages to be shared securely
across all applications. Thus, the exokernel protects pages and disk
The exokernel operating system architecture safely gives untrustedblocks, but applications manage them.
software efficient control over hardware and software resources by  Of course, not all applications need customized resource man-
separating management from protection. This paper describes aragement. Instead of communicating with the exokernel directly, we
exokernel system that allows specialized applications to achieve expect most programs to be linked with libraries that hide low-
high performance without sacrificing the performance of unmod- level resources behind traditional operating system abstractions.
ified UNIX programs. It evaluates the exokernel architecture by However, unlike traditional implementations of these abstractions,
measuring end-to-end application performance on Xok, an exo- library implementations are unprivileged and can therefore be mod-
kernel for Intel x86-based computers, and by comparing Xok’s ified or replaced at will. We refer to these unprivileged libraries as
performance to the performance of two widely-used 4.4BSD UNIX library operating systemar libOSes.
systems (FreeBSD and OpenBSD). The results show that common  We hope the exokernel organization will facilitate operating sys-
unmodified UNIX applications can enjoy the benefits of exoker- tem innovation: there are several orders of magnitude more applica-
nels: applications either perform comparably on Xok/ExOS and tion programmers than OS implementors, and any programmer can
the BSD UNIXes, or perform significantly better. In addition, the specialize a libOS without affecting the rest of the system. LibOSes
results show that customized applications can benefit substantiallyalso allow incremental, selective adoption of new OS features: ap-
from control over their resources (e.g., a factor of eight for a Web plications link with the libOSes that provide what they need—new
server). This paper also describes insights about the exokernel ap-OS functionality is effectively distributed with the application bi-
proach gained through building three different exokernel systems, nary.

and presents novel approaches to resource multiplexing. The exokernel approach raises several questions. Can ambitious
applications actually achieve significant performance improvements
1 Introduction on an exokernel? Will traditional applications—for example, unal-

tered UNIX applications—pay a price in reduced performance? Is
In traditional operating systems, only privileged servers and the global performance compromised when no centralized authority
kernel can manage system resources. Untrusted applications arélecides scheduling and multiplexing policies? Does the lack of a
restricted to the interfaces and implementations of this privileged centralized management policy for shared OS structures lower the
software. This organization is flawed because application demandsintegrity of the system? )
vary widely. An interface designed to accommodate every appli- ~ This paper attempts to answer these questions and thereby eval-
cation must anticipate all possible needs. The implementation of uate the soundness of the exokernel approach. Our experiments
such an interface would need to resolve all tradeoffs and antic- are performed on the Xok/EXOS exokernel system. Xok is an exo-
ipate all ways the interface could be used. Experience suggestskernel for Intel x86-based computers and ExOS is its default libOS.
that such anticipation is infeasible and that the cost of mistakes is X0k/ExOS compiles on itself and runs many unmodified UNIX pro-
high [1, 4, 8, 11, 21, 39]. grams (e.g., perl, gcc, telnet, and most file utilities). We compare
The exokernel architecturgl1] solves this problem by giving ~ Xok/EXOS to two widely-used 4.4BSD UNIX systems running on

untrusted applications as much control over resources as possithe same hardware, using large, real-world applications. .
ble. It does so by dividing responsibilities differently from the way EXOS ensures the integrity of many of its abstractions using
conventional systems do. Exokernels separate protection from man-XQk’S support for protected sharing. Some abstractions, however,
agement: they protect resources but delegate management to applistill use shared global data structures. ExOS cannot guarantee UNIX
cations. For example, each application manages its own disk-block semantics for these abstractions until they are protected from arbi-
trary writes by other processes. In our measurements, we approxi-
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contract NO0014-94-1-0985 and by a NSF National Young Investigator Award. Robert ites to sh d global stat
Grimm is currently at the University of Washington, Seattle. writes 1o shared global state. . o

) . ) ) o Our results show that most unmodified UNIX applications per-

Copyright© 1995 by the Association for Computing Machinery, Inc. Permission form comnarably on Xok/ExOS and on FreeBSD or OpenBSD

to make digital or hard copies of part or all of this work for personal or classroom use p. - y P i
is granted without fee provided that copies are not made or distributed for profit or S0ME appllcatlon_s, hOWEVQI’, run up to a fath_)r of four _faSter on
commercial advantage and that new copies bear this notice and the full citation on the XOK/EXOS. Experiments with multiple applications running con-

first page. Copyrights for components of this WORK owned by others than ACM must  currently also show that exokernels can offer competitive global
be_Ponored. Abstr'actlng with clredlt is permitted. o . . system performance.

0 copy otherwise, to republish, to post on servers or to redistribute to lists, requires . . ianifi
prior specific permission and/or a fee. Request Permissions from Publications Dept, ~ YV€ also demonstrate that application-level control can signifi-

ACM Inc., Fax +1 (212) 869-0481, arpermissions@acm.org. cantly improve the performance of applications. For example, we




describe a new high-performance HTTP server, Cheetah, that ac-
tively exploits exokernel extensibility. Cheetah uses a file system
and a TCP implementation customized for the properties of HTTP
traffic. Cheetah performs up to eight times faster than the best UNIX
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HTTP server we measured on the same hardware. L EXOSJ = EXOSJ
In addition to evaluating the exokernel approach, this paper E’@ S Subset
presents new kernel interfaces that separate protection from man-
agement. We discuss the disk subsystem, XN, and explain how un- /
privileged applications can define new file systems and how these b Kernel

file systems can safely multiplex the same disk at a fine granularity.

Finally, we summarize what we have learned from building three TTE Pagep,'

complete exokernel systems (Xok, Aegis [11] for DECstations, and — . _|....

Glaze [29] for the Fugu multiprocessor). |
The rest of the paper is organized as follows. Section 2 discusses

related work. Section 3 summarizes the exokernel architecture. Sec-

tion 4 provides a detailed example of reconciling application control Figure 1: A simplified exokernel system with two applications, each

with protection by presenting the disk system XN. Section 5 briefly linked with its own libOS and sharing pages through a buffer cache

overviews Xok/ExOS, the experimental environment for this paper. registry.

Section 6 reports on the performance of unaltered UNIX applica-

tions, while Section 7 reports on the performance of aggressively-

specialized applications, such as the high-performance Cheetah welsuch as processes or file descriptors with each other. Thus, VMMs

server. Section 8 investigates global performance on an exokernelconfine specialized operating systems and associated processes to

system. Section 9 discusses our experiences with building threeisolated virtual machines, while exokernels let applications use cus-

Buffer Cache Registry

different exokernel systems. Section 10 concludes. tomized libOSes without sacrificing a single view of the machine,
Downloading code into the kernel is another approach to ex-
2 Related Work tensibility. In many systems only trusted users can download code,

either through dynamically-loaded kernel extensions or static con-
The exokernel architecture was proposed in [11], which described afiguration [13, 21]. In the SPIN and Vino systems, any user can
research prototype that performed significantly better than Ultrix on safely download code into the kernel [4, 39]. Safe downloading of
microbenchmarks. While the paper provided evidence that the exo- code through type-safety [4, 37] and software fault-isolation [39, 42]
kernel approach was promising, it left many questions unanswered.is complementary to the exokernel approach of separating protec-
There is a large literature on extensible operating systems, start-tion from management. Exokernels use downloading of code to let
ing with the classic rationales by Lampson and Brinch Hansen [19, the kernel leave decisions to untrusted software [11].
25, 26]. Previous approaches to extensibility can be coarsely clas-  In addition to these structural approaches, much work has been
sified in three groups: better microkernels, virtual machines, and done on better OS abstractions that give more control to appli-
downloading untrusted code into the kernel. We discuss each incations, such as user-level networking [40, 41], lottery schedul-
turn. ing [43], application-controlled virtual memory [22, 27] and file
The principa| goa| of an exokerne|_giving app“cations con- Systems [6, 35] All of this work is directly applicable to libOSes.
trol—is orthogonal to the question of monolithic versus microkernel
organization. If applications are restricted to inadequate interfaces,3 Exokernel Background
it makes little difference whether the implementations reside in
the kernel or privileged user-level servers [20, 18]; in both cases This section briefly summarizes the exokernel architecture. Fig-
applications lack control. For example, it is difficult to change the ure 1 shows a simplified exokernel system that is running two appli-
buffer management policy of a shared file server. In many ways, cations: an unmodified UNIX application linked against the ExOS
servers can be viewed as fixed kernel subsystems that happen to rutibOS and a specialized exokernel application using its own TCP
in user space. Whether monolithic or microkernel-based, the goal and file system libraries. Applications communicate with the kernel
of an exokernel system remains for privileged software to provide using low-level physical names (e.g., block numbers); the kernel
interfaces that do not limit the ability of unprivileged applications interface is as close to the hardware as possible. LibOSes handle
to manage their own resources. higher-level names (e.g., file descriptors) and supply abstractions.
Some newer microkernels push the kernel interface closer to ~ We briefly describe the exokernel principles, motivated in [11].
the hardware [8, 20, 36], obtaining better performance and robust- These principles illustrate the mechanics of exokernel systems and
ness than previous microkernels and allowing for a greater degreeprovide important motivation for many design decisions discussed
of flexibility, since shared monolithic servers can be broken into later in this paper. In addition, we show how the principles can be
several servers. Techniques to reduce the cost of shared serverapplied and discuss the general issue of protected sharing.
by improving IPC performance, moving code from servers into
libraries, mapping read-only shared data structures, and.bat.ching3_1 Exokernel principles
system calls [2, 18, 28, 30] can also be successfully applied in an . . .
exokernel system. The goal of an e_xok_erne! is to give efﬂue_:nt control of resources
Virtual machines [5, 12, 17] (VMs) are an OS structure in which to untrus_.tet_j appllcatlons in a secure, multi-user system. We follow
a privileged virtual machine monitor (VMM) isolates less privileged ~ these principles to achieve this goal: )
software in emulated copies of the underlying hardware. Unfortu- ~ Separate protection and managementExokernels provide
nately, emulation hides information. This can lead to ineffective Primitives at the lowest possible level required for protection—
use of hardware resources; for instance, the VMM has no way of ideally, at the level of hardware (dl_sk bloc_ks, context |Qentn‘|ers,
knowing if a VM no longer needs a particular virtual page. More- TLB, etc.). Res_ource management |s_restr|cte_d to functions neces-
over, VMs can only share resources through remote communicationSary for protection: allocation, revocation, sharing, and the tracking
protocols. This prevents VMs from sharing many OS abstractions Of ownership.



