
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

DuoAI: Fast, Automated Inference
of Inductive Invariants for Verifying

Distributed Protocols
Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh, Columbia University

https://www.usenix.org/conference/osdi22/presentation/yao

DuoAI: Fast, Automated Inference of Inductive Invariants
for Verifying Distributed Protocols

Jianan Yao
Columbia University

Runzhou Tao
Columbia University

Ronghui Gu
Columbia University

Jason Nieh
Columbia University

Abstract
Distributed systems are complex and difficult to build correctly.
Formal verification can provably rule out bugs in such systems,
but finding an inductive invariant that implies the safety prop-
erty of the system is often the hardest part of the proof. We
present DuoAI, an automated system that quickly finds induc-
tive invariants for verifying distributed protocols by reducing
SMT query costs in checking invariants with existential quan-
tifiers. DuoAI enumerates the strongest candidate invariants
that hold on validate states from protocol simulations, then
applies two methods in parallel, returning the result from the
method that succeeds first. One checks all candidate invariants
and weakens them as needed until it finds an inductive invari-
ant that implies the safety property. Another checks invariants
without existential quantifiers to find an inductive invariant
without the safety property, then adds candidate invariants with
existential quantifiers to strengthen it until the safety property
holds. Both methods are guaranteed to find an inductive in-
variant that proves desired safety properties, if one exists, but
the first reduces SMT query costs when more candidate invari-
ants with existential quantifiers are needed, while the second
reduces SMT query costs when few candidate invariants with
existential quantifiers suffice. We show that DuoAI verifies
more than two dozen common distributed protocols automat-
ically, including various versions of Paxos, and outperforms
alternative methods both in the number of protocols it verifies
and the speed at which it does so, including solving Paxos more
than two orders of magnitude faster than previous methods.

1 Introduction

The world relies on distributed systems, but these systems are
increasingly complex and hard to design and implement cor-
rectly. To address this problem, developers are starting to turn
to formal verification techniques to prove the correctness of dis-
tributed systems [11, 20, 35]. This involves formally verifying
that desired safety properties hold for the distributed protocol.
A safety property is an invariant that should hold true at any

point in a system’s execution. It ensures the protocol does not
reach invalid or dangerous states. For example, the safety prop-
erty for a distributed lock protocol [11] is that no two nodes
in the system hold a lock at the same time. The proof requires
finding an invariant that implies the safety property, then prov-
ing that it is inductive. An invariant is inductive if it holds for
all initial states of the system, and is preserved on all valid
transitions so that it holds for any reachable state of the system.

Unfortunately, finding an inductive invariant is often the
hardest part of the proof [21]. Invariants can be expressed as
logical formulas consisting of universal (∀) and existential
(∃) quantifiers with a certain number of variables, and a set of
logical relations among the variables. Recent work has focused
on automating the process of finding an inductive invariant,
but has various limitations. I4 [21] was the first to automate the
process, but provides no guarantee that it can find the inductive
invariant and does not work for invariants with existential
quantifiers. Our previous work DistAI [38] provides speed ad-
vantages over I4 and a guarantee of finding an ∃-free inductive
invariant if one exists, but also does not work for invariants with
existential quantifiers. FOL-IC3 [13] was the first to handle
existential quantifiers, but is inefficient due to its heavy use
of expensive SMT queries. It often fails to find invariants for
protocols that can be solved by other approaches such as I4 and
DistAI. SWISS [10] can successfully find an inductive invari-
ant for Paxos, but does not work for more complex protocols
such as stoppable Paxos [27]. It fails or is much slower than I4
and DistAI for many protocols without existential quantifiers.

We present DuoAI, an automated system to quickly find
inductive invariants for verifying distributed protocols, with
and without existential quantifiers, including complex versions
of Paxos. Even though a distributed protocol may be used
in very large systems, its invariants are likely to be concise,
as protocols need to be designed and understood by humans
to be correct. As a result, DuoAI operates in formula space
and considers smaller formulas first to enumerate candidate
invariants, which are then checked by an SMT solver. Formula
size is defined by a maximum number of quantified variables (a
variable and its quantifier ∀ or ∃) and relations. If DuoAI does

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 485

not succeed with smaller formulas, it increases the formula
size and repeats the process until an inductive invariant is
found. Although the formula space within a given formula
size is finite, checking all possible invariants for even a
modest size formula is prohibitively expensive, especially
since SMT solvers are particularly inefficient at checking
invariants with existential quantifiers. It is crucial to avoid
too many SMT queries and SMT queries that are too complex.
Based on this observation, DuoAI introduces and combines
new techniques that avoid the limitations of SMT solvers in
checking invariants with existential quantifiers.

First, DuoAI runs protocol simulations at various instance
sizes and logs the reached protocol states, which we call
samples. Instance size refers to the size of distributed system
(number of nodes, packets, etc.) running the protocol. These
simulations are fast to execute. DuoAI directly checks
candidate invariants against the samples, pruning those that
do not hold to reduce the number of invariants checked by an
SMT solver. To do this systematically, DuoAI introduces the
minimum implication graph, which for a given invariant, shows
all its implied weaker invariants. It then selects the strongest
candidate invariants in the graph that hold for the samples.

Second, DuoAI combines the strongest candidate invariants
with the safety property and feeds them to an SMT solver
to check if the conjunction is inductive. If the check fails, it
monotonically weakens the invariants using the graph and
repeats the process until an inductive invariant is found. If
the number of candidate invariants is not too large and most
are required in the final solution, this method will be effective
at reducing the number of SMT queries by feeding all of the
candidate invariants to the SMT solver at once.

Third, DuoAI feeds the strongest candidate universal
invariants, those without existential quantifiers, from the graph
to an SMT solver to check if the conjunction, without the
safety property, is inductive. If the check fails, it monotonically
weakens the invariants using the graph, only considering
candidate universal invariants, and repeats the process until the
conjunction is inductive. We call this set of inductive ∀-only
invariants the universal core. It then strengthens the universal
core by iteratively adding a small subset of the strongest
candidate invariants with existential quantifiers from the graph
until the conjunction with the safety property is inductive. If
the number of candidate invariants with existential quantifiers
is large and most are not in the final solution, this method will
be effective at avoiding too complex SMT queries, because
it only feeds a few invariants to the SMT solver each time.

DuoAI runs these two methods for refining candidate
invariants in parallel, a top-down refinement that weakens the
candidates and a bottom-up refinement that strengthens the
candidates, returning the result from the method that succeeds
first. We prove that both methods are guaranteed to find the
inductive invariant that proves the desired safety property,
but they may have very different running times and resource
requirements depending on the distributed protocol being

1 type value
2 type quorum
3 type node
4

5 relation vote(N1:node , N2:node)
6 relation voted(N:node)
7 relation leader(N:node)
8 relation decided(N:node , V:value)
9 relation member(N:node , Q:quorum)

10 axiom forall
Q1, Q2. exists N. member(N, Q1) & member(N, Q2)

11

12 after init {
13 voted(N) := false;
14 vote(N1, N2) := false;
15 leader(N) := false;
16 decided(N, V) := false;
17 }
18

19 action cast_vote(n1: node , n2: node) = {
20 require ~voted(n1);
21 vote(n1, n2) := true;
22 voted(n1) := true;
23 }
24

25 action become_leader(n: node , q: quorum) = {
26 require forall N. member(N, q) -> vote(N, n);
27 leader(n) := true;
28 }
29

30 action decide(n:node , v: value) = {
31 require leader(n);
32 require forall V. ~decided(n, V);
33 decided(n, v) := true;
34 }
35

36 invariant decided(N1,V1) & decided(N2,V2) -> V1=V2

Figure 1: The simplified consensus protocol written in Ivy. Capital-
ized variables are implicitly quantified. For example, Line 16 means
∀N :node,V :value. decided(N,V) := f alse. “~” stands for negation.

verified. Using both methods together provides the best of
both worlds in addressing the inefficiencies of SMT solvers.

We evaluated DuoAI using 27 widely-used distributed
protocols in a head-to-head comparison against other ap-
proaches, including I4, DistAI, FOL-IC3, and SWISS. DuoAI
outperforms all of the other approaches in terms of both the
number of protocols for which it finds an inductive invariant
and the speed at which it does so. DuoAI solves Paxos more
than two orders of magnitude faster than any other approach,
and is the only system that can solve more complex versions of
Paxos including multi-Paxos, stoppable Paxos, and fast Paxos.

2 Overview

We use a simplified consensus protocol as an example to
show how DuoAI works. Figure 1 shows the protocol written in
Ivy [28], a language and tool for specifying, modeling, and ver-
ifying distributed protocols built on top of the Z3 SMT solver.
Each node can vote for another node to be the leader, and when
a node receives votes from a quorum of nodes, it can become
the leader and decide on a value. The protocol state at any mo-
ment is represented by five relations (Lines 5-9). vote(n1,n2)

486 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

indicates whether node n1 has voted for node n2. voted(n)
indicates whether node n has ever casted a vote. leader(n) in-
dicates if n is the leader among nodes. decided(n,v) indicates
whether node n has decided on value v. member(n,q) indicates
if node n belongs to quorum q, where each quorum is a set of
nodes. The axiom (Line 10) dictates a property of the member
relation: any two quorums of nodes must have at least one node
in common. After initialization (Lines 13-16), the protocol
can non-deterministically transition from one state to another
as described by the three actions cast_vote, become_leader,
and decide (Lines 19-34). For example, cast_vote(n1,n2) lets
a node n1 vote for another node n2, under the precondition
that n1 has not voted before (Line 20). Then the protocol
will transition to a new state where vote(n1,n2) = true and
voted(n1) = true. Finally, the safety property (Line 36)
encodes the desired property of correctness of the protocol
that the system cannot decide on two different values.

