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Abstract
Distributed systems are notoriously hard to implement cor-

rectly due to non-determinism. Finding the inductive invariant
of the distributed protocol is a critical step in verifying the
correctness of distributed systems, but takes a long time to do
even for simple protocols. We present DistAI, a data-driven au-
tomated system for learning inductive invariants for distributed
protocols. DistAI generates data by simulating the distributed
protocol at different instance sizes and recording states as
samples. Based on the observation that invariants are often
concise in practice, DistAI starts with small invariant formulas
and enumerates all strongest possible invariants that hold
for all samples. It then feeds those invariants and the desired
safety properties to an SMT solver to check if the conjunction
of the invariants and the safety properties is inductive. Starting
with small invariant formulas and strongest possible invariants
avoids large SMT queries, improving SMT solver performance.
Because DistAI starts with the strongest possible invariants,
if the SMT solver fails, DistAI does not need to discard failed
invariants, but knows to monotonically weaken them and try
again with the solver, repeating the process until it eventually
succeeds. We prove that DistAI is guaranteed to find the ∃-free
inductive invariant that proves the desired safety properties
in finite time, if one exists. Our evaluation shows that DistAI
successfully verifies 13 common distributed protocols
automatically and outperforms alternative methods both in
the number of protocols it verifies and the speed at which it
does so, in some cases by more than two orders of magnitude.

1 Introduction

Distributed systems are hard to design and implement
correctly. This is due to the intrinsic non-determinism from
asynchronous node communications and various failure
scenarios. Formal verification techniques offer a solution
by proving that a distributed system is correct under all
circumstances [10, 16, 32]. The verification of distributed
systems consists of two components: i) proving that the

desired safety properties hold for the distributed protocol itself,
and ii) proving that the protocol implementation is correct.

While much work has focused on proving a system correctly
implements a protocol [10, 16, 31–33], we focus on proving
the protocol itself has the desired safety properties. A safety
property is an invariant that should hold true at any point in
a system’s execution. It ensures the protocol does not reach
invalid or dangerous states. For example, the safety property
for a distributed lock protocol [10] is that no two nodes in the
system hold a lock at the same time. The typical proof strategy
is to prove that an invariant that implies the safety property
is inductive, meaning that if the system starts from a state
that satisfies the invariant, the invariant will still hold for any
state that is reachable via a valid transition from the previous
state. If the safety property itself is inductive, the proof is done.
However, this is not true for almost all nontrivial distributed
protocols, so that the proof requires finding an invariant that
implies the safety property, then proving that it is inductive.

Finding the inductive invariant for distributed protocols
is difficult, taking a long time for even simple protocols [18].
IVy [24] provides an interactive tool to make this easier. A
developer provides a set of invariants and protocol specifica-
tion that defines its safety property, which IVy automatically
checks using an SMT solver. Each invariant can be expressed
as a logical formula, which consists of a prefix with quantifiers
(∀ or ∃) and a certain number of variables, and a set of logical
relations among the variables. IVy checks if adding the
invariants to the safety property makes it inductive, meaning
that the conjunction of all invariants with the safety property
is inductive. Conjunction requires each invariant to hold, so
IVy reports whether any invariant fails, at which point the
developer can try again with a different set of invariants. This
requires substantial manual effort by the developer.

Recent work has focused on automating invariant generation
for distributed protocols, but with various limitations. I4 [18]
observes that invariants for some distributed protocols do not
depend on the size of the system, so I4 uses a specialized model
checker to generate invariants for a small size system, then gen-
eralizes them and uses IVy to check if the conjunction of the
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invariants with the safety property is inductive for the protocol
specification. If not, IVy indicates which invariants failed. I4 re-
moves them and tries again, and if that fails, tries using a larger
size system to generate invariants. However, I4 provides no
guarantee that it can find the inductive invariant, as it may not be
possible to verify a protocol based on invariants derived from a
single instantiation of the protocol. For example, if the protocol
involves the parity of nodes, then no single instance can capture
all behaviors of the protocol. I4 still requires manual effort, as a
developer must inspect a protocol to add additional constraints
that reduce the state space to make model checking feasible.