Expose allocation.Applications allocate resources explicitly. necessarily trust all other libOSes with access to a particular re-
The kernel allows specific resources to be requested during alloca-source. When libOSes guarantee invariants about their abstractions,
tion. they must be aware of exactly which resources are involved, what

Expose namesExokernels use physical names wherever pos- other processes have access to those resources, and what level of
sible. Physical names capture useful information and do not require trust they place in those other processes.
potentially costly or race-prone translations from virtual names. As an example, consider the semantics of the UNIX fork system

Expose revocation.Exokernels expose revocation policies to call. It spawns a new process initially identical to the currently run-
applications. They let applications choose which instance of a re- ning one. This involves copying the entire virtual address space of
source to give up. Each application has control over its set of phys- the parent process, a task operating systems typically perform lazily
ical resources. through copy-on-write to avoid unnecessary page copies. While

Expose information.Exokernels expose all system information  copy-on-write can always be done in a trusted, in-kernel virtual
and collect data that applications cannot easily derive locally. For memory system, a libOS must exercise care to avoid compromising
example, applications can determine how many hardware networkthe semantics of fork when sharing pages with potentially untrusted
buffers there are or which pages cache file blocks. An exokernel processes. This section details some of the approaches we have used
might also record an approximate least-recently-used ordering of to allow a libOS to maintain invariants when sharing resources with
all physical pages, something individual applications cannot do other libOSes.
without global information. The exokernel provides four mechanisms libOSes can use to

These principles apply not just to the kernel, but to any compo- maintain invariants in shared abstractions. Fgeffware regions
nent of an exokernel system. Privileged servers should provide anareas of memory that can only be read or written through system

interface boiled down to just what is required for protection. calls, provide sub-page protection and fault isolation. Second, the
exokernel allows on the-fly-creation bierarchically-named capa-
3.2 Kernel support for protected abstractions bilities and requires that these capabilities be specified explicitly

N . on each system call [31]. Thus, a buggy child process acciden-
Many of the resources protected by traditional operating systems i1y requesting write access to a page or software region of its
are themselves high-level abstractions. Files, for instance, CO”S'Stparent will likely provide the wrong capability and be denied per-
of metadata, disk blocks, and buffer cache pages, all of which are ission. Third, the exokernel providesakeup predicatessmall,
guarded by access control on high-level file objects. While exoker- yarnel-downloaded functions that wake up processes when arbi-
nels allow direct access to low-level resources, exokernel systemsyary conditions become true (see Section 5.1 for details). Wakeup
must be able to provide UNIX-like protection, including access con- yregicates can ensure that a buggy or crashed process will not hang
trol on high-level objects where required for security. One of the 5 correctly behaved one. Fourth, the exokernel provides robust crit-
main challenges in designing exokernels is to find kernel interfaces jc4| sections: inexpensive critical sections that are implemented by
that allow such higher-level access control without either mandat- gisaping software interrupts [3]. Using critical sections instead of
ing a particular implementation or hindering application control of |5-ks eliminates the need to trust other processes.

hardware resources. _ ) _ o Three levels of trust determine what optimizations can be used
Xok meets this challenge with three design techniques. First, it by the implementation of a shared abstraction.

performs access control on all resources in_the same manner. Sec- Optimize for the common case: Mutual trust. It is often the

ond, Xok provides software abstractions to bind hardware resources e that applications sharing resources place a considerable amount
together. For example, as shown in Figure 1, the Xok buffer cache f st in each other. For instance, any two UNIX programs run by
registry binds disk blocks to the memory pages caching them. Ap- the same user can arbitrarily modify each others’ memory through
plications have control over physical pages and disk I/O,. but can he debugger system call, ptrace. When two exokernel processes
also safely use each other's cached pages. Xok's protection mechap wyrite each others’ memory, their libOSes can clearly trust each
anism guarantees that a process can only access a cache page if iher not to be malicious. This reduces the problem of guaranteeing
has the same level of access to the corresponding disk block. Third,inyariants from one of security to one of fault-isolation, and conse-

and most general, some of Xok’s abstractions allow applications gyenly allows libOS code to resemble that of monolithic kernels
to download code. This is required for abstractions whose protec- implementing the same abstraction.

tion does not map to hardware abstractions. For example, files may " ynigirectional trust. Another common scenario occurs when

require valid updates to their modification times. two processes share resources and one trusts the other, but the trust
_The key to these exokernel software abstractions is that they js not mutual. Network servers often follow this organization: a priv-

neither hinder low-level access to hardware resources nor unduly”eged process accepts network connections, forks, and then drops

re.strict the semant.ics of the protected abstrac.tions they er!able-privileges to perform actions on behalf of a particular user. Many
Giventhese properties, akernel software abstraction does notviolate;psiractions implemented for mutual trust can also function under

the exokernel principles. _ o unidirectional trust with only slight modification. In the example of

Though these software abstractions reside in the kernel on cqpy.on-write, for instance, the trusted parent process must retain
Xok, they could also be implemented in trusted user-level Servers. gy cjysive control of shared pages and its own page tables, prevent-
This microkernel organization would cost many additional context ing a child from child making copied pages writable in the parent.
switches; these are particularly expensive on the Intel Pentium Proypile this requires more page faults in the parent, it does not in-
processors on which Xok runs. Furthermore, partitioning function- ~rasse the number of page copies or seriously complicate the code.
ality in user-level servers tends to be more complex. Defensive programming for mutual distrust. Finally, there

. are situations where mutually distrustful processes must share high-

3.3 Protected sharing level abstractions with each other. For instance, two unrelated pro-
The low-level exokernel interface gives libOSes enough hardware C€SSes may wish to communicate over a UNIX domain socket, and
control to implement all traditional operating system abstractions. N€ither may have any trustin the other. For OS abstractions that can
Library implementations of abstractions have the advantage thatP€ shared by mutually distrustful processes, libOSes must include
they can trust the applications they link with and need not defend defensive implementations that give reasonable interpretations to

against malicious use. The flip side, however, is that a libOS cannot &/l Possible actions by the foreign process (for instance a socket
write larger than the buffer can be interpreted as an end of file).



Fortunately, sharing with mutual distrust occurs very infre- UDFs are stored on disk in structures caltedhplates Each
quently for many abstractions. Many types of sharing occur only template corresponds to a particular metadata format; for exam-
between child and parent processes, where mutual or unidirectionalple, a UNIX file system would have templates for data blocks,
trust almost always holds. Where mutual distrust does occur, defen-inode blocks, inodes, indirect blocks, etc. Each tempatas one
sive sanity checks are often not on the critical path for performance. UDF: owns-udf-, and two untrusted but potentially nondeterminis-

In the remaining cases, as is the case for disk files, we have carefullytic functions:acl-ufr andsize-uf-. All three functions are specified
crafted kernel software abstractions to help libOSes maintain the in the same language but onbyvns-udf must be deterministic.
necessary invariants. The other two can have access to, for example, the time of day. The
limited language used to write these functions is a pseudo-RISC
. . assembly language, checked by the kernel to ensure determinacy.
4 Multiplexing Stable Storage Once a t)émplgte gs specified, it gannot be changed. Y
. ) . For a piece of metadata of template typél’, owns-udf (m)
An exokernel must provide a means to safely multiplex disks among returns the set of blocks which points to and their respective
multiple library file systems (libFSes). Each libOS contains one or template types. UDF determinism guarantees tvats-udfwill
more libFSes. Multiple libFSes can be used to share the same ﬁlesalways compute the same output for a given input: XN cannot
with different semantics. In addition to accessing existing files, po spoofed byowns-udf The set of blocksowns-udfreturns is
libFSes can define new on-disk file types with arbitrary metadata represented as a set of tuples. Each tuple constitutes a range: a
formats. An exokernel must give libFSes as much control over file gk address that specifies the start of the range, the number of
management as possible while still protecting files from unautho- pocks in the range, and the template identifier for the blocks in
rized access. It therefore cannot rely on simple-minded solutions e range. Because owned sets can be large, XN allows libFSes
like partitioning to multiplex a disk: each file would require its own 4 partition metadata blocks into disjoint pieces such that each set
partition. _ _ _ returned is (typically) a single tuple.