The safety property is an invariant of the protocol, but is not
inductive as taking an action from a state satisfying the safety
property may result in a new state that breaks the safety prop-
erty. To verify the protocol, we need four additional invariants:

∀N1,N2 :node. vote(N1,N2)→voted(N1) (1)

∀N1,N2,N3 :node. vote(N1,N2)∧vote(N1,N3)→N2=N3 (2)

∃Q :quorum. ∀N1,N2 :node.

leader(N1)∧member(N2,Q)→vote(N2,N1) (3)

∀N :node.V :value. decided(N,V)→ leader(N). (4)

The first invariant says that if a node has voted for another node,
then it must be recorded as voted in the protocol. The second
says that one node cannot vote for two different nodes. The
third says that a leader must be endorsed by a quorum of nodes.
More specifically, we can find a quorum Q that every node N2
in the quorum must have voted for the leader N1. The fourth
says that only a leader can decide on a value. The conjunction
of the four invariants and the safety property is inductive.

To find this inductive invariant, DuoAI simulates the proto-
col using different instance sizes and logs the samples. It then
builds a minimum implication graph,a small fragment of which
is shown in Figure 2. The full graph for simplified consensus
has over 35K nodes and 170K edges. Nodes represent formulas
and edges represent implication between formulas. A stronger
formula will have a directed edge to an implied weaker formula.
DuoAI enumerates possible candidate invariants following the
graph and adds it to the candidate invariant set if it holds on the
samples. For example, DuoAI checks the root node in Figure 2
and it does not hold on the samples. DuoAI then checks its
implied weaker formulas, the two nodes in the second layer,
iteratively going down the graph. For the simplified consen-
sus protocol, enumeration ends with 19 candidate invariants,
including equivalent forms of Eq. (1), (2), (3), and (4).

After enumeration, DuoAI runs top-down and bottom-up
refinement in parallel. Top-down refinement feeds all
candidate invariants and the safety property to Ivy to see if
their conjunction is inductive. For simplified consensus, the

 N. vote(N,N)

 N. vote(N,N)
 leader(N)

 N. vote(N,N)
 leader(N)
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N)
 leader(N)

Figure 2: Fragment of the minimum implication graph for the
simplified consensus protocol.

conjunction is inductive, so no further weakening is required.
Bottom-up refinement feeds all ∀-only invariants from the
initial candidate set to Ivy then weakens them until the set
of invariants is itself inductive, but may not imply the safety
property. For simplified consensus, this universal core includes
three invariants Eq. (1), (2), and (4). DuoAI then tries to search
a small number of ∃-included invariants to add to the universal
core along with the safety property so that the resulting set
is inductive. DuoAI uses counterexamples from Ivy to guide
the search for additional invariants and eventually identifies
invariant (3) for the simplified consensus protocol, forming
an inductive invariant set. For simplified consensus, top-down
refinement succeeds more quickly than bottom-up refinement.

3 Minimum Implication Graph

The backbone of DuoAI is the minimum implication graph,
which encodes implication relations among formulas. The
graph is used to determine the order of formulas to be
enumerated, and how invariants are weakened. We present
formulas in prenex normal form, where the quantified
variables, called the prefix, appear at the beginning of the
formula followed by quantifier-free relations, called the matrix.
The matrix is required to be in disjunctive normal form (DNF).
For simplicity, here we only consider predicate symbols
with equality. The methods can be extended to uninterpreted
functions in the same manner as DistAI [38].

A formula P is strictly stronger than Q if P⇒Q and Q ̸⇒P.
For two formulas P,Q∈S , where S is a finite formula search
space, there is a directed edge from P to Q in the minimum
implication graph if and only if P is strictly stronger than Q
and there is no formula R which is strictly weaker than P while
strictly stronger than Q. For example, the fragment of the min-
imum implication graph in Figure 2 includes three formulas:

∀N. vote(N,N) (5)

∃N. vote(N,N) (6)

∃N1,N2. vote(N1,N2) (7)

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 487

Eq. (5)⇒(6) since if vote(N,N) is true for all N, there must ex-
ist some N for which it is true. Eq. (6)⇒(7) since if vote(N,N)
is true for some N, there must exist some N1 =N2 for which
vote(N1,N2) is true. Because Eq. (5)⇒ (6)⇒ (7), there is an
edge from Eq. (5) to (6), an edge from Eq. (6) to (7), but no
edge from Eq. (5) to (7), because Eq. (6) is between them.

DuoAI defines the search space S as all formulas in
disjunctive normal form for a given set of quantified variables
and formula size. The formula size is defined by four param-
eters: max_exists sets the maximum number of existentially
quantified variables, max_literal sets the upper bound of
the total number of literals in the formula, max_and sets the
maximum number of literals connected by AND, and max_or
sets the maximum number of conjunctions connected by OR.

The minimum implication graph has two important
properties as stated in Lemmas 1 and 2:

Lemma 1. The minimum implication graph is a directed
acyclic graph (DAG).

Proof. Suppose there is a cycle P1→P2→ ... →Pk →P1. The
edges P1→P2, ... , Pk−1→Pk imply that P1⇒P2, ... , Pk−1⇒
Pk. From the transitivity of ⇒ we know P1⇒Pk. Since there is
an edge from Pk to P1, we know P1 ̸⇒Pk, a contradiction.

Lemma 2. For any P,Q∈S , there is a path from P to Q in the
minimum implication graph if and only if P⇒Q∧Q ̸⇒P.

Proof. We first prove the “if” direction by induction on the
number of formulas in S that are strictly weaker than P while
strictly stronger than Q. For the base case, if there are zero
such formulas, then by definition there is an edge from P to
Q. Next we prove the induction step. Suppose for any P,Q∈S,
if P⇒Q∧Q ̸⇒P, and there is no more than n formulas that
are strictly weaker than P while strictly stronger than Q, then
there is a path from P to Q. Now consider the case that there
are n+1 formulas that are strictly weaker than P while strictly
stronger than Q. Let R be one of the n+1 formulas. We know
P⇒R∧R ̸⇒P, and there can be no more than n formulas that
are strictly weaker than P while strictly stronger than R. By
the induction hypothesis, there is a path from P to R. In the
same manner, we can show there is a path from R to Q. Then
we concatenate the two paths and get a path from P to Q.

Next we prove the “only if” direction. If there is a path
from P to Q, Let P,F1,F2, ...,Fk,Q be the path. We know
P ⇒ F1, ... , Fk ⇒ Q, so P ⇒ Q. We prove Q ̸⇒ P by
contradiction. Suppose Q ⇒ P, then P ⇔ Q, so there must
be an edge from Fk to P. This forms a cycle P,F1,...,Fk,P, a
contradiction to Lemma 1.

To build the minimum implication graph, we need to deter-
mine the “root” nodes in the graph, that is, formulas with no
predecessors since they cannot be implied by any other formula,
and how to find their successors. In DuoAI, a formula P∈S is
added to the set of root nodes if it falls into one of two cases:

1. P has no ∃-quantified variable and no logical OR. For
example:

∀N :node. vote(N,N)∧leader(N). (8)

2. P has unique ∃-quantified variables and no logical OR. For
example:

∃N1,N2 :node. N1 ̸=N2∧vote(N1,N2). (9)

Intuitively, if a formula has an ∃, then by changing it to a ∀, we
can get a stronger formula. If a formula has a logical OR, then
by removing the OR and any literals followed by it, we can get a
stronger formula. So in general, a root formula should have no∃
and no OR, such as Eq. (8). There is one exception, represented
by Eq. (9). At first sight Eq. (9) has a predecessor ∀N1,N2 :
node. N1 ̸= N2 ∧ vote(N1,N2). However, this formula is a
contradiction because ∀N1,N2 :node. N1 ̸=N2 cannot be true.
The minimum implication graph does not include tautologies
and contradictions, so Eq. (9) itself is a root formula.

Starting from the root nodes, DuoAI incrementally builds
the minimum implication graph. For formulas P,Q∈S, DuoAI
adds an edge from P to Q if the shapes of P and Q fall into one
of five cases:
1. P and Q share the same matrix. Q replaces the ∀-quantified

variables of one type with ∃-quantified variables. For
example:

P=∀N :node,V :value.¬decided(N,V)

Q=∃N :node. ∀V :value.¬decided(N,V).

2. P and Q share the same prefix. Q has one less ANDed
literal than P. For example:

P=Eq.(8) Q=Eq.(5).

3. P and Q share the same prefix. Q has one more ORed
conjunction than P. For example:

P=∀N :node. vote(N,N)

Q=∀N :node. vote(N,N)∨(voted(N)∧leader(N)).

DuoAI requires that the ORed conjunction be maximal,
which means it contains the maximum number of literals for
the search space. The conjunction voted(N)∧leader(N) in
Q is maximal if max_and=2 or max_literal=3. For exam-
ple, Q′ = ∀N : node. vote(N,N)∨voted(N) also adds one
more ORed conjunction from P, but DuoAI does not add an
edge from P to Q′, because Q is strictly stronger than Q′.

4. Starting from P, Q projects two ∀-quantified variables of
the same type into one variable. For example:

P=∀N1,N2 :node. vote(N1,N2)∨leader(N1)

Q=∀N :node. vote(N,N)∨leader(N).

5. Starting from Q, P projects two ∃-quantified variables of
the same type into one variable. For example:

P=Eq.(6) Q=Eq.(7).

488 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The graph constructed in this way may differ slightly from
the exact minimum implication graph due to equivalent formu-
las. For example, formulas ∀X . p(X)∨ (¬p(X)∧q(X)) and
∀X . p(X)∨q(X) fall into the second case, so there is an edge
in the constructed graph. However, the two formulas are equiv-
alent so there is no edge in the exact graph. We call the graph
constructed by DuoAI an approximate minimum implication
graph, whose properties are formalized in Lemmas 3, 4, and 5:

Lemma 3. The approximate minimum implication graph is
a directed acyclic graph (DAG).

Proof. For all of the five cases, we can show that for formulas
along any path in the approximate minimum implication
graph, there exists one function that is strictly increasing, so
there can be no cycle. For example, this is true for the function
(#∃-variables)−(#∀ variables)+(max_and∗(#∨))−(#∧),
where # denotes “the number of” (e.g., (# ∨) is the number
of logical OR in a formula).

Lemma 4. For any P,Q∈S , there is a path from P to Q in the
approximate minimum implication graph only if P⇒Q.