FOL-IC3 [11] infers invariants by searching for logical
separators between reachable and invalid states in the protocol.
It searches for separators by checking if a separator exists for
a fixed number of variables and logical constraints, iteratively
increasing the number of possible variables and constraints
it considers if it fails. FOL-IC3 provides a strong theoretical
guarantee that it can always find the inductive invariant, but
does not scale to more complex protocols due to the large
space of possible separators that it enumerates and its heavy
and repeated use of expensive SMT queries.

We present DistAI (DISTributed protocol Automated learn-
ing of Invariants), a fully-automated system for learning in-
ductive invariants for distributed protocols. Like I4, DistAI
uses IVy to check invariants, but takes a completely different
approach to generating invariants and retrying when invariants
fail. We observe that even though a distributed protocol may be
used in very large systems, its invariants are likely to be concise,
as protocols need to be designed and understood by humans
to be correct. For example, the two-phase commit protocol has
an invariant that one node can commit only if all nodes have
voted yes, which can be expressed as the following formula:

∀N1 N2. go_commit(N1)⇒vote_yes(N2). (1)

The formula for this invariant only requires two variables, N1
and N2, and two relations, go_commit(N1) and vote_yes(N2),
to represent the constraint, but applies to all possible pairs
of nodes in an implementation of the protocol regardless
of the number of nodes in the implementation. Rather than
picking a finite size system from which to generate invariants
as in I4, DistAI operates in formula space and picks a finite
formula size, with a maximum number of quantified variables
(a variable and its quantifier ∀ or ∃) and literals (a relation such
as go_commit(N1) in the above example or its negation), for
which it enumerates candidate invariants. It then combines the
candidate invariants with the desired safety property and feeds
them to IVy. If DistAI does not succeed for a given formula
size, it increases the formula size and repeats the process until
the inductive invariant is found.

Although formula space is finite, enumerating and checking
all possible invariants with an SMT solver for even a modest
size formula is prohibitively expensive. DistAI limits the set of
candidate invariants it feeds IVy to check such that it can still
provide a strong theoretical guarantee of finding the inductive

invariant while delivering fast performance. DistAI provides
this key feature by introducing a novel data-driven approach
that uses data from protocol simulations to prune the invariants
that are checked to only those that hold for the simulations.

DistAI’s data-driven approach starts with the protocol
specification used by IVy and automatically converts it into
a form it can use to simulate the protocol for various size
systems. Protocol simulation simply performs protocol actions
by modifying the system state as described in the specification.
This generates many raw data samples, where a sample is a
snapshot of the system state after an action. Given a formula
size, DistAI projects these data samples into subsamples
that only involve at most the number of variables allowed
by the formula size. For example, if DistAI simulates the
two-phase commit protocol for a system with 100 nodes, each
data sample would contain the system state for 100 nodes, but
each subsample would contain the state of only two of the 100
nodes, assuming a formula size with two variables is being
considered as shown in Equation (1).

Using this data, DistAI introduces a novel approach that
enumerates only the strongest candidate invariants that hold
for all subsamples. An invariant I is stronger than I′ if I
implies I′. DistAI decomposes the enumeration space of
possible invariants based on the number of variables in a
formula and starts enumerating smallest formulas first. Any
weaker invariants already covered by an already enumerated
candidate invariant are skipped. For example, if DistAI has
found a candidate invariant ∀X .p(X), it will not enumerate
∀X .p(X)∨q(X) since the latter is implied by the former. This
approach results in fewer candidate invariants being generated,
and the candidate invariants generated having smaller formula
sizes, but still cover the enumeration space. Feeding these
candidate invariants to IVy results in fewer and smaller SMT
queries, improving performance. Currently, DistAI only
enumerates universal (∀ not ∃) invariants.

DistAI does not require sampling to be extensive or complete
as the candidate invariants are checked by IVy. If adding the
candidate invariants to the desired safety property is inductive,
the proof is done; IVy checks if the conjunction of all candidate
invariants with the desired safety property is inductive. Oth