To allow libFSes to perform their own file management, an For example, say a libFS wants to allocate a disk biodiy
exokernel stable storage system must satisfy four requirements.p|acing a pointer to it in a metadata structure, The libFS will
First, creating new file formats should be simple and lightweight. 4| XN, passing itn, b, and the proposed modificationite (spec-

It should not require any special privilege. Second, the protection ifieq as a list of bytes to write inten). To enforce protection,
substrate should allow multiple libFSes to safely share files at the xN needs to know that the libFS’s proposed modification actually
raw disk block and metadata level. Third, the storage system must beqges what it says it does—that is, allocaiés m. Thus, XN runs
efficient—as close to raw hardware performance as possible. Fourth,qwns-udf (m) - makes the proposed modification o, a copy of

the storage system should facilitate cache sharing among IibFSesm; and runsowns-udf (m’') . It then verifies that the new result is
and allow them to easily address problems of cache coherence,equa| the old result plus

security, and concurrency. ] Theacl-uffunction implements template-specific access control
This section describes how Xok multiplexes stable storage, both anq semantics; its input is a piece of metadata, a proposed modifi-
to show how we address these problems and to provide a concret& ation to that metadata, and set of credentials (e.g., capabilities). Its
example of the exokernel principles in practice. First, we describe gytput is a Boolean value approving or disapproving of the mod-
XN, Xok's extensible, low-level in-kernel stable storage system. ification. XN runs the propeacl-uf function before any metadata
We also describe the general interface between XN and libFSesyqgjfication. acl-ufs can implement access control lists, as well

and present one particular libFS, C-FFS, the co-locating fast file 53¢ providing certain other guarantees; for examplea@uf could

system [15]. ensure that inode modification times are kept current by rejecting
any metadata changes that do not update them.
4.1 Overview of XN o b;theessize-uffunction simply returns the size of a data structure

Designing a flexible exokernel stable storage system has proven
difficult: XN is our fourth design. This section provides an overview . .
of UDFs, the cornerstone of XN; the following sections describe 4.2 XN: Problem and history

some earlier approaches (and why they failed), and aspects of XNThe most difficult requirement for XN is efficiently determining the
In greater dgpth. . access rights of a given principal to a given disk block. We discuss
XN provides access to stable storage at the level of disk blocks, {he successive approaches that we have pursued.
exporting a buffer cache registry (Section 4.3.3) as well as free pjsk-plock-level multiplexing. One approach is to associate
maps and other on-disk structures. The main purpose of XN is 10 ith each block or extent a capability (or access control list) that
determine the access rights of a given principal to a given disk gyards it. Unfortunately, if the capability is spatially separated from
block as efficiently as poss[ble._ XN must prevent a malicious User the disk block (e.g., stored separately in a table), accessing a block
from claiming another user's disk blocks as part of her own files. ¢an require two disk accesses (one to fetch the capability and one
On a conventional OS, this task is easy, since the kernel itself 5 fetch the block). While caching can mitigate this problem to a
knows the file’s metadata format. On an exokernel, where files have degree, we are nervous about its overhead on disk-intensive work-
application-defined metadata layouts, the task is more difficult.  |oads. An alternative approach is to co-locate capabilities with disk
XN's novel solution employdJDFs (untrusted deterministic pjocks by placing them immediately before a disk block’s data [26].
functiong. UDFs are metadata translation functions specific to each Unfortunately, on common hardware, reserving space for a capa-
file type. XN uses UDFs to analyze metadata and translate it into bility would prevent blocks from being multiples of the page size,
a simple form the kernel understands. A libFS developer can in- adding overhead and complexity to disk operations.
stall UDFs to introduce new on-disk metadata formats. The re-  gef-descriptive metadataOur first serious attempt at efficient
stricted language in which UDFs are specified ensures that they aregisk multiplexing provided a means for each instance of metadata
deterministic—their output depends only on their input (the meta- 1o gescribe itself. For example, a disk block would start with some
data itself). UDFs allow the kernel to safely and efficiently handle nymper of bytes of application-specific data and then say “the next
any metadata layout without understanding the layout itself. ten integers are disk block pointers.” The complexity of space-
efficient self-description caused us to limit what metadata could be



described. We discovered that this approach both caused unaccept-
able amounts of space overhead and required excessive effort to

modify existing file system code, because it was difficult to shoe-
horn existing file system data structures into a universal format.

Template-based descriptionSelf-description and its problems
were eliminated by the insight that each file system is built from
only a handful of different on-disk data structures, each of which
can be considered a type. Since the number of types is small, it
is feasible to describe each type only once per file system—rather
than once per instance of a type—usingmplate

Originally, templates were written in a declarative description
language (similar to that used in self-descriptive metadata) rather
than UDFs. This system was simple and better than self-descriptive
metadata, but still exhibited what we have come to appreciate as
an indication that applications do not have enough control: the
system made too many tradeoffs. We had to make a myriad of

cache registry that maps cached disk blocks to the physical
pages holding them.

. Atomic metadata updates. Many file system updates have
multiple steps. To ensure that shared state always ends up
in a consistent and correct state, libFSes can lock cache reg-
istry entries. (Future work will explore optimistic concur-
rency control based on versioning.)

. Well-formed updates. File abstractions above the XN inter-
face may require that metadata modifications satisfy invari-
ants (e.g., that link counts in inodes match the number of as-
sociated directory entries). UDFs allow XN to guarantee such
invariants in a file-system-specific manner, allowing mutually
distrustful applications to safely share metadata.

XN controls only what is necessary to enforce these protection

decisions about which base types were available and how they wereyjes. All other abilities—I/O initiation, disk block layout and allo-

represented (how large disk block pointers could be, how the type
layout could change, how extents were specified). Given the variety
of on-disk data structures described in the file system literature, it
seems unlikely that any fixed set of components will ever be enough
to describe all useful metadata.

Our current solution uses templates, but trades the declarative
description language for a more expressive, interpreted language—

UDFs. This lets libFSes track their own access rights without XN
understanding how they do so; XN merely verifies that libFSes track
block ownership correctly.

4.3 XN: Design and implementation

cation policies, recovery semantics, and consistency guarantees—
are left to untrusted libFSes.

4.3.2 Ordered disk writes

Another difficulty XN must face is guaranteeing the rules Ganger

and Patt [16] give for achieving strict file system integrity across
crashes: First, never reuse an on-disk resource before nullifying all
previous pointers to it. Second, never create persistent pointers to

structures before they are initialized. Third, when moving an on-

disk resource, never reset the old pointer in persistent storage before

the new one has been set.

The first two rules are required for global system integrity—and

We first describe the requirements for XN and then present the iy,s must be enforced by XN—while a file system violating the

design.

4.3.1 Requirements and approach

In our experience so far, the following requirements have been
sufficient to reconcile application control with protected sharing.

third rule will only affect itself.

The rules are simple but difficult to enforce efficiently: a naive
implementation will incur frequent costly synchronous disk writes.
XN allows libFSes to address this by enforcing the rules without
legislating how to follow them. In particular, libFSes can choose
any operation order which satisfies the constraints.

The first rule is implemented by deferring a block’s deallocation

1. To prevent unauthorized access, every operation on disk datauntil all on-disk pointers to that block have been deleted; a reference

must be guarded. For speed, XN usesure binding$11]
to move access checks to bind time rather than checking at

every access. For example, the permission to read a cached

disk block is checked when the page is inserted into the page
table of the libFS’s environment, rather than on every access.

. XN must be able to determine unambiguously what access
rights a principal has to a given disk block. For speed, it uses
the UDF mechanism to protect disk blocks using the libFS’s
own metadata rather than guarding each block individually.

a crash will not incorrectly grant a libFS access to data it

either has freed or has not allocated. This requirement means

count performed at crash recovery time helps libFSes implement the
third rule.
The second rule is the hardest of the three. To implement it, XN
keeps track ofaintedblocks. Any block is considered tainted if it
points either to an uninitialized block or to a tainted block. LibFSes
must not be allowed to write a tainted block to disk. However, two
exceptions allow XN to enforce the general rule more efficiently:
First, XN allows entire file systems to be marked “temporary”
(i.e., not persistent across reboots). Since these file systems are not
persistent, they are not required to adhere to any of the integrity

. XN must guarantee that disk updates are ordered such that'ules. This technique allows memory-based file systems to be im-

plemented with no loss of efficiency.
The second exceptionis based on the observation that unattached

that metadata that is persistent across crashes cannot be writSubtrees—trees whose root is not reachable from any persistent

ten when it contains pointers to uninitialized metadata, and
that reallocation of a freed block must be delayed until all
persistent pointers to it have been removed.

While isolation allows separate libFSes to coexist safely, pro-
tected sharing of file system state by mutually distrustful libFSes
requires three additional features:

1. Coherent caching of disk blocks. Distributed, per-application
disk block caches create a consistency problem: if two appli-
cations obliviously cache the same disk block in two differ-
ent physical pages, then maodifications will not be shared. XN
solves this problem with an in-kernel, system-wide, protected

root—will not be preserved across reboots and thus, like tempo-
rary trees, are free of any ordering constraints. Thus, XN does not
track tainted blocks in an unreachable tree until it is connected to a
persistent root.