Proof. From the transitivity of ⇒, we only need to show
that if there is an edge from P to Q in the approximate
minimum implication graph, then P⇒Q. This can be proved
by showing P ⇒ Q holds in each of the five cases. The first
three cases are trivial. For the fourth case, in general P =
... ∀X1X2 ... matrix(X1,X2) and Q= ... ∀X1 ... matrix(X1,X1).
Let P′= ... ∀X1X2 ...X1=X2→matrix(X1,X2), then P⇒P′⇔
Q. Similarly, for the fifth case, P = ... ∃X1 ... matrix(X1,X1)
and Q= ...∃X1X2 ...matrix(X1,X2). Let Q′= ...∃X1X2 ...X1=
X2∧matrix(X1,X2), then P⇔Q′⇒Q.

Lemma 5. For any formula P∈ S that is not a tautology or
a contradiction, there exists a directed path from a root node
Q∈S to P in the approximate minimum implication graph.

Proof. We prove this by construction. For a ∃-free formula P,
if it includes no logical OR, then it is a root formula itself. Other-
wise, we find the root formula Q by removing all but one ORed
conjunctions. Starting from Q, we can iteratively apply the sec-
ond and third cases to add conjunctions and remove literals un-
til we reach P. For a ∃-included formula P, if it includes unique
∃-quantified variables then it is a root formula itself. Other-
wise, we iteratively find a predecessor by replacing ∃with∀ for
quantified variables of each type, until the formula becomes the
∃-free P′. The first case guarantees that there is a path from P′

to P, and we have already shown for the ∃-free P′, there exists a
path from a root node Q. Putting it together,we have a path from
Q to P in the approximate minimum implication graph.

In other words, the approximate minimum implication graph
is as useful and complete as the exact graph. DuoAI uses
the approximate minimum implication graph, which, for
simplicity, we will continue to refer to as the minimum
implication graph unless otherwise specified.

DuoAI requires that formulas in S must be in a decidable
fragment of first-order logic. In general, satisfiability in first-
order logic is undecidable [23], so an SMT solver can get
stuck in infinite instantiations and never give the sat/unsat
answer. DuoAI ensures that the formulas are decidable by
enforcing a fixed order of types if there is quantifier alterna-
tion (i.e., alternating ∀ and ∃) [1]. If type A is ordered be-
fore type B, then for any formula, if there exists a quanti-
fied variable V of type A, any quantified variable of type B
can only occur after V if there is quantifier alternation. For
example, if type node is ordered before type packet, then
∀N : node. ∃P : packet and ∃N : node. ∀P : packet are al-
lowed while ∀P : packet. ∃N :node and ∃P : packet. ∀N :node
are not. DuoAI tries to infer the order of types from the protocol
specification and obtains input from the user when necessary.
For example, for the simplified consensus protocol, DuoAI can
infer from Line 10 that type quorummust be ordered before type
node, then ask the user to place type value in the order. Absent
user input, DuoAI will try different possible orders in parallel.

4 Candidate Invariant Enumeration

Similar to DistAI [38], DuoAI first repeatedly simulates the
distributed protocol using various instance sizes, and records
the reached states as samples. For example, DuoAI simulates
the simplified consensus protocol on concrete instances of
different numbers of values, quorums, and nodes. The simu-
lations of different instance sizes are done in parallel and yield
samples of different lengths. DuoAI follows the minimum
implication graph to enumerate candidate invariants, but rather
than feeding all of them to an inefficient SMT solver, it checks
them directly on the samples first. A correct invariant must hold
on every reachable protocol state and thus on every sample. A
key difference between DuoAI and DistAI is that DuoAI keeps
the original variable-length samples and uses them in invariant
enumeration, while DistAI projects all samples to fixed-length
vectors that it calls subsamples. The problem is that DistAI
is not exhaustive in its subsampling, so that a formula with
existential quantifiers that holds for DistAI’s subsamples may
not actually hold for the original samples. DuoAI avoids this
problem by effectively considering all possible subsamples
that can be derived from the original samples.

Algorithm 1 shows the enumeration algorithm, in which
pending is a queue whose elements are formulas that will be
checked on the samples, candidates is the set of formulas that
hold on all the samples and invalidated is the set of formulas
that do not hold on at least one of the samples. Both candidates
and invalidated are initially empty (Lines 2-3), and pending
initially consists of the root nodes of the minimum implication
graph, that is, formulas that cannot be implied by any other for-
mula. In each iteration, a formula f is popped from the pending
queue (Line 5). If one of f ’s ancestors in the graph has already
been added to candidates, DuoAI will not check f on the
samples or add f to the candidates invariants (Lines 6-7). Oth-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 489

pending candidates invalidated

 N. vote(N,N)

 N. vote(N,N)
 leader(N)

 N. vote(N,N)
 leader(N)
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N)
 leader(N)

A

B C

D E F

 N. vote(N,N)

 N. vote(N,N)
 leader(N)

 N. vote(N,N)
 leader(N)
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N)
 leader(N)

A

B C

D E F

 N. vote(N,N)

 N. vote(N,N)
 leader(N)

 N. vote(N,N)
 leader(N)
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N)
 leader(N)

A

B C

D E F

 N. vote(N,N)

 N. vote(N,N)
 leader(N)

 N. vote(N,N)
 leader(N)
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N)
 leader(N)

A

B C

D E F

Figure 3: Invariant enumeration procedure based on the minimum implication graph. Suppose formula A and formula C do not hold on all the
samples, while the other four formulas hold. Step 1: Only the root node A is in the pending queue. Step 2: The root node A is invalidated by the
samples. We add its two successors B and C to the pending queue. Step 3: Formula B holds on the samples thus being added to candidates, while
formula C is invalidated and its two successors E and F are added to the pending queue. Step 4: Formula E has an ancestor B which is already
in candidates, so E is simply skipped instead of being checked on the samples. Formula F holds on the samples and is added to candidates.

Algorithm 1 Invariant Enumeration Algorithm

Input: Distributed protocol P , invariant search
space S , a set of samples from protocol simulation samples
Output: Candidate invariants

1: graph := build_minimum_implication_graph(P ,S)
2: candidates, invalidated := /0, /0
3: pending := graph.rootNodes
4: while pending.notEmpty() do
5: f := pending.dequeue()
6: if graph.ancestors(f) ∩ candidates ̸= /0 then
7: continue
8: if check_inv_holds(f , samples) then
9: candidates := candidates ∪ { f }

10: else
11: invalidated := invalidated ∪ { f }
12: for next_ f ∈ graph.successors(f) do
13: if next_ f /∈ candidates and next_ f /∈ invalidated

and next_ f /∈ pending then
14: pending.enqueue(next_ f)
15: return candidates

erwise, DuoAI will check f on the samples and if it holds, add
it to candidates (Lines 8-9). If f does not hold on at least one
sample, DuoAI will add it to invalidated (Line 11), and add its
successors, which are formulas weaker than f , to the pending
queue if they have not already been added (Lines 12-14).

Figure 3 shows an example of invariant enumeration using
the graph in Figure 2. DuoAI starts from the root nodes,
iteratively goes down the minimum implication graph, and
checks formulas against the samples. Because of this design,
formulas D and E are never checked against the samples and
are not added to the candidates, because their predecessor B,
a formula stronger than both D and E, is already a candidate
invariant. This design not only saves time checking formulas
on samples, but also avoids burdening the SMT solver later

with checking the inductiveness of redundant invariants.
More importantly, this procedure guarantees that the resulting
invariants, formulas B and F in this example, are the strongest
candidate invariants that hold on the samples, which is
formally stated in the following theorem:

Theorem 1. For any correct invariant I ∈ S held by the
protocol P , at the end of invariant enumeration, either 1)
I∈candidates, or 2) one of I’s ancestors Ianc∈candidates.

Proof. Consider three cases: 1) I has been checked on the
samples, 2) I has been added to the pending queue but was
not checked on samples, and 3) I has been never added to the
pending queue. In the first case, since I is a correct invariant
held by the protocol, it must hold on all the samples and will be
added to candidates (Lines 8-9), so I∈candidates. In the sec-
ond case, after I is popped from the pending queue, there must
be an ancestor Ianc of I already in candidates (Line 6), other-
wise I will be checked on the samples, so Ianc ∈ candidates.
In the third case, we show that an ancestor Ianc ∈ candidates
exists. From Lemma 5, there must be a path from a root node I0
to I, namely I0,I1,...,I. On Line 3 the root node I0 is added to the
pending queue. Since I0 is added to the pending queue and I
is not, let Ik be the last formula on the path I0,I1,...,I that is ever
added to the pending queue. After Ik is dequeued, there are
three possible branches to take: Lines 6-7, Lines 8-9, or Lines
10-14. If it takes Lines 6-7, then there is an ancestor Ianc of Ik
such that Ianc∈candidates. If it takes Lines 8-9, then Ik will be
added to candidates so Ik can be the ancestor Ianc of I such that
Ianc∈candidates. If it takes Lines 10-14, its successors will be
added to the pending queue unless the branch condition at Line
13 evaluates to false. From our hypothesis, Ik is last formula on
path I0,...,Ik,Ik+1,...,I that is ever added to the pending queue.
Thus, the branch condition for Ik+1 must evaluate to false, so
either Ik+1∈candidates or Ik+1∈ invalidated. However, Ik+1
must be added to the pending queue before it can be added
to either candidates or invalidated, a contradiction.

Theorem 1 says that any correct invariant has either itself or

490 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A

D

E

B

F
G

H

C D

E

F
G

H

correct
invariants candidates

A B

C

Figure 4: Possible (left) and impossible (right) candidate invariants
after enumeration. Formulas C and E are correct invariants held by the
protocol. It is possible that after enumeration, candidates={C,D}
(left). Correct invariant C is in the candidate invariants itself. For
correct invariant E, its ancestor D is in the candidate invariants.
Theorem 1 guarantees that candidates= {B,F} is not a possibility
after enumeration, because for correct invariant C, neither itself nor
its lone ancestor A is in the candidate invariants.

its ancestor (a stronger formula) in the candidate invariants.
Figure 4 gives an illustration. A direct corollary is that, the
set of candidate invariants after the enumeration is at least as
strong as the correct invariant in S .

5 Top-down Invariant Refinement

Based on Theorem 1, the candidate invariants can only be too
strong, so DuoAI can monotonically weaken the candidate
invariants until a correct inductive invariant is reached, which
we refer to as top-down invariant refinement. Algorithm 2
shows the top-down refinement algorithm. In each iteration,
DuoAI feeds the current candidate invariants to Ivy. Ivy
invokes the Z3 SMT solver to check the inductiveness of
each candidate invariant and the safety property. Ivy will
return which invariants fail the check; if there are none, the
correct inductive invariant has been found (Lines 4-5). If
the safety property fails, there is no point to weaken it, and
the system returns NotProvable (Lines 6-7). If one of the
candidate invariants fails, DuoAI moves it from candidates to
invalidated (Lines 9-10), then adds its successors (i.e., formu-
las that can be implied by the failed invariant) to candidates
so long as the successor does not have a reachable ancestor in
candidates and has not already been invalidated (Lines 12-13).
An ancestor of a node is reachable if there is a path from the
ancestor to the node along which no node is invalidated.

Figure 5 shows an example of top-down refinement.
Suppose the current candidate invariants include formulas B
and F, and by invoking the Z3 SMT solver, Ivy indicates that
B is not inductive. Formulas D and E are not in candidates,
because they can be implied by formula B which is already
in candidates. After B is invalidated, both D and E will be
added to candidates to let Ivy decide their inductiveness in
future iterations. Alternatively, if formula F is invalidated by
Ivy, no formula will be added to candidates because F has no
successor in the minimum implication graph of search space S .

Algorithm 2 Top-down Invariant Refinement Algorithm

Input: Distributed protocol P , minimum implication
graph graph, candidate invariants from enumeration CI
Output: Either an inductive invariant II, or NotProvable

1: candidates, invalidated := CI, /0

2: while candidates.notEmpty() do
3: failed_inv := Ivy_check(P , candidates)
4: if failed_inv is None then
5: return candidates
6: else if failed_inv = safety_property then
7: return NotProvable
8: else
9: candidates := candidates \ {failed_inv}

10: invalidated := invalidated ∪ {failed_inv}
11: for next_inv ∈ graph.successors(failed_inv) do
12: if graph.reachable_ancestors(next_inv) ∩

candidates = /0 and next_inv /∈ invalidated then
13: candidates := candidates ∪ {next_inv}
14: return NotProvable

By weakening failed invariants based on the minimum
implication graph rather than discarding them, DuoAI can
guarantee that it never overweakens invariants to bypass
the correct invariants in between. In other words, top-down
refinement has a theoretical guarantee to eventually find an
inductive invariant if one exists in the search space, as stated
in the following theorem:

Theorem 2. For any protocol P and finite search space S , if
there exists an inductive invariant II∗⊂S that can prove the
safety property, then Algorithm 1 followed by Algorithm 2 will
output such an inductive invariant II in finite time.

Proof. The key is to prove that the while loop (Lines 2-13)
maintains the following loop invariant: For any invariant
I∈ II∗, either 1) I∈candidates, or 2) there exists a reachable
ancestor Ianc of I such that Ianc ∈ candidates. The loop
invariant says that after any rounds of invariant weakening,
the candidate invariants must be still at least as strong as the
correct invariants. If Algorithm 2 terminates, it is impossible
to have the safety property fail (Line 7). The only possibility
is that a correct inductive invariant is returned (Line 5).

Theorem 1 guarantees that the loop invariant holds before
entering the loop. We only need to prove that if this loop invari-
ant holds at the beginning of round k of invariant weakening,
it must still hold at the beginning of round k+1. This proof is
done by construction for each I∈ II∗. From the induction hy-
pothesis, at the beginning of round k, either 1) I∈candidates,
or 2) a reachable ancestor Ianc∈candidates. In the first case, I
cannot have been invalidated during round k because I∈ II∗, so
I∈candidates still holds at the beginning of iteration k+1. In
the second case, the invalidated invariant must either be on or

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 491

candidates invalidated

 N. vote(N,N)

 N. vote(N,N)
 leader(N)

 N. vote(N,N)
 leader(N)
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N)
 leader(N)

A

B C

D E F

 N. vote(N,N)

 N. vote(N,N)
 leader(N)

 N. vote(N,N)
 leader(N)
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N)
 leader(N)

A

B C

D E F

Figure 5: One round of top-down refinement. Suppose candidate
invariant B fails the Ivy check. DuoAI removes B from candidates
and adds its successors D and E to candidates.

not on the path from Ianc to I. If it is not on the path, Ianc remains
a reachable ancestor of I and Ianc∈candidates still holds at the
beginning of iteration k+1. If it is on the path, let Id be the suc-
cessor of the invalidated invariant on the path. From Lines 11-
13, either Id is added to candidates, in which case Id can be the
new Ianc for iteration k+1, or Id has a reachable ancestor Ie∈
candidates, in which case we choose Ie as the new Ianc for itera-
tion k+1. In all cases, we can find either I or a reachable ances-
tor Ianc in the candidate set, therefore the loop invariant holds.

Now we only need to prove that Algorithm 2 terminates,
which follows from three observations: 1) In each loop
iteration a formula is removed from candidates (Line 9); 2)
each formula can only be added to candidates once (Lines 10
& 12); and 3) the formula search space S is finite.

6 Bottom-up Invariant Refinement

Although top-down refinement provides a strong theoretical
guarantee of finding an inductive invariant, it may take too
long or run out of memory given limited computing resources
if there are too many unnecessary invariants to consider. For
the simplified consensus protocol in Figure 1, besides the
four invariants (1)(2)(3)(4), many other invariants hold for the
protocol but are unnecessary to prove the inductiveness of the
safety property, for example,

∀V :value, Q :quorum. ∃N :node.

member(N,Q)∧(leader(N)∨¬decided(N,V)). (10)

Invariants such as Eq. (10) do not affect the soundness of
DuoAI, but they will significantly slow down the validation
of candidate invariants by the SMT solver. If there are m
candidate invariants, validating each invariant takes O(m)
time in the worst case, since the inductiveness of one invariant
can depend on any other invariant, so checking all candidate
invariants can take O(m2) time. Adding unnecessary invariants
can increase validation time quadratically.

The key issue though is not just how many unnecessary
invariants there are, but whether they have quantifier alter-
nation (i.e., alternating ∀ and ∃), which we observe causes

Algorithm 3 Bottom-up Invariant Refinement Algorithm

Input: Distributed protocol P , minimum implication
graph graph, candidate invariants from enumeration CI
Output: Either an inductive invariant II, or NotProvable

Procedure 1
1: CI∀ :={I|I∈CI∧I is ∃-free}
2: core := Algorithm2(P , graph∀, CI∀)
3: noncore :=CI\core

Procedure 2
4: CE := /0

5: for sub in powerset(noncore) do
6: if ∃s∈CE. invs_hold_on_state(sub,s) then
7: continue
8: result := Algorithm2(P , graph, core∪sub)
9: if result = NotProvable then

10: s a−→s′ := get_counterexample()
11: CE :=CE∪{s}
12: else
13: return result
14: return NotProvable

SMT solvers to struggle. For the Paxos protocol, a correct
inductive invariant set of size 14 can be validated in less than
a second. If we add 10 correct but unnecessary invariants with
quantifier alternation, the validation will take 5 minutes. If we
add 20 such invariants, the validation will take over 3 hours.In
contrast, the chord ring maintenance protocol [21] with 149
∀-only invariants only takes 8 seconds to validate.

However, a correct distributed protocol typically has a clear
and human-understandable intuition, which leads to concise
invariants [10]. This motivates our bottom-up invariant
refinement algorithm shown in Algorithm 3. In essence, the
algorithm tries to identify a small set of correct and helpful
invariants that can eventually prove the safety property. §8
shows that the combination of bottom-up with top-down
refinement provides fast performance for finding inductive
invariants across a wide-range of protocols.

Algorithm 3 consists of two procedures. In Procedure 1,
DuoAI first extracts all the∀-only invariants from the candidate
invariants (Line 1), which are guaranteed to be the strongest ∀-
only invariants that hold on the samples. Then, DuoAI runs the
top-down refinement algorithm (Line 2) using only the univer-
sal invariants and the universal portion of the minimum impli-
cation graph by removing all nodes representing existentially
quantified formulas. The safety property is neglected in this top-
down refinement. In this way, the ∀-only invariants are mono-
tonically weakened until they become inductive, regardless of
whether the safety property can be proved (it probably cannot).
Recall that we call the now inductive ∀-only invariants the
universal inductive core. DuoAI then puts every enumerated
candidate invariant that is not in the universal inductive core

492 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

into noncore (Line 3). noncore mainly consists of formulas
with existential quantifiers, but also includes ∀-only formulas
that are not in the core, whose inductiveness may depend on ∃-
included invariants. For example, for the simplified consensus
protocol, the universal inductive core includes five candidate
invariants, which are exactly the equivalent forms of Eq. (1),
(2), and (4). There are 14 non-core candidate invariants, 13 of
which have quantifier alternation, including Eq. (3) and (10).

Based on our observation that SMT solvers struggle with
quantifier alternation, we expect noncore formulas will have
a much higher cost of checking. Procedure 2 aims to identify a
small subset of noncore to strengthen the candidate invariants,
such that the conjunction of the universal inductive core and
the subset (denoted as core∪sub), or their weaker forms, can
prove the safety property. Procedure 2 enumerates each subset
sub of noncore (Line 5), and runs the monotonic weakening
algorithm (Algorithm 2) on core∪sub (Line 8). If Algorithm 2
returns NotProvable (Line 9), DuoAI moves on to consider the
next subset. Otherwise, Algorithm 2 outputs a correct inductive
invariant (Line 13). The enumeration of subsets is conducted
in increasing order of size, starting from the /0, followed by all
single formulas from noncore, then pairs, triples, and so on.