4.3.3 The buffer cache registry

Finally, we discuss the XN buffer cache registry, which allows pro-
tected sharing of disk blocks among libFSes. The registry tracks the
mapping of cached disk blocks and their metadata to physical pages
(and vice versa). Unlike traditional buffer caches, it only records
the mapping, not the disk blocks themselves. The disk blocks are
stored in application-managed physical-memory pages. The registry



tracks both the mapping and its state (dirty, out of core, uninitialized, Usually both will already be cached.
locked). To allow libFSes to see which disk blocks are cached, the = Read.Reading a block from disk is a two-stage process, where
buffer cache registry is mapped read-only into application space. the stages can be combined or separated. First, the libFS creates
Access control is performed when a libFS attempts to map a entries in the registry by passing block addresses for the requested
physical page containing a disk block into its address space, ratherdisk blocks and the metadata blocks controlling them (tpair
than when that block is requested from disk. That is, registry entries ent9. The parents must already exist in the registry—libFSes are
can be inserted without requiring that the object they describe be responsible for loading them. XN usesvns-udfto determine if
in memory. Blocks can also be installed in the registry before their the requested blocks are controlled by the supplied metadata blocks
template or parent is known. As a result, libFSes have significant and, if so, installs registry entries.
freedom to prefetch. In the second stage, the libFS initiates a read request, optionally
Registry entries are installed in two ways. First, an application supplying pages to place the data in. Access control thraasthf
that has write access to a block can directly install a mapping to it is performed at the parent (e.g., if the data loaded is a bare disk
into the registry. Second, applications that do not have write accessblock), at the child (e.g., if the data is an inode), or both.
to a block can indirectly install an entry for it by performing a “read AlibFS can load any block in its tree by traversing from its root
and insert,” which tells the kernel to read a disk block, associate it entry, or optionally by starting from any intermediate node cached
with an application-provided physical page, set the protection of that in the registry. Note that XN specifically disallows metadata blocks
page page appropriately, and insert this mapping into the registry. from being mapped read/write.
This latter mechanism is used to prevent applications that do not  To speculatively read a block before its parent is known, a libFS
have permission to write a block from modifying it by installing a can issue a raw read command. If the block is not in the registry, it
bogus in-core copy. will be marked as “unknown type” and a disk request initiated. The
XN does not replace physical pages from the registry (except for block cannot be used until after it is bound to a parent by the first
those freed by applications), allowing applications to determine the stage of the read process, which will determine its type and allow
most appropriate caching policy. Because applications also manageaccess control to be performed.
virtual memory paging, the partitioning of disk cache and virtual Allocate. A libFS selects blocks to allocate by reading XN'’s
memory backing store is under application control. To simplify map of free blocks, allowing libFSes to control file layout and
the application’s task and because it is inexpensive to provide, XN grouping. Free blocks are allocated to a given metadata node by
maintains an LRU list of unused but valid buffers. By default, when calling XN with the metadata node, the blocks to allocate, and the
LibOSes need pages and none are free, they recycle the oldest buffeproposed madification to the metadata node. XN checks that the
on this LRU list. requested blocks are free, runs the approprateuf to see if the
XN allows any process to write “unowned” dirty blocks to disk  libFS has permission to allocate, and remens-udfas described in
(i.e., blocks not associated with a running process), even if that Section 4.1, to see that the correct block is being allocated. If these
process does not have write permission for the dirty blocks. This checks all succeed, the metadata is changed, the allocated blocks
allows the construction of daemons that asynchronously write dirty are removed from the free list, and any allocated metadata blocks
blocks. LibFSes do not have to trust daemons with write access are marked tainted (see Section 4.3.2).
to their files, only to flush the blocks. This ability has three bene- Write. A libFS writes dirty blocks to disk by passing the blocks
fits. First, the contents of the registry can be safely retained acrossto write to XN. If the blocks are not in memory, or they have been
process invocations rather than having to be brought in and pagedpinned in memory by some other application, the write is prevented.
out on creation and exit. Second, this design simplifies the imple- The write also fails if any of the blocks are tainted and reachable
mentations of libFSes, since a libFS can rely on a daemon of its from a persistent root. Otherwise, the write succeeds. If the block
choice to flush dirty blocks even in difficult situations (e.qg., if the was previously tainted and now is not (either by eliminating pointers
application containing the libFS is swapped out). Third, this design to uninitialized metadata or by becoming initialized itself), XN
allows different write-back policies. modifies its state and removes it from the tainted list.
Since applications control what is fetched and what is paged out
when (and in what order), they can control many disk management
4.4 XN usage policies and can enforce strong stability guarantees.

Toillustrate how XN is used, we sketch how a libFS canimplement  Deallocate.XN uses UDFs to check deallocate operations anal-
common file system operations. These two setup operations are@9ously to allocate operations. If there are no on-disk pointers to a

used to install a libFS: deallocated disk block, XN places it on the free list. Otherwise, XN
Type creation. The libFS describes its types by storing tem- €nqueues the block on a “will free” list until the block’s reference
plates, described above in Section 4.1, intge catalogueEach count is zero. Reference counts are decremented when a parent that

template is identified by a unique string (e.g., “FFS Inode”). Once had an on-disk pointer to the block deletes that pointer via a write.
installed, types are persistent across reboots.
LibFS persistence.‘l’o ensure that IibFS_data is persis’tent across 45 C-FFS: a Iibrary file system
reboots, a libFS can register the root of its tree in XMNjet cat-
alogue.A root entry consists of a disk extent and corresponding This subsection briefly describes C-FFS (co-locating fast file sys-
template type, identified by a unique string (e.qg., “mylibFS”). tem [15])—a UNIX-like library file system we built—with special
After a crash, XN uses these roots to garbage-collect the disk reference to additional protection guarantees it provides.
by reconstructing the free map. It does so by logically traversing XN provides the basic protection guarantees needed for file
all roots and all blocks reachable from them: reachable blocks are system integrity, but real-world file systems often require other, file-
allocated, non-reachable blocks are not. If rebuilding the free map system-specific invariants. For instance, UNIX file systems must
after a crash needs to be fast, this step can be eliminated by orderingensure the uniqueness of file names within a directory. This type of

writes to the free map. guarantee can be provided in any number of ways: in the kernel, in a
After initialization, the new libFS can use XN. We describe a server, or, in some cases, by simple defensive programming. C-FFS
simplified version of the most common operations. currently downloads methods into the kernel to check its invariants.

Startup. To start using XN, a libFS loads its root(s) and any We are currently developing a system similar to UDFs that can be
types it needs from the root catalogue into the buffer cache registry.



used to enforce type-specific invariants in an efficient, extensible physical page of a translation can be mapped by a process, applica-
way. tions are prevented from directly modifying the page table and must
Our experience with C-FFS shows that, even with the strongest instead use system calls. Although these restrictions make Xok less
desired guarantees, a protected interface can still provide significantextensible than Aegis, they simplify the implementation of libOSes
flexibility to unprivileged software, and that the exokernel approach (see Section 9) with only a small reduction in application flexibility.
can deal as readily with high-level protection requirements as it can Like Aegis, Xok allows efficient and powerful virtual memory

with those closer to hardware. abstractions to be built at the application level. It does so by exposing
C-FFS makes four main additions to XN'’s protection mecha- the capabilities of the hardware (e.g., all MMU protection bits)
nisms: and exposing many kernel data structures (e.g., free lists, inverse

. ) page mappings). Xok’s low-level interface means that paging is

1. Access control: it maps the UNIX representation and seman- hangled by applications. As such, it can be done from disk, across
tics of access control (uids and gids, etc.) to those of exokernel the network, or by data regeneration. Additionally, applications
capabilities. can readily perform per-page transformations such as compression,

verification of contents using digital signatures (to allow untrusted

nodes in a network to cache pages), or encryption.
Wakeup predicates.Applications often want to sleep until a
condition is true. Unfortunately, it may be difficult for an applica-

3. Atomicity: C-FFS performs locking to ensure that its data is tion to express this condition to the kernel. This problem is more
always recoverable and disk writes only occur when metadata prevalent on exokernels because the bulk of OS functionality resides
is internally consistent. in the application.

To solve this problem, Xok provides applications with the ability

4. Implicit updates: C-FFS ensures that certain state transitions to inject wakeup predicates into the kernel. Wakeup predicates are
are implicit on certain actions. Some examples are that mod- hoolean expressions used by applications to sleep until the state of
ification times are updated when file data are changed, and the system satisfies some condition; they are evaluated by the kernel
that renaming or deleting a file updates the name cache.  when an environment is about to be scheduled. The application is

not scheduled if the predicate does not hold.

Predicate evaluation is efficient. Like dynamic packet filters,

k compiles predicates on-the-fly to executable code. The signif-

icant overhead of an address space context switch is eliminated by

evaluating the predicates in the exokernel and pre-translating all
predicate virtual addresses to their associated physical addresses.

When avirtual page referenced in a predicate is unmapped, the phys-

ical page is not marked as free until a new predicate is downloaded

or until the application exits. Furthermore, the implementation of

4.6 Future work wakeup predicates is simple (fewer than 200 lines of commented

code) because careful language design (no loops and easy to under-

Stable storage is the most challenging resource we have multi- stand operations) allows predicates to be easily controlled.

plexed. Future work will focus on two areas. First, we plan to im- Predicates are simple but powerful. Coupled with Xok’s ex-

plement a range of file systems (log-structured file systems, RAID, posure of data structures, they have provided us with a robust

and memory-based file systems), thus testing if the XN interface wakeup facility—none of the new uses of wakeup predicates re-
is powerful enough to support concurrent use by radically different quired changes to Xok. For example, to wait for a disk block to
file systems. Second we will investigate using lightweight protected be paged in, a wakeup predicate can bind to the block’s state and
methods like UDFs to implement the simple protection checks re- wake up when it changes from “in transit” to “resident.” To bound

2. Well-formed updates: C-FFS guarantees UNIX-specific file
semantics: for example, that directories contain legal, aligned
file names.

It is not difficult to implement UNIX protection without sig-
nificantly degrading application power. C-FFS protection is im- X0
plemented mainly by a small number of if-statements rather than
by procedures that limit flexibility. The most intricate operation—
ensuring that files in a directory have unique names—is less than
100 lines of code that scans through a linked list of cached directory
blocks to ensure name uniqueness.

quired by higher-level abstractions. the amount of time a predicate sleeps, it can compare against the
system clock. The composition of multiple predicates allows atomic
5 Overview of Xok/ExOS checking of disjoint data structures.

Access controlUnlike Aegis, Xok performs access control
For the experiments in this paper, we use Xok/ExOS. This section through hierarchically-named capabilities [31]; despite the name,

describes both Xok and ExOS. these capabilities more closely resemble a generalized form of
UNIX user and group ID than traditional capabilities [9]. All Xok
51 Xok calls require explicit credentials. We believe that the combination

) ] of an exokernel interface, hierarchically-named capabilities, and

Xok safely multiplexes the physical resources on Intel x86-based explicit credentials will simplify the implementation of secure ap-
computers. Xok performs this task in a manner similar to the Aegis pications, as we hope to demonstrate in future work.
exokernel, which runs on MIPS-based DECstations [11]. The CPU
is multiplexed by dividing time into round-robin-scheduled slices
with explicit notification of the beginning and the end of a time 5.2 Ex0S1.0
slice. Environments provide the hardware-specific state needed toEXOS is a libOS that supports most of the abstractions found in
run a process (e.g., an exception stack) and to respond to any even#.4BSD. It runs many unmodified UNIX applications, including all
occurring during process execution (e.g., interrupts and exceptions).of the applications that are needed to build the complete system
The network is multiplexed with dynamic packet filters [10]. This = (kernel, ExOS, and applications) on itself. It also runs most shells,
subsection briefly describes the differences between Aegis and Xok.file utilities (wc, grep, Is, vi, etc.), and many networking applica-

Physical memory.Unlike the MIPS architecture, the x86 archi-  tions (telnetd, ftp, etc.). The most salient missing functions are full
tecture defines the page-table structure. Since x86 TLB refills are paging, process swapping, process groups, and a windowing sys-
handled in hardware, this structure cannot be overridden by appli-tem. There is no fundamental reason why these are not supported,
cations. Additionally, since the hardware does not verify that the we simply have not yet had the time to implement or port them. On



Aegis, for instance, ExOS supported full paging to disk and over empty). Sockets communicating on the same machine are currently
the network. implemented using a shared buffer.

The primary goals of ExOS are simplicity and flexibility. To al- Inter-machine sockets are implemented through user-level net-
low applications to override any implementation feature, we made work libraries for UDP and TCP. The network libraries are imple-
the system entirely library based, rather than place objects such asnented using Xok’s timers, upcalls, and packet rings, which allow
process tables in non-customizable servers. As a result, customizaprotected buffering of received network packet,
tion of the resulting system is limited only by an application’s un- File descriptors. File descriptors are small integers used to ac-
derstanding of the system interfaces and by the protection enforcedcess many UNIX resources (e.g., files, sockets, pipes). On ExOS
by shared abstractions—any ExOS functionality can be replaced bythey name entries in a globéle descriptor table which is cur-
application-specific code. rently stored in shared memory. As in the UNIX kernel itself, ExOS

The two primary caveats of the current implementation are that accesses each table element in an object-oriented manner: each
the system is research, not production quality and that it uses sharedesource is associated with a table of pointers to functions imple-
global state for some abstractions. These limitations are not funda-menting each operation (read, write, etc.). However, unlike UNIX,
mental and we do not expect removing either caveat to have a ExOS allows applications to install their own methods.
significant impact on our results. To compensate for the effects of Files.Local files are accessed throughHeES, which uses XN to
shared state on performance, measurements in Sections 6 and @rotect file metadata; remote files are accessed through the Network
include the cost of inserting system calls before all writes to shared File System protocol (NFS) [38]. Both file systems are library based.
state. This represents the overhead of invoking the kernel to checkExOS uses XN'’s buffer cache registry to safely share both C-FFS

writes to shared state. and NFS disk blocks.
UNIX allows different file systems to be attached to its hierarchi-
5.2.1 Implementing UNIX abstractions on Xok cal name space. ExOS duplicates this functionality by maintaining

. . . . . a currently unprotected shared mount table that maps directories
To implement UNIX abstractions in a library, we partitioned most  5m one file system to another.

of the UNIX kernel state and made it private to each process. The
remainder is shared. Most critical shared state (inode table, file sys- : :
tem metadata, page tables, buffer cache, process table, and pipes), g.z.z Shared libraries
protected using Xok’s protections mechanisms. However, for some Since ExOS is implemented as a library, shared libraries are cru-
shared state (the process map, file descriptor table, sockets, TTYsgial. Without shared libraries, every application would contain its
mount table, and system V shared memory table), ExOS uses sharedwn copy of ExOS, wasting memory and making process creation
memory. Using software regions, we plan to make this shared stateexpensive. We employ a simple but primitive scheme for shared
fully protected in the near future. A limited degree of fault isola- libraries. ExOS is linked as a stand-alone executable with its base
tion is provided for these abstractions by mapping shared data ataddress starting at a reserved section of the application’s address
addresses far from the application text and data. space. Its exported symbols are then extracted and stored in an as-
ProcessesThe process mapnaps UNIX process identifiers to ~ sembly file. To resolve calls to library routines, the application links
Xok environment numbers using a shared table. fifoeess table against this assembly file. During process creation the application
records the process identifiers of each process, that of its parent, thés loaded and ExOS maps the library at its indicated address.
arguments with which the process was called, its run status, and the  This organization separates the file that the libOS resides in from
identity of its children. The table is partitioned across application- applications, allowing multiple applications to share the same on-
reserved memory of Xok’s environment structure, which is mapped disk copy and, more importantly, any cached disk blocks from this
readable for all processes and writeable for only the environment's file. Code sharing reduces the size of EXOS executables to roughly
owning process. ExOS uses Xok's IPC to safely update parent andthat of normal UNIX applications. Unlike traditional dynamic link-
child process state. The UNIs (process status) program is im-  ing, procedure calls are no more expensive than for normal code
plemented by reading all the entries of the process table. since they do not require the use of a relocation table.
UNIX provides thefork system call to duplicate the current
process andxecto overlay it with anothefExecis implemented by g Application Performance on Xok
creating a new address space for the new process, loading on deman
the disk image of the process into the new address space, and therThis section shows that unmodified UNIX applications run as fast
discarding the address space that catieelc Implementing fork in on Xok/ExOS as on conventional centralized operating systems. In
a library is peculiar since it requires that a process create a replicafact, because of C-FFS, some applications run considerably faster
of its address space and stathile it is executingTo make fork on Xok/ExOS. We compare Xok/ExOS to both FreeBSD 2.2.2 and
efficient, ExOS uses copy-on-write to lazily create separate copies OpenBSD 2.1 on the same hardware. Xok uses device drivers that
of the parent's address space. ExOS scans through its page tablesre derived from those of OpenBSD. ExOS also shares a large
which are exposed by Xok, marking all pages as copy-on-write source code base with OpenBSD, including most applications and
except those data segment and stack pages thdrtheall itself is most of libc. Compared to OpenBSD and FreeBSD, ExOS has not
using. These pages must be duplicated so as not to generate copyhad much time to mature; we built the system in less than two years
on-write faults while running thferk and page fault handling code.  and moved to the x86 platform only a year ago.
Groups of page table entries are updated at once by batching system Al experiments are performed on 200-MHz Intel Pentium Pro
calls to amortize the system call overhead over many updates. processors with a 256-KByte on-chip L2 cache and 64-MByte of
Interprocess communication.UNIX defines a variety of in-  main memory. The disk system consists of an NCR 815 SCSI con-
terprocess communication primitives: signals (software interrupts troller connecting a fast SCSI chain with one or more Quantum
that can be sent between processes or to a process itself), pipeftlas XP32150 disk drives to the PCI bus (vs440fx PCI chip set).
(producer-consumer untyped message queues), and sockets (diffelReported times are the minimum time of ten trials (the standard
ing from pipes in that they can be established between non-relateddeviations of the total run times are less than three percent).
processes, potentially executing on different machines). The measurements establish two results. First, the base per-
Signals are layered on top of Xok IPC. Pipes are implemented formance of unaltered UNIX applications linked against ExOS is
using Xok's software regions, coupled with a “directed yield” to the  comparable to OpenBSD and FreeBSD. Untrusted libOSes on an
other party when itis required to do work (i.e., if the queue is full or  exokernel can support unchanged UNIX applications with the same



performance as centralized monolithic UNIX operating systems.