Whenever Algorithm 2 finds the safety property failed
and reports NotProvable, Ivy returns a counterexample
of inductiveness s a−→ s′ (Line 10), which means starting
from a protocol state s satisfying the safety property and
the candidate invariants, and taking an action a, the system
reaches a new state s′ where the safety property is violated.1

If we view the samples from protocol simulation as positive
samples on which the invariants must hold, then we can view
these counterexample states s as negative samples which
the invariants must exclude. DuoAI needs to identify and
include another invariant I that does not hold on s, so that the
counterexample s a−→ s′ can be excluded. When enumerating
a subset of noncore, Procedure 2 first checks if the subset
can exclude all counterexamples seen so far (Line 6). If there
exists one counterexample state s on which all invariants in
the subset hold, or in other words, the counterexample cannot
be excluded, the monotonic weakening algorithm is bound
to fail, because if a stronger invariant cannot exclude the coun-
terexample, then its weaker forms cannot either. So Procedure
2 simply moves on to enumerate the next subset (Line 7).

For the simplified consensus protocol, when sub = /0, the
safety property fails and Ivy gives the counterexample s =
{vote(n1,n1) = vote(n1,n2) = vote(n2,n1) = vote(n2,n2) =
f alse, voted(n1) = voted(n2) = f alse, leader(n1) =
leader(n2) = true, member(n1, q) = member(n2, q) =
true, decided(n2, v1) = true, decided(n1, v1) =
decided(n1, v2) = decided(n2, v2) = f alse}. Eq. (3)
does not hold on s, so it can exclude this counterexample.
In contrast, Eq. (10) holds on s, so the counterexample will

1In general, other than showing an invariant is not inductive, a counterex-
ample may also show an invariant does not hold at the protocol initial state.
But this cannot happen to the safety property, unless the protocol is wrong.

persist even if Eq. (10) is added to the candidate set. Therefore,
DuoAI will skip Eq. (10) and try Eq. (3), and run Algorithm 2
on its conjunction with the universal core, which gives a
correct inductive invariant set consisting of Eq. (1)(2)(3)(4).

Although counterexamples can be used for top-down re-
finement, DuoAI currently does not because Ivy cannot return
counterexamples in batch. When Ivy is configured to return a
counterexample, it terminates once it identifies the first broken
invariant. This is inefficient for top-down refinement, but for
bottom-up refinement, counterexamples are only needed for
the safety property, so DuoAI puts the safety property on top of
other invariants and Ivy will give the desired counterexample.

Like top-down refinement, bottom-up refinement has a theo-
retical guarantee to eventually find an inductive invariant if one
exists in the search space, as stated in the following theorem:

Theorem 3. For any protocol P and finite search space S , if
there exists an inductive invariant II∗⊂S that can prove the
safety property, then Algorithm 1 followed by Algorithm 3 will
output such an inductive invariant II in finite time.

Proof. We first prove that Algorithm 3 terminates in finite time.
This directly follows from three facts: 1) powerset(noncore)
is a finite set so the for loop (Line 5) has a finite number
of iterations; 2) In each loop iteration, there is at most one
invocation of Algorithm 2 (Line 8); and 3) From Theorem 2,
Algorithm 2 terminates in finite time.

To prove the soundness of Algorithm 3, we first observe
that if Algorithm 3 outputs an invariant, it must be a correct
inductive invariant, because the output must come from
Algorithm 2, in which the output can only occur when the
safety property is proved.

Now we prove that there will be an output invariant
eventually. Observe that noncore∈ powerset(noncore) (Line
5). When sub=noncore, we have CI⊂core∪sub, then Line 8
degenerates to Algorithm 2 in §5. From Theorem 2, we know
a correct inductive invariant will be outputted.

For both the top-down and bottom-up refinement, if
NotProvable is returned, we know the protocol cannot be
verified using invariants in the search space S . DuoAI will
try a larger search space by increasing either max_literal,
max_or, max_and, or max_exists, or the per-domain number
of quantified variables. By default, DuoAI alternates among
the five in a round-robin manner. DuoAI sets the initial
max_literal=4, max_or=max_and=3, and max_exists=1
unless the safety property already involves k≥2 existentially
quantified variables, in which case DuoAI sets max_exists=k.
DuoAI sets the initial number of quantified variables for
domain T as the maximum number of variables of type T in any
relation. For example, the relation vote(N1:node,N2:node)

guarantees type node has at least two variables.
Because SMT solvers are much less efficient at checking

invariants with existential quantifiers, and many distributed
protocols are provable by ∀-only invariants [21], DuoAI runs

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 493

a ∀-only instance (i.e., max_exists=0) in parallel. The ∀-only
instance only runs top-down refinement, as bottom-up refine-
ment degenerates to the same top-down refinement (Line 2).

7 Optimizations Based on Mutual Implication

In using the minimum implication graph, DuoAI introduces
several optimizations based on mutual implication relations
among formulas. These relations further prune the search
space and avoid redundant candidate invariants. DuoAI
considers two kinds of mutual implication relations, 1)
P1∧P2∧ ...∧Pk ⇒Q, and 2) P1∧P2∧ ...∧Pk ⇔Q. Although
the latter is a special case of the former, DuoAI treats them
differently. We refer to Q as a conjunction implied formula
in the former and an equivalently decomposable formula
in the latter. Since checking inductiveness has a quadratic
complexity with the number of invariants, these optimizations
have a significant improvement on efficiency.

Conjunction implied formulas. DuoAI identifies conjunc-
tion implied formulas to avoid redundant candidate invariants.
Given a mutual implication relation P1∧P2∧ ...∧Pk ⇒Q, if
all P1,P2,...Pk are already in the candidate invariants, DuoAI
will mark Q as a conjunction implied formula and not add Q
to the candidate invariants. Later during refinement, if one of
P1,P2,...Pk is invalidated by Ivy, then the conjunction implied
invariant Q is no longer redundant and will be added to the
candidate invariants.

For example, suppose we have a disk replication protocol
with the following three invariants:

∀E :epoch, R :replica. crashed(E,R)→¬readable(E,R) (11)

∀E :epoch. ∃R :replica. readable(E,R) (12)

∀E :epoch. ∃R :replica.¬crashed(E,R). (13)

One can check that among Eq. (11)(12)(13), no formula can
imply another. But the conjunction of Eq. (11) and (12) can im-
ply Eq. (13). This is because Eq. (12) says that for every epoch
E, there must be a readable replica R. Then from Eq. (11), the
readable replica R cannot be crashed. Therefore, for every
epoch E, there must be a replica R that does not crash, which
is expressed by Eq. (13). If Eq. (11) and (12) are already can-
didate invariants, DuoAI will mark Eq. (13) as a conjunction
implied formula and not add it to the candidate invariants.

There are many classes of mutual implication relations in
first-order logic. DuoAI identifies three classes of conjunction
implied formulas to prune candidate invariants; in each class,
the first two formulas mutually imply the third:

1. Replace a literal with a weaker literal, as discussed in the
example Eq. (11)(12)(13):

P1=∀X . r(X)→s(X)

P2= pre f ix. (r(X)∧...)∨...
Q= pre f ix. (s(X)∧...)∨...

2. Conjunct a literal with a weaker literal:

P1=∀X . r(X)→s(X)

P2= pre f ix. (r(X)∧...)∨...
Q= pre f ix. (r(X)∧s(X)∧...)∨...

3. “Merge” a ∀ formula and an ∃ formula:

P1=∃X . r(X)

P2=∀X . s(X)∨...
Q=∃X . (r(X)∧s(X))∨...

In all three classes, r and s can be generalized to conjunctions
(e.g., r1(X) ∧ ¬r2(X), ¬s1(X) ∧ s2(X) ∧ s3(X)). A key
advantage of this optimization is that given a finite search
space, DuoAI can identify conjunction implied formulas
based on invariants within that search space, even though the
conjunction of invariants is not in that search space.

Equivalently decomposable formulas. DuoAI also iden-
tifies equivalently decomposable formulas to avoid redundant
candidate invariants. Given a mutual implication relation
P1∧P2∧ ...∧Pk ⇔Q, DuoAI will mark Q as an equivalently
decomposable formula and never add Q to the candidate
invariants. Later during refinement, if one of P1,P2,...Pk is inval-
idated by Ivy, Q will also be invalidated and therefore there is
never any reason to consider Q further as a candidate invariant.

For example, suppose the disk replication protocol has
invariant:

∀E :epoch. ∃R1,R2 :replica.

readable(E,R1)∧writable(E,R2). (14)

There is no need to ever include such an invariant in the
candidate set, because it is equivalently decomposable to
invariants (15) and (16).

∀E :epoch. ∃R :replica. readable(E,R) (15)

∀E :epoch. ∃R :replica. writable(E,R). (16)

However, suppose we slightly modify invariant (14) to one
of the following two formulas:

∀E :epoch. ∃R1 :replica.

readable(E,R1)∧writable(E,R1) (17)

∀E :epoch. ∃R1,R2 :replica.

R1 ̸=R2∧readable(E,R1)∧writable(E,R2). (18)

These invariants are not equivalently decomposable to
invariants (15) and (16). Take Eq. (17) as an example. One can
verify that (17)⇒ (15)∧(16), but (15)∧(16) ̸⇒ (17), because
Eq. (17) requires the same replica to be both readable and
writable, while for Eq. (15) and (16), it is possible to have one
readable replica and a different writable replica.

DuoAI identifies if a formula is equivalently decomposable
based on the structure of the formula itself by considering two
classes of equivalently decomposable formulas. One class is
embodied by the following lemma:

494 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Lemma 6. For a formula F in prenex and disjunctive normal
form, we build a graph GC for each conjunction C in F. GC has
one node for each literal, and an edge between two literals if
and only if they share an existentially quantified variable. If for
some C in F, the graph GC has k≥2 connected components,
then F is equivalently decomposable into k formulas.

Proof. For simplicity, here we show the proof for k=2 (i.e., the
literals inC form two connected components). If there are k>2
connected components, then the same analysis below will show
that formula F is equivalently decomposable into k formulas.

Literals that share∃-variables must be in the same connected
component. So we can divide the ∃-variables into two sets
{Y1,...,Ym} and {Z1,...,Zn}. The first connected component
can only include ∃-variables Y1, ...Ym, while the second can
only include Z1,...,Zn. Assume the quantifier prefix has shape
∀X1 ...Xs∃Y1 ...Ym Z1 ...Zn. We use X⃗ ,Y⃗ , Z⃗ to denote X1 ...Xs,
Y1 ...Ym, and Z1 ...Zn. The proof can be generalized to any
alternating ∀/∃ using skolemization.

Let f (X⃗ , Y⃗) be the disjunction of literals in the first
connected component, and g(X⃗ , Z⃗) be the disjunction of
literals in the second connected component. Let h(X⃗ ,⃗Y ,⃗Z) be
the disjunction of all conjunctions other than C in formula F .
Then formula F can be rewritten as:

∀X⃗ ∃⃗Y Z⃗. (f (X⃗ ,⃗Y)∧g(X⃗ ,⃗Z))∨h(X⃗ ,⃗Y ,⃗Z). (19)

We now show that, Eq. (19) is equivalently decomposable into:

∀X⃗ ∃⃗Y Z⃗. f (X⃗ ,⃗Y)∨h(X⃗ ,⃗Y ,⃗Z) (20)

∀X⃗ ∃⃗Y Z⃗. g(X⃗ ,⃗Z)∨h(X⃗ ,⃗Y ,⃗Z). (21)

It is trivial that Eq. (19) implies both Eq. (20) and (21). We now
show the interesting direction — the conjunction of Eq. (20)
and (21) implies Eq. (19). Suppose both Eq. (20) and (21) hold.
For any X⃗ , consider two cases: 1) ∃⃗Y Z⃗. h(X⃗ , Y⃗ , Z⃗). In this
case Eq. (19) directly holds. 2) ∀⃗Y Z⃗. ¬h(X⃗ ,Y⃗ , Z⃗). Then ac-
cording to Eq. (20), ∃Y⃗1Z⃗1. f (X⃗ ,Y⃗1). Similarly, from Eq. (21),
∃Y⃗2Z⃗2. g(X⃗ ,Z⃗2). If we select Y⃗1 and Z⃗2, then we have f (X⃗ ,Y⃗1)∧
g(X⃗ ,Z⃗2), so Eq. (19) still holds. Putting the two cases together,
when both Eq. (20) and (21) are true, Eq. (19) must be true.

The proof also gives an algorithm to find the k decomposed
formulas. Figure 6 shows how to apply Lemma 6 on the
aforementioned formulas. For Eq. (14), the two literals
readable(E,R1) and writable(E,R2) share no ∃-quantified
variable (E is∀-quantified), so there is no edge between the two
literals. The graph has two connected components, so Eq. (14)
is equivalently decomposable into two formulas (Eq. (15)(16)).
For Eq. (17), the two literals share an ∃-quantified variable
R1, so there is an edge between the two literals and the graph
is connected, which means Eq. (17) cannot be decomposed
in this way. The same analysis can be applied to Eq. (18).

We note a corollary of Lemma 6. For an ∃-free formula,
it is equivalently decomposable if it has any conjunction.

readable
(E,R1)

writable
(E,R2)

readable
(E,R1)

writable
(E,R1)

R1

readable
(E,R1)

writable
(E,R2)

R1 != R2

R1

R2

Figure 6: Checking equivalently decomposability of formulas
(14)(17)(18) (from left to right).

For example, ∀X . p(X) ∧ q(X) is equivalent with the pair
∀X . p(X) and ∀X . q(X). This indicates that we do not need to
consider any conjunction when enumerating ∀-only formulas,
a significant reduction in search space.

The other class of equivalently decomposable formulas that
DuoAI identifies is embodied in the following:

∀X1X2. matrix(X1,X2) (22)
∀X1. matrix(X1,X1) (23)
∀X1X2. X1 ̸=X2→matrix(X1,X2) (24)

One can check that Eq. (22) is equivalently decomposable
to Eq. (23) and (24), and will therefore not be added as
a candidate invariant. In general, DuoAI only considers
formulas whose leading ∀-quantified variables are unique.
Similar optimizations have been used in DistAI [38].

8 Evaluation

Experimental setup. To demonstrate the performance
of DuoAI, we implemented and evaluated DuoAI on 27
distributed protocols from multiple sources [12, 13, 21, 27, 28],
including those that can only be proved by inductive invariants
with ∃-quantifiers. The DuoAI implementation consists
of 6.1K lines of C++ code for invariant enumeration and
refinement, compiled by gcc 7.5.0, and 2.3K lines of Python
code running with Python 3.8.10 for protocol simulation.
For comparison, we also ran 6 other invariant inference
tools: SWISS [10], IC3PO [8, 9], FOL-IC3 [13], DistAI [38],
UPDR [12], and I4 [21]. All experiments were performed on
a Dell Precision 5829 workstation with a 4.3GHz 28-core Intel
Xeon W-2175, 62GB RAM, and a 512GB Intel SSD Pro 600p,
running Ubuntu 18.04.

We configured the alternative invariant inference tools
following their best practices. SWISS requires the user to
bound the search space by specifying 4 parameters, including
the number of existentially quantified variables and the number
of literals in a formula. For every protocol, we use the same
parameter settings as in SWISS’s own evaluation [10]. IC3PO
and I4 require the user to specify a finite instance size for their
model checkers to work on. For IC3PO, we only specified
the minimum size and the tool itself could determine how to
increase the instance size. For I4, we started from the minimum
size where the protocol can function and iteratively increased

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 495

the instance size upon failure (e.g., node = 2,node = 3, ...).
FOL-IC3 provides a ∀-only mode and a default mode. We ran
both and report the runtime of whichever succeeded first.

Results summary. Table 1 shows the running time in
seconds for each tool on each protocol. For each protocol, we
also report the number of relations and lines of code in its Ivy
specification; for example, Figure 1 is a simplified version of
consensus epr. The top portion of the table shows protocols
provable with a ∀-only inductive invariant, while the bottom
portion shows protocols that can only be proved with a ∃-
included inductive invariant. We allowed each tool to spend up
to an entire week trying to solve each protocol. For protocols
that a tool fails to solve, we report “fail” if the tool terminated
without an inductive invariant, “error” if the tool itself returned
an error, “Z3 error” if the underlying SMT solver used returned
an error, “memout” if the tool ran out of memory and termi-
nated, and “timeout” if the tool did not complete within a week.

DuoAI dominates all other tools in the number of protocols
it solves, solving all but 1 of the 27 protocols. SWISS cannot
solve 8 protocols, FOL-IC3 and IC3PO cannot solve 9
protocols, DistAI and UPDR cannot solve 13 protocols, while
I4 cannot solve 15 protocols. DuoAI is the only tool that solves
all ∀-only protocols, is the only tool that solves Paxos as well
as all other non-Paxos protocols with ∃ quantifiers, and is the
only tool that solves 3 of the more complex Paxos variants,
including multi-Paxos, stoppable Paxos, and fast Paxos. There
were no protocols solvable by another tool that were not solved
by DuoAI.

DuoAI also dominates all other tools in how fast it solves the
protocols, solving 15 of the protocols faster than any other tool.
DuoAI is faster than SWISS on all but 3 of the protocols solved
by SWISS, is faster than IC3PO on all but 3 of the protocols
solved by IC3PO, is faster than FOL-IC3 on all but 2 of the
protocols solved by FOL-IC3, and is faster than UPDR on all
of the protocols solved by UPDR. DuoAI is up to 3 orders of
magnitude faster than each of these protocols. DuoAI is faster
than DistAI on all but 5 of the protocols solved by DistAI,
and is faster than I4 on all but 2 of the protocols solved by I4.
DuoAI is up to an order of magnitude faster than either DistAI
or I4. The speed differences versus DistAI and I4 appear less
in part because neither could solve any of the protocols with
existential quantifiers. In most cases in which DuoAI is slower
than other protocols, it is by at most a few seconds.

Detailed comparison and discussion. For the protocols
provable with ∀-only invariants, DuoAI is the only tool that
solves all 15 protocols. On ∀-only protocols, DuoAI’s ∀-only
instance is similar to DistAI, without subsampling and with
mutual implication optimization and parallelism in simulation.
DuoAI beats DistAI on 10 protocols. Unlike DuoAI, DistAI
times out on ticket lock, which we discovered is due to a bug
in the implementation of its protocol simulation. Chord ring
maintenance is the only protocol on which DuoAI is much

slower than DistAI. DistAI only allows invariants as disjunc-
tion of literals, and implements an invariant as a vector<int>.
In contrast, DuoAI considers invariants in disjunctive normal
form, so an invariant is a disjunction of conjunction of literals,
implemented as a set<vector<int>>. This makes invariant
operation slower in DuoAI. Chord ring maintenance is the only
∀-provable protocol that takes significant time on candidate
invariant enumeration so the overhead is exacerbated.

For the protocols that require invariants with ∃-quantifiers
to prove, DuoAI solves 11 out of 12 protocols, more than any
other tool. DuoAI only fails on vertical paxos, which other tools
also fail on. DistAI, I4, and UPDR fail on all of these proto-
cols because they can only generate ∀-only invariants. IC3PO
solves 4 protocols and fails on 3 protocols, but runs out of mem-
ory on 6 protocols, because it requires model checking to infer
invariants on a finite instance. For more complex protocols like
fast Paxos, the model checker requires too large of an instance
size. In contrast, DuoAI searches in formula space and its
performance does not depend (exponentially) on instance size.

For the complex Paxos-family protocols, only SWISS also
verified Paxos and flexible Paxos, though it required several
hours to do so. All other tools failed on all Paxos-family
protocols. In contrast, DuoAI verified Paxos and flexible Paxos
in less than 2 minutes. Only DuoAI verified multi-Paxos,
stoppable Paxos, and fast Paxos.

As the only other tool that solves Paxos, it is instructive to
compare SWISS with DuoAI. Similar to DuoAI, SWISS also
enumerates candidate invariants given a bounded search space
and checks their inductiveness using the SMT solver. However,
it has two fundamental differences compared with DuoAI.
First, SWISS relies exclusively on the SMT solver to tell the
correctness of invariants, while DuoAI also uses the samples
from protocol simulation to filter out invalid invariants. As we
demonstrated in §6, SMT calls can be expensive with quantifier
alternation and will negatively affect performance. Second,
SWISS struggles to find mutually inductive invariants, i.e.,
a bundle of invariants that are inductive together but none are
inductive individually. This is because SWISS can only build
the invariant set by adding one and only one invariant each
time and keep the set inductive. In the lock server async and the
sharded key-value store protocols, where mutually inductive
invariants are required to prove the safety property, SWISS
has to manually increase the maximum number of literals
from 6 to 9. This allows the mutually inductive invariants to be
conjuncted into one big invariant, but results in a much larger
search space and long runtimes of 44 and 128 minutes, respec-
tively. DuoAI enumerates candidate invariants following the
minimum implication graph and generates the strongest can-
didate invariants. The mutually inductive invariants (or their
stronger forms) are guaranteed to be in the candidate invariants
together. DuoAI solved both protocols within 2 seconds.

For the vertical paxos protocol, the human-expert inductive
invariants include an invariant with 8 literals. Even after
the optimization based on mutual implication, it still has 7

496 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Distributed protocol Relations LoC DuoAI SWISS IC3PO FOL-IC3 DistAI UPDR I4
chord ring maintenance 8 123 200.9 timeout 17.1 timeoutc 58.0 Z3 error 673
consensus forall 7 55 11.9 40.3 457 1500 15.6 59.0 122
consensus wo decide 6 46 3.9 26.1 160 24.8 8.5 24.8 27.5
database chain replication 13 96 9.5 108951 4.5 559 90.3 57.6 66.6
decentralized lock 2 21 9.9 5.8 24.3 69.0 10.2 51.0 20.7
distributed lock 4 43 6.1 timeout 12856 1660 15.3 63568 195
ring leader election 3 45 3.5 14.3 memout 10.8 2.9 103 5.3
learning switch ternary 4 45 14.2 308 23.8 timeout 24.7 1334 12.9
learning switch quad 2 21 52.4 1322 63.6 timeout 372 273 memout
lock server async 5 45 1.9 2625 5.6 4.8 1.1 4.4 8.7
lock server sync 2 21 1.3 1.0 3.2 1.0 0.9 3.3 0.6
sharded key-value store 3 31 1.9 7662 5.4 9.7 1.2 3.5 error
ticket lock 5 49 23.9 fail 56.2 58.1 timeout 143 fail
toy consensus forall 4 27 1.9 5.9 3.0 5.4 3.1 3.4 9.4
two-phase commit 7 70 1.5 9.1 4.7 4.8 2.0 9.4 10.2
client server ae 4 28 1.5 5.2 2.3 355 timeout fail fail
client server db ae 7 48 3.1 33.7 memouti 4822 timeout fail fail
consensus epr 7 52 4.8 28.8 1118 471 timeout fail memout
hybrid reliable broadcast 12 120 1211.2 fail memouti 931 error fail error
sharded kv no lost keys 3 32 2.1 1.8 4.8 3.7 timeout fail error
toy consensus epr 4 25 2.6 4.3 2.4 32.9 timeout fail fail
Paxos 9 75 60.4 16665 faili timeout timeout timeout memout
flexible Paxos 10 77 78.7 28337 memouti timeout timeout fail memout
multi-Paxos 10 91 1549 timeout fail timeout timeout timeout memout
stoppable Paxos 11 118 4051 error fail timeout error timeout error
fast Paxos 12 102 26979 timeout memout memout timeout fail error
vertical Paxos 12 120 memout timeout memout memout error fail error

c The SWISS authors reported that FOL-IC3 solved chord ring maintenance [10], but we found that the chord.pyv file they used has 3 bugs.
i The IC3PO authors [8, 9] reported that IC3PO succeeded on client server db ae (17 s), hybrid reliable broadcast (587 s), Paxos (568 s), and flexible
Paxos (561 s). However, they retrofitted the protocols and manually provided clauses with quantifier alternation that could appear in the invariants,
which is difficult to do without first knowing the ground-truth invariants. The 4 protocols have much simpler inductive invariants when expressed on
top of these clauses, with all except the simplest, client server db ae, becoming ∃-free. Ivy fails when checking the invariants generated by IC3PO
for Paxos and flexible Paxos. The IC3PO authors [9] imply that the invariants had to be manually checked against the human-expert invariants.

Table 1: Comparison of different tools for finding inductive invariants for 27 distributed protocols (running time in seconds).

literals. Under the minimum per-domain number of quantified
variables that can encode the human-expert invariants, there
are 60 predicates that can appear in the invariants. Considering
their negations, the size of the invariant search space is at the
magnitude of 1207≈4e14, well exceeding the computational
power of a normal workstation. In comparison, for fast paxos,
the largest invariant includes 5 literals, and there are 38
predicates. The size of the search space is at the magnitude of
3e9. For vertical Paxos, DuoAI ends with a universal core and
a set of checked non-core invariants when exhausting memory.
These invariants are inductive and can be utilized as hints,
although they cannot imply the safety property.

As explained in §6, DuoAI runs top-down refinement,
bottom-up refinement, and a ∀-only instance in parallel. Not
surprisingly, the ∀-only instance generates the inductive
invariants first for all 15 protocols that do not require
existential quantifiers. Among the 11 protocols solved by
DuoAI that require existential quantifiers, the top-down
refinement gives the inductive invariants first for the 5 simpler
protocols — client server ae, client server db ae, toy consensus

epr, consensus epr, and sharded kv no lost keys. The bottom-up
refinement also succeeded but took longer. For example,
for client server db ae, there are 8 candidate invariants in
noncore. A subset of size 3 was sufficient to prove the safety
property. However, the bottom-up refinement would first
enumerate and fail on all single invariants and pairs before
enumerating the correct triple. This takes more than 3 times
longer than top-down refinement, in which after a single round
of weakening, DuoAI found an inductive invariant.

For the 6 more complicated protocols with existential
quantifiers, including hybrid reliable broadcast and the 5
Paxos-family protocols solved, only the bottom-up refinement
generated the inductive invariants. The top-down refinement
got stuck at checking the inductiveness of the invariants. For
example, for multi-Paxos, after enumeration, DuoAI has a
candidate invariant set of size 615, and 581 of them have
quantifier alternation. Checking inductiveness of this many
formulas is a hopeless task for the Z3 SMT solver. However, to
prove the safety property, only 2 of the 581 candidate invariants
are needed. In the bottom-up refinement, each time only a

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 497

small subset of noncore invariants conjuncted with the ∀-only
core are fed to Ivy, so the Z3 SMT solver could handle the
candidate invariants. For Paxos, flexible Paxos, multi-Paxos,
and stoppable Paxos, a subset of size 2 were sufficient, while a
subset of size 6 was needed for fast Paxos. This also validates
our assumption that real-world distributed protocols should
have concise invariants, and should not require too many
invariants with quantifier alternation to verify.

Limitations By requiring quantifier alternation to conform
to a fixed order of types, DuoAI ensures that the verification
condition is in a decidable fragment of first-order logic.
However, without decidability, an SMT solver may still
succeed. For client server db ae and hybrid reliable broadcast,
the invariants written by human experts are not in a decidable
fragment, yet they can be efficiently verified by the SMT
solver. For both protocols, DuoAI found alternative inductive
invariants within the decidable fragment. If a protocol cannot
be verified in decidable logic, DuoAI will fail to prove it.

9 Related Work

Many studies [11, 17, 20, 31, 34–36] verify the correctness
of distributed protocols with manually given inductive
invariants. Early systems [12, 21, 29, 38] for automatically
inferring inductive invariants do not work for invariants with
∃-quantifiers which are required for protocols such as Paxos,
though pdH [29] can find inductive invariants for retrofitted
Paxos-family protocols without ∃-quantifiers.

Recent systems consider invariants with ∃-quantifiers. FOL-
IC3 [13] generates an invariant candidate that can separate
a positive and negative example set, and iteratively adds more
examples until the invariant is correct. It has no theoretical
guarantee of success. Its heavy use of SMT queries to validate
as well as synthesize invariants makes it slow in practice,
timing out on even protocols with ∀-only inductive invariants.

SWISS [10] iteratively strengthens an invariant by adding
small inductive formulas until the invariant is strong enough to
prove the safety property. It was the first tool to automatically
verify Paxos. Its inefficiency in exploring the search space and
inability to infer mutually inductive invariants make it fail on
several protocols solved by alternative tools.

IC3PO [8, 9] applies model checking on a finite instance
similar to I4, while adding support to generalize existentially
quantified invariants. The model checker functions well on
small instances, but frequently exhausts memory on complex
protocols that require larger instances, as shown in Table 1.

P-FOL-IC3 [14] is concurrent work that extends FOL-IC3
by exploiting parallelism in formula search, introducing the
invariant-friendly k-Term Pseudo-DNF to bound the search
space, and randomly guessing some not-yet-inductive formu-
las to be eventually inductive, forcing their counterexamples
to be excluded. P-FOL-IC3 has no theoretical guarantee and

is less robust in practice due to its randomized nature; it failed
in three out of five trials on stoppable Paxos, and two out of
five trials on fast Paxos.

The tools discussed above, along with DuoAI, only verify
safety properties of distributed protocols. Complementary
work has explored connecting verification of protocols to their
practical implementations [11, 31], and verifying liveness
properties of distributed protocols [26].

AutoML [5, 18, 33] searches for machine learning models
and hyperparameters, which may appear similar to finding in-
ductive invariants. However, the inductiveness of invariants has
strong correlation, which is difficult to capture for AutoML.