Second, because of ExOS's high-performance file system, some BenChmarlll(ﬂ Desc”ﬁt'on (application) = k
unaltered UNIX applications perform better on ExOS than on Free-  |-2PY sSmallfile | copy the compressed archived source tree (£p)
BSD and OpenBSD. Applications do not need to be re-written or Uncompress | uncompress the archive (gunzip)

A ) Copy large file | copy the uncompressed archive (cp)
even modified in order to take advantage of an exokernel. Unpack file Unpack archive (pax)

Itis important to note that a s!"fﬁ_Ciemly mOti\_/at_ed kernel pro- Copy large tree| recursively copy the created directories (cp),|
grammer can implement any optimization that is implemented in Diff large tree | compute the difference between the trees (djff)
an extensible system. In fact, a member of our research group, ["Compile compile source code (gcc)

Costa Sapuntzakis, has implemented a version of C-FFS within [ Delete files delete binary files (rm)
OpenBSD. Extensible systems (and we believe exokernels in par- Pack tree archive the tree (pax)

ticular) make these optimizations significantly easier to implement Compress compress the archive tree (gzip)
than centralized systems do. For example, porting C-FFS to Open- | Delete delete the created source tree (rm)

BSD took more effort than designing C-FFS and implementing it

as a library file system. The experiments below demonstrate that Table 1: The I/O-intensive workload installs a large application (the
by using unprivileged application-level resource management, any lcc compiler). The size of the compressed archive file for Iccis 1.1
skilled programmer can implement useful OS optimizations. The MByte.

extra layer of protection required to make this application-level

management safe costs little.
159 = X0k/EXOS L Baas
= OpenBSD/C-FFS ———

6.1 Base system performance =OpenBSD

=FreeBSD
We test ExOS’s base performance by running the 1/O-intensive
benchmarks from Table 1 over ExOS’s library implementation of
C-FFS on top of XN and comparing it to OpenBSD with a C-FFS
file system. The workload in the experiments represents unmodi-
fied UNIX programs involved with installing a software package:
copying a compressed archive file, uncompressing it, unpacking it
(which results in a source tree), copying the resulting tree, com-
paring the two trees, compiling the source tree, deleting binaries,
archiving the source tree, compressing the archive file, and deleting
the source tree (see Table 1). ol | Tl

Figure 2 shows the performance of these applications over cp gunzip cp pax cp diff gcc rm pax gzip rm
Xok/ExOS, OpenBSD/C-FFS, OpenBSD, and FreeBSD. To es- _. unmodified UNIX Programs o
tablish base system performance, we compare Xok/ExOS with Figure 2: Performance of unmodified UNIX applications.
OpenBSD/C-FSS, since they both use a C-FFS file system. The tota’XOK/EXOS and OpenBSD/C-FFS use a C-FFS file system while
running time for Xok/ExOS is 41 seconds and for OpenBSD/C-FFS Free/OpenBSD use their native FFS file systems. Times are in sec-
is 51 seconds. Since ExOS and OpenBSD/C-FFS use the same typ@nds-
of file system, one would expect that ExOS and OpenBSD perform
equally well. As can be seen in Figure 2, Xok/ExOS performance
is indeed comparable to OpenBSD/C-FFS on eight of the 11 ap-
plications. On three applications (pax, cp, diff), Xok/ExOS runs
considerably faster (though we do not yet have a good explanation
for this).

From these measurements we conclude that, even though ExO
implements the bulk of the operating system at the application level,
common software development operations on Xok/ExOS perform .
comparably to OpenBSD/C-FFS. They demonstrate that—at least®-3 ~ The cost of protection
for this common domain of applications—an exokernel's flexibility |n this section, we investigate the cost of protection on Xok/ExOS.
can be provided for free: even without aggressive optimizations As discussed in the previous section, we have not yet completed
ExOS’s performance is comparable to that of mature monolithic the protected implementation of all data structures. ExOS stores

=
S}
n

Runtime (seconds)
(9]

BSD takes 11.5 seconds. The difference in performance on MAB is
less profound than on the 1/0O-intensive benchmark, because MAB
stresses fork, an expensive function in Xok/ExOS. ExOS's fork per-
formance suffers because Xok does not yet allow environments to

hare page tables. Fork takes six milliseconds on ExOS, compared
o0 less than one millisecond on OpenBSD.

systems. The cost of low-level multiplexing is negligible. some tables in writeable global shared memory, including the file
descriptor table. In order for our measurements to estimate the
6.2 Invisible optimization using C-FFS performance of a fully protected ExOS, we inserted three system

. . . . calls before every write to these shared tables. All measurements
These comparisons concentrate on I/O intensive operations thatreported in Section 6 include these extra calls

_exploit_ thg C";FS Iikbrgry filisgste%nb[lﬁl]. l\)Ne again use th; I/k?c_: To measure the costs of all protection we ran the benchmarks

intensive benchmarks described in Table 1, but now compare Xok/C- P :

FFS with OpenBSD and FreeBSD. As Figure 2 showsp unaltered presented in Figure 2 without XN or any of the extra system calls.

UNIX applications can run si nificarﬁl faster on top of Xék/ExOS This reduces the overall number of Xok system calls from 300,000
pp 9 y P : . 1081,000, but only changes the total running time from 41.1 seconds

Xok/ExOS completes all benchmarks in 41 seconds, 19 seconds :
. ' to 39.7 seconds. Real workloads are dominated by costs other than
faster than FreeBSD and OpenBSD. On eight of the eleven benCh'system call overhead.

marks Xok/ExOS performs better than Free/OpenBSD (in ane case To investigate the cost of protection in more detail, we measure

gﬁeo;firt: éag:é (;)ir;c;urs)t.elrznxos s performance improvements are g ¢oqt of the protection mechanisms described in Section 3. We do
Y : so by comparing two implementations of pipes (see Table 2). The

We also ran the Modified Andrew Benchmark (MAB) [33]. firsti . ;
- _firstimplementation places all data in shared memory and performs
On this benchmark, Xok/ExOS takes 11.5 seconds, OpenBSD/C no sanity checking. The second implementation uses software re-

FFS takes 12.5 seconds, OpenBSD takes 14.2 seconds, and Fre%’ions to protect pipe data and installs a wakeup predicate on every



files are in core (becausecp does not touch the data) or on disk

E:tgcnir;ir_lgyte fgared memory g(r)otection gfenBSD (becausexcp issues disk schedules with a minimum number of
Latency 8-Kbyte| 150 148 160 seeks and the largest contiguous ranges of disk blocks).

The fact that the file system is an application library allows us
both to have integration when appropriate and to craft new abstrac-
tions as needed. This latter ability is especially profitable for the disk
both because of the high cost of disk operations and because of the
demonstrated reluctance of operating systems vendors to provide

read (something unnecessary even with mutual distrust). The results!Seful, simple improvements to their interfaces (e.g., prefetching,
show that even with gratuitous use of Xok's protection mechanisms, asynchronous reads and writes, fine-grained disk restructuring and
user-level pipes can still outperform OpenBSD. sync” operations).

7.3 The Cheetah HTTP/1.0 Server

The exokernel architecture is well suited to building fast servers
This section demonstrates some of the interesting possibilities in (e.g., for NFS servers or web servers). Server performance is cru-
functionality and performance enabled by application-level resource cial to client/server applications [23], and the 1/O-centric nature of
management. We report on a binary emulator, a “zero-touch” file- servers makes operating system-based optimizations profitable.
copy program, and the Cheetah web server. Because XN was de- e have developed an extensible 1/O library (XIO) for fast
veloped recently, the applications in this section were not measuredservers and a sample application that uses it, the Cheetah HTTP

Table 2: The cost of a local-trust implementation of pipes (times in
microseconds).

7 Exploiting Extensibility in Applications

with XN. server. This library is designed to allow application writers to exploit
domain-specific knowledge and to simplify the construction of high-
7.1 Fast, simple binary emulation performance servers by removing the need to “trick” the operating

system into doing what the application requires (e.g., Harvest [7]
stores cached pages in multiple directories to achieve fast name
lookup).

An HTTP server’s task is simple: given a client request, it finds
the appropriate document and sends it. The Cheetah Web server
performs the following set of optimizations as well as others not
listed here.

Merged File Cache and Retransmission PooCheetah avoids
allin-memory data touching (by the CPU) and the need for a distinct

same address space as the emulated program, and consequently do% P retransmission pool by transmitting file data directly from the

not need any privilege. Measurements show that most programs one:(:%afcig usg:g g:zct?;?g%i?eﬂ?;:;fgﬁ:w:n%rgghi?;ii?;:gr\'\;'tg
the emulator run only a few percent slower than the same programs ) ' y

running directly under Xok/ExOS. the client directly from the file cache without CPU copy operations.

A counter-intuitive result is that, because the emulator runs in (Pak?]toi\lflehgvs-gla?soegsgcaictlglest tl\?lgrmilr?ugrg?e)i]tgh exoloits knowl-
the same address space as EXOS, it is possible to run emulate%d e of its gr-re uest state transi?ior?s to reduce tFr)]e number of /O
programs faster than on their native OS. For example, the trivial 9 P q

“ s 1 actions itinitiates. For example, it avoids sending redundant control
et process id” system call takes 270 cycles on OpenBSD and 100 ; " . .
c?/clé)s on the emtillator running on Xok/)léxOS (on ngO-MHz Intel pac_lﬁett)s b}l/);jelaymg ACstlfnhcllent HETP requests,_lf,rl]r_lce It _kn_ows
A S it will be able to piggy-back them on the response. This optimiza-
Pentium). This difference comes from the fact that the emulator . """ . ;
replaces) OpenBSD system calls with procedure calls into Ex0S. 107 is particularly valuable for small document sizes, where the
ExOS can omit many expensive checks that UNIX must perform. reduction represents a substantial fraction (e.g., 20%) of the total

. . - .. number of packets.
in order to guard against application errors (on an exokernel, if ; . .

e . HTML-based File Grouping. Cheetah co-locates filesincluded
an application passes the wrong arguments to a libOS, only the. . L h
application will be affected). in an HTML document by allocating them in disk blocks adjacent

to that file when possible. When the file cache does not capture
“ - . the majority of client requests, this extension can improve HTTP
7.2 XCP: a“zero-touch” file copying program throughput by up to a factor of two.

xcp is an efficient file copy program. It exploits the low-level disk Figure 3 shows HTTP request throughput as a function of the re-
interface by removing artificial ordering constraints, by improv- duested document size for five servers: the NCSA 1.4.2 server [32]
ing disk scheduling through large schedules, by eliminating data running on OpenBSD 2.0, the Harvest cache [7] running on Open-

touching by the CPU, and by performing all disk operations asyn- BSD 2.0, the base socket-based server running on OpenBSD 2.0
chronously. (i.e., our HTTP server without any optimizations), the base socket-

Given a list of filesxcp works as follows. First, it enumerates  based server running on the Xok exokernel system (i.e., our HTTP
and sorts the disk blocks of all files and issues large, asynchronousserver without any optimizations with vanilla socket and file de-
disk reads using this schedule. (If multiple instance@# run scriptor implementations layered over X10), and the Cheetah server
concurrently, the disk driver will merge the schedules.) Second, it running on the Xok exokernel (i.e., our HTTP server with all opti-
creates new files of the correct size, overlapping inode and disk Mizations enabled).
block allocation with the disk reads. Finally, as the disk reads com- ~ Figure 3 provides several important pieces of information. First,
plete, it constructs large writes to the new disk blocks using the ourbase HTTP server performs roughly as well as the Harvest cache,
buffer cache entries. This strategy eliminates all copies; the file is Which has been shown to outperform many other HTTP server im-
DMAed into and out of the buffer cache by the disk controller—the plementations on general-purpose operating systems. Both outper-
CPU never touches the data. form the NCSA server. This gives us a reasonable starting point

XCP is a factor of three faster than the copy prograzm) (on for evaluating extensions that improve performance. Second, the
Xok/ExOS that uses UNIX interfaces, irrespective of whether all default socket and file system implementations built on top of XIO

Xok provides facilities to efficiently reroute specific INT instruc-
tions. We have used this ability to build a binary emulator for Open-
BSD applications by capturing the system calls made by emulated
OpenBSD programs. This binary emulator is useful for OpenBSD
programs for which we do not have source code. Although the
emulator is only partially completed (it supports 90 of the approxi-
mately 155 OpenBSD system calls), initial results are promising: it
has been able to execute large programs such as Mosaic.

The main interesting feature of the emulator is that it runs in the
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Figure 3: HTTP document throughput as a function of the doc- Figure 4: Measured global performance of Xok/ExOS (the first
ument size for several HTTP/1.0 serveCSA/BSD represents  bar) and FreeBSD (the second bar), using the first application pool.
the NCSA/1.4.2 server running on OpenB3tarvest/BSDrepre- Times are in seconds and on a log scalenber/numberefers to the
sents the Harvest proxy cache running on OpenBSdzket/BSD the total number of applications run by the script and the maximum
represents our HTTP server using TCP sockets on OpenBSD.number of jobs run concurrentlyotal is the total running time of
Socket/Xok represents our HTTP server using the TCP socket each experimenfylax is the longest runtime of any process in a
interface built on our extensible TCP/IP implementation on the given run (g|\/|r|g the W0r3[|atencyMin is the minimum.
Xok exokernel Cheetah/Xokrepresents the Cheetah HTTP server,
which exploits the TCP and file system implementations for speed.
exokernel can compare to any centralized system, it does offer a
useful relative metric.
perform Significantly better than the OpenBSD implementations_of The space of possib|e combinations of app”cations to run is
the same interfaces (by 80-100%). The improvement comes mainly jarge. The experiments use randomization to ensure we get a rea-
from simple (though generally valuable) extensions, such as packetsonable sample of this space. The inputs are a set of applications to
merging, application-level caching of pointers to file cache blocks, pick from, the total number to run, and the maximum number that
and protocol control block reuse. o can be running concurrently. Each experiment maintains the num-
Third, and most importantly, Cheetah significantly outperforms per of concurrent processes at the specified maximum. The outputs
the servers that use traditional interfaces. By exploiting Xok's exten- are the total running time, giving throughput, and the time to run

sibility, Cheetah gains a four times performance improvement for each application. Poor interactive performance will show up as a
small documents (1 KByte and smaller), making it eight times faster high minimum latency.

than the best performance we could achieve on OpenBSD. Further- ~ The first application pool includes a mix of I/O-intensive and
more, the large document performance for Cheetah is limited by Cpu-intensive programs: pack archive (pax -w), search for a word
the available network bandwidth (three 100Mbit/s Ethernets) rather in a large file (grep), compute a checksum many times over a small
than by the server hardware. While the socket-based implementa-get of files (cksum), solve a traveling salesman problem (tsp), solve
tion is limited to only 16.5 MByte/s with 100% CPU utilization, ijteratively a large discrete Laplace equation using successive over-
Cheetah delivers over 29.3 MByte/S with the CPU idle over 30% of relaxation (Sor)l count words (WC), Comp”e (g(:c)l compress (gz|p)'
the time. The extensibility of ExOS's default unprivileged TCP/IP and uncompress (gunzip). For this experiment, we chose applica-
and file system implementations made it possible to achieve thesetions on which both Xok/ExOS and FreeBSD run roughly equiva-
performance improvements incrementally and with low complexity. |ently. Each application runs for at least several seconds and is run
The optimizations performed by Cheetah are architecture inde- in a separate directory from the others (to avoid cooperative buffer
pendent. In Aegis, Cheetah obtained similar performance improve- cache reuse). The pseudo-random number generators are identical

ments over Ultrix web servers [24]. and start with the same seed, thus producing identical schedules.
The applications we chose compete for the CPU, memory, and the
8 Global Performance disk.

Figure 4 shows on a log scale the results for five different ex-

Xok/ExOS's decentralization of resource management allows the periments: seven jobs with a maximum concurrency of one job
performance of individual applications to be improved, but Xok/ through 35 jobs with a maximum concurrency of five jobs. The
ExOS must also guarantee good global performance when runningresults show that an exokernel system can achieve performance
multiple applications concurrently. The experiments in this section roughly comparable to UNIX, despite being mostly untuned for
measure the situation where the exokernel architecture seems poglobal performance.
tentially weak: under substantial load where selfish applications are ~ With a second application pool, we examine global performance
consuming large resources and utilizing I/O devices heavily. The when specialized applications (emulated by applications that bene-
results indicate that an exokernel can successfully reconcile localfit from C-FFS’s performance advantages) compete with each other
control with global performance. and non-specialized applications. This pool includes tsp and sor