Many automated invariant inference tools have been built for
other domains, mostly on learning loop invariants to verify se-
quential programs [3,4,6,7,15,24,25,30,32,37,39]. Invariant
inference has been used to prove properties on inductive alge-
braic data types [16,22], integer linear dynamical systems [19],
and deep neural networks [2]. None of these methods consider
nondeterminism in concurrent or distributed settings, thus
they cannot be directly applied to distributed protocols.

10 Conclusions

DuoAI automatically and efficiently infers inductive invariants
for verifying distributed protocols by reducing SMT costs.
It introduces the minimum implication graph to define the
structure of the invariant search space. This enables efficient
enumeration of possible invariants, which are checked on
samples from protocol simulation to reduce SMT queries.
DuoAI guarantees that the enumerated candidate invariants
are at least as strong as any correct invariants. DuoAI then runs
top-down and bottom-up refinement in parallel. The former
monotonically weakens the candidate invariants following the
minimum implication graph. The latter divides the candidate
invariants into an SMT-friendly universal inductive core and
other noncore invariants, and searches for a small subset of
noncore invariants that can be added to the core to prove the
safety property of the protocol. Both top-down and bottom-up
refinement have strong theoretical guarantees for finding
inductive invariants, and their combination is effective at
reducing SMT query costs for invariants with existential
quantifiers. DuoAI dominates alternative tools in both the
number of protocols it verifies and the speed at which it does so,
including giving automated proofs for several Paxos variants.

11 Acknowledgments

Ji-Yong Shin provided helpful comments on earlier drafts.
This work was supported in part by three Amazon Research
Awards, a Guggenheim Fellowship, DARPA contract N66001-
21-C-4018, and NSF grants CCF-1918400, CNS-2052947,
and CCF-2124080. Ronghui Gu is the Founder of and has an
equity interest in CertiK.

498 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Decidability in Ivy. http://microsoft.github.io/
ivy/decidability.html.

[2] Guy Amir, Michael Schapira, and Guy Katz. Towards
scalable verification of deep reinforcement learning.
In Proceedings of the 21st Conference on Formal
Methods in Computer Aided Design (FMCAD ’21),
pages 193–203, October 2021.

[3] Grigory Fedyukovich, Sumanth Prabhu, Kumar Mad-
hukar, and Aarti Gupta. Solving constrained Horn
clauses using syntax and data. In Proceedings of the
18th Conference on Formal Methods in Computer Aided
Design (FMCAD ’18), pages 1–9, October 2018.

[4] Grigory Fedyukovich, Sumanth Prabhu, Kumar
Madhukar, and Aarti Gupta. Quantified invariants
via syntax-guided synthesis. In Proceedings of the
31st International Conference on Computer Aided
Verification (CAV ’19), pages 259–277, July 2019.

[5] Matthias Feurer, Aaron Klein, Jost Eggensperger,
Katharina Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning.
In Proceedings of the 29th Conference on Neural
Information Processing Systems (NIPS ’15), pages
2962–2970, December 2015.

[6] Pranav Garg, Christof Löding, P Madhusudan, and
Daniel Neider. Learning universally quantified invari-
ants of linear data structures. In Proceedings of the
25th International Conference on Computer Aided
Verification (CAV ’13), pages 813–829, July 2013.

[7] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan
Roth. Learning invariants using decision trees and
implication counterexamples. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’16),
page 499–512, January 2016.

[8] Aman Goel and Karem Sakallah. On symmetry and
quantification: A new approach to verify distributed pro-
tocols. In Proceedings of the 13th NASA Formal Methods
Symposium (NFM ’21), pages 131–150, May 2021.

[9] Aman Goel and Karem A Sakallah. Towards an auto-
matic proof of Lamport’s Paxos. In Proceedings of the
21st Conference on Formal Methods in Computer Aided
Design (FMCAD ’21), pages 112–122, October 2021.

[10] Travis Hance, Marijn Heule, Ruben Martins, and Bryan
Parno. Finding invariants of distributed systems: It’s a
small (enough) world after all. In Proceedings of the 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’21), pages 115–131, April 2021.

[11] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R
Lorch, Bryan Parno, Michael L Roberts, Srinath Setty,
and Brian Zill. IronFleet: Proving practical distributed
systems correct. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15), pages
1–17, October 2015.

[12] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky,
Noam Rinetzky, and Sharon Shoham. Property-directed
inference of universal invariants or proving their absence.
Journal of the ACM, 64(1), March 2017.

[13] Jason R. Koenig, Oded Padon, Neil Immerman, and Alex
Aiken. First-order quantified separators. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’20), page
703–717, September 2020.

[14] Jason R. Koenig, Oded Padon, Sharon Shoham, and Alex
Aiken. Inferring invariants with quantifier alternations:
Taming the search space explosion. In Proceedings of the
28th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS

’22), pages 338–356, April 2022.

[15] Soonho Kong, Yungbum Jung, Cristina David, Bow-Yaw
Wang, and Kwangkeun Yi. Automatically inferring
quantified loop invariants by algorithmic learning from
simple templates. In Proceedings of the 8th Asian
Symposium on Programming Languages and Systems
(APLAS ’10), pages 328–343, November 2010.

[16] Yurii Kostyukov, Dmitry Mordvinov, and Grigory
Fedyukovich. Beyond the elementary representations
of program invariants over algebraic data types. In
Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and
Implementation (PLDI ’21), page 451–465, June 2021.

[17] Leslie Lamport. Byzantizing Paxos by refinement. In
Proceedings of the 25th International Symposium on
Distributed Computing (DISC ’11), pages 211–224,
September 2011.

[18] Trang T Le, Weixuan Fu, and Jason H Moore. Scaling
tree-based automated machine learning to biomedical
big data with a feature set selector. Bioinformatics,
36(1):250–256, January 2020.

[19] Engel Lefaucheux, Joël Ouaknine, David Purser, and
James Worrell. Porous invariants. In Proceedings
of 33rd International Conference on Computer Aided
Verification (CAV ’21), pages 172–194, July 2021.

[20] Mohsen Lesani, Christian J. Bell, and Adam Chlipala.
Chapar: Certified causally consistent distributed
key-value stores. In Proceedings of the 43rd Annual

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 499

http://microsoft.github.io/ivy/decidability.html
http://microsoft.github.io/ivy/decidability.html

ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’16), pages 357–370,
January 2016.

[21] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos
Kapritsos, Baris Kasikci, and Karem A Sakallah.
I4: Incremental inference of inductive invariants for
verification of distributed protocols. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19), pages 370–384, October 2019.

[22] Anders Miltner, Saswat Padhi, Todd Millstein, and
David Walker. Data-driven inference of representation
invariants. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’20), pages 1–15, June 2020.

[23] Donald Monk. Mathematical Logic. Springer, October
1976.

[24] ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef,
and Michael Hicks. Counterexample-guided approach to
finding numerical invariants. In Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering
(FSE ’17), pages 605–615, August 2017.

[25] Saswat Padhi, Rahul Sharma, and Todd Millstein.
Data-driven precondition inference with learned features.
In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’16), page 42–56, June 2016.

[26] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas
Podelski, Mooly Sagiv, and Sharon Shoham. Reducing
liveness to safety in first-order logic. Proceedings of the
ACM on Programming Languages, 2(POPL), January
2018.

[27] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon
Shoham. Paxos made EPR: Decidable reasoning about
distributed protocols. Proceedings of the ACM on
Programming Languages, 1(OOPSLA), October 2017.

[28] Oded Padon, Kenneth L McMillan, Aurojit Panda, Mooly
Sagiv, and Sharon Shoham. Ivy: Safety verification by
interactive generalization. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’16), pages 614–630,
June 2016.

[29] Oded Padon, James R Wilcox, Jason R Koenig,Kenneth L
McMillan, and Alex Aiken. Induction duality: Primal-
dual search for invariants. Proceedings of the ACM on
Programming Languages, 6(POPL), January 2022.

[30] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu,
and Suman Jana. CLN2INV: Learning loop invariants
with continuous logic networks. In Proceedings of 8th

International Conference on Learning Representations
(ICLR ’20), March 2020.

[31] Ilya Sergey, James R. Wilcox, and Zachary Tatlock.
Programming and proving with distributed protocols.
Proceedings of the ACM on Programming Languages,
2(POPL), January 2018.

[32] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex
Aiken, Percy Liang, and Aditya V Nori. A data driven
approach for algebraic loop invariants. In Proceedings of
the 22nd European Symposium on Programming (ESOP

’13), pages 574–592, March 2013.

[33] Christian Steinruecken, Emma Smith, David Janz,
James Lloyd, and Zoubin Ghahramani. The automatic
statistician. In Automated Machine Learning, pages
161–173. Springer, May 2019.

[34] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan,
Oded Padon, Mooly Sagiv, Sharon Shoham, James R.
Wilcox, and Doug Woos. Modularity for decidability
of deductive verification with applications to distributed
systems. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’18), pages 662–677, June 2018.

[35] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary
Tatlock, Xi Wang, Michael D Ernst, and Thomas
Anderson. Verdi: A framework for implementing and
formally verifying distributed systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15), pages
357–368, June 2015.

[36] Doug Woos, James R Wilcox, Steve Anton, Zachary
Tatlock, Michael D Ernst, and Thomas Anderson.
Planning for change in a formal verification of the Raft
consensus protocol. In Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs
(CCP ’16), pages 154–165, January 2016.

[37] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana,
and Ronghui Gu. Learning nonlinear loop invariants
with gated continuous logic networks. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’20), pages
106–120, June 2020.

[38] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh,
Suman Jana, and Gabriel Ryan. DistAI: Data-driven
automated invariant learning for distributed protocols.
In Proceedings of the 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’21), pages 405–421, July 2021.

500 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[39] He Zhu, Stephen Magill, and Suresh Jagannathan. A
data-driven CHC solver. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’18), pages 707–721,
June 2018.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 501

	Introduction
	Overview
	Minimum Implication Graph
	Candidate Invariant Enumeration
	Top-down Invariant Refinement
	Bottom-up Invariant Refinement
	Optimizations Based on Mutual Implication
	Evaluation
	Related Work
	Conclusions
	Acknowledgments