Global performance has not been extensively studied. We usefrom above, unpack archive (pax -r) from Section 6, recursive copy
the total time to complete a set of concurrent tasks as a measure of(cp -r) from Section 6, and comparison (diff) of two identical 5 MB
system throughput, and the minimum and the maximum latency of files. The pax and cp applications represent the specialized applica-
individual applications as a measure of interactive performance. For tions.
simplicity we compare Xok/ExOS’s performance under high load to Figure 5 shows on a log scale the results for five experiments:
that of FreeBSD; in these experiments, FreeBSD always performs seven jobs with a maximum concurrency of one job through 35 jobs
better than OpenBSD, because of OpenBSD’s small, non-unified with a maximum concurrency of 5 jobs. The results show that global
buffer cache. While this methodology does not guarantee that an performance on an exokernel system does not degrade even when
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Because exposed data structures do not constitute a well-defined
ZU:;' ] API, software that directly relies on them (e.g., the hardware ab-
straction layer in a libOS) may need to be recompiled or modified
if the kernel changes. This can be seen as a disadvantage. On the
other hand, code affected by changes in exposed data structures will
typically reside in dynamically-linked libOSes, so that applications
need not concern themselves with these changes. Moreover, most
improvements that would require kernel modification on a tradi-
tional operating systems need only effect libOSes on exokernels.
This is one of the main advantages of the exokernel, as libOSes can
be modified and debugged considerably more easily than kernels.
Finally, we expect most changes to the exokernel proper to be along
the lines of new device drivers or hardware-oriented functionality,
711 1412 21/3 28/4 35/5 which expose new structures rather than modify existing ones.
Xok/ExOS and FreeBSD In the end, some aggressive applications may not work across
Figure 5: Measured global performance of Xok/ExOS (the firstbar) all versions of the exokernel, even if they are dynamically linked.
and FreeBSD (the second bar), using the second application pool.-This problem is nothing new, however. A number of UNIX pro-
Methodology and presentation are as described for Figure 4. grams such as top, gated, Isof, and netstat already make use of
private kernel data structures through the kernel memory device
/dev/kmem . Administrators have simply learned to reinstall these
some applications use resources aggressively. In fact, the relativeprograms whenever major kernel data structures change.
performance difference between FreeBSD and Xok/ExOSincreases  The use of “wakeup predicates” has forcefully driven home the
with job concurrency. advantages of exposing kernel data structures. Frequently, we have
The central challenge in an exokernel system isexgorcing required unusual information about the system. In all cases, this
a global system policy but, ratheferivingthe information needed  information was already provided by the kernel data structures.
to decide what enforcement involves and doing so in such a way The CPU interface. The combination of time slices, initia-
that application flexibility is minimally curtailed. Since an exo-  tion/termination upcalls, and directed yields has proven its value
kernel controls resource allocation and revocation, it has the power repeatedly. (Subsequent to our work, others have found these prim-
to enforce global policies. Quota-based schemes, for instance, cartives useful [14].) We have used the primitives for inter-process
be trivially enforced using only allocation denial and revocation. communication optimization (e.g., two applications communicat-
Fortunately, the crudeness of successful global optimizations al- ing through a shared message queue can yield to each other), global
lows global schemes to be readily implemented by an exokernel. gang-scheduling, and robust critical sections (see below).
For example, Xok currently tracks global LRU information that Libraries are simpler than kernels. The “edit, compile, debug”
applications can use when deallocating resources. cycle of applications is considerably faster than the “edit, compile,
We believe that an exokernel can provide global performance reboot, debug” cycle of kernels. A practical benefit of placing OS
superiorto current systems. First, effective local optimization can functionality in libraries is that the “reboot” is replaced by “relink.”
mean there are more resources for the entire system. Second, ajccumulated over many iterations, this replacement reduces devel-
exokernel gives application writers machinery to orchestrate inter- oppment time substantially. Additionally, the fact that the library is
application resource management, allowing them to perform domain-isolated from the rest of the system allows easy debugging of ba-
specific global optimizations not possible on current centralized sjc abstractions. Untrusted user-level servers in microkernel-based
systems (e.g., the UNIX “make” program could be modified to systems also have this benefit.
orchestrate the complete build process). Third, an exokernel can
unify the many space-partitioned caches in current systems (e.g.,g 2 Costs
the buffer cache, network buffers, etc.). Fourth, since applications ~"
can know when resources are scarce, they can make better use dfxokernels are not a panacea. This subsection lists some of the costs
resources when layering abstractions. For example, a web serveive have encountered.
that caches documents in virtual memory could stop caching docu- ~ Exokernel interface design is not simpleThe goal of an exo-

ments when its cache does not fit in main memory. Future researchkernel system is for privileged software to export interfaces that
will pursue these issues. let unprivileged applications manage their own resources. At the

same time, these interfaces must offer rich enough protection that
libOSes can assure themselves of invariants on high-level abstrac-
tions. It generally takes several iterations to obtain a satisfactory

Over the past three years, we have built three exokernel systems/nterface, as the designer struggles to increase power and remove

We distill our experience by discussing the clear advantages, theunnecessary functionality while still providing the necessary level
costs, and lessons learned from building exokernel systems. of protection. Most c_)f our major exokernel interfaces have gone
through multiple designs over several years.

Information loss. Valuable information can be lost by imple-
9.1 Clear advantages menting OS abstractions at application level. For instance, if virtual
Exposing kernel data structures.Allowing libOSes to map kernel memory and the file system are completely at application level,
and hardware data structures into their address spaces is a powerfuhe exokernel may be unable to distinguish pages used to cache
extensibility mechanism. (Of course, these structures must not con-disk blocks and pages used for virtual memory. Glaze, the Fugu
tain sensitive information to which the application lacks privileges.) exokernel, has the additional complication that it cannot distinguish
The benefits of mapping data structures are two-fold. First, exposedsuch uses from the physical pages used for buffering messages [29].
data structures can be accessed without system call overhead. Mor&requently-used information can often be derived with little effort.
importantly, however, mapping the data structures directly allows For example, if page tables are managed by the application, the
libOSes to make use of information the exokernel did not anticipate exokernel can approximate LRU page ordering by tracking the in-
exporting. sertion of translations into the TLB. However, at the very least, this
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inference requires thought. trust application code. For example, packet filters are downloaded
Self-paging libOSesSelf-paging is difficult (only a few com- code fragments used by applications to claim incoming network
mercial operating systems page their kernel). Self-paging libOSes packets. Because they are in the kernel, the kernel can inspect them
are even more difficult because paging can be caused by externaknd verify that they do not steal packets intended for other applica-
entities (e.g., the kernel touching a paged-out buffer that a libOS tions. The alternative, asking each application if it claims a given
provided). Careful planning is necessary to ensure that libOSes canpacket, is clearly unworkable; the kernel would not know how deci-
quickly select and return a page to the exokernel, and that there issions were made and could not guarantee their correctness. Another
a facility to swap in processes without knowledge of their internals example is the use of downloaded code for metadata interpretation:

(otherwise virtual memory customization will be infeasible). since the kernel can ensure that UDFs are deterministic and do not
change, it can trust their output without having to understand what
9.3 Lessons they do.

Provide space for application data in kernel structuresLibOSes .
are often easier to develop if they can store shared state in kernel date;l-o Conclusion
structures. In particular, this ability can simplify the task of locating
shared state and often avoids awkward (and complex) replication of
indexing structures at the application level. For example, Xok lets
libOSes use the software-only bits of page tables, greatly simplify-
ing the implementation of copy on write.

Fast applications do not require good microbenchmark per-
formance. The main benefit of an exokernel is not that it makes
primitive operations efficient, but that it gives applications control
over expensive operations such as 1/O. It is this control that gives
order of magnitude performance improvements to applications, not
fast system calls. We heavily tuned Aegis to achieve excellent mi-
crobenchmark performance. Xok, on the other hand, is completely
untuned. Nevertheless, applications perform well.

Inexpensive critical sections are useful for LibOSesn tra-
ditional OSes, inexpensive critical sections can be implemented by
disabling interrupts [3]. ExOS implements such critical sections by
disabling software interrupts (e.g., time slice termination upcalls). Acknowledgments
Using critical sections instead of locks removes the need to com-

municate to manage a lock, to trust software to acquire and releasepyer the last three years many people have contributed to the exo-
locks correctly, and to use complex algorithms to reclaim a lock kernel project. In particular, we thank Deborah Wallach and Doug
when a process dies while still holding it. This approach has proven wyatt for their many contributions. We also thank Josh Cates, Erik
to be similarly useful on the Fugu multiprocessor; it is the basis of Nygren, Constantine Sapuntzakis, Yonah Schmeidler, and Elliot
Fugu's fast message passing. ] Waingold for porting drivers and applications to Xok/ExOS. We
User-level page tables are complext page tables are migrated  thank Eddie Kohler for his help with writing this paper. Finally,
to user level (as on Aegis), a concerted effort must be made to en-ye thank Josh Cates, John Chapin, Matt Frank, John Guttag, An-
sure that the.user’s TLB refill handler can run in unqsual situations. thony Joseph, Hank Levy (our shepherd), Erik Nygren, Max Po-
The reason is not performance, but that the naming context pro-|etto, Deborah Wallach, David Wetherall, Emmett Witchel, and the

vided by virtual memory mappings is a requirement for most useful anonymous referees for their careful reading of earlier versions of
operations. For example, in the case of downloaded code run in anthjs paper and their valuable feedback.

interrupt handler, if the kernel is not willing to allow application
code to service TLB misses then there are many situations where
the code will be unable to make progress. User-level page tablesReferences
made the implementation of libOSes tricky on Aegis; since the x86
has hardware page tables, this issue disappeared on Xok/ExOS.

This paper evaluates the exokernel architecture proposed in [11].
It shows how we built an exokernel system that separates pro-
tection from management to give untrusted software control over
resource management. Our exokernel system gives significant per-
formance advantages to aggressively-specialized applications while
maintaining competitive performance on unmodified UNIX appli-
cations, even under heavily multitasked workloads. Exokernels also
simplify the job of operating system development by allowing one
library operating system to be developed and debugged from an-
other one running on the same machine. The advantages of rapid
operating system development extend beyond specialized niche ap-
plications. Thus, while some questions about the full implications
of the exokernel architecture remain to be answered, it is a viable
approach that offers many advantages over conventional systems.
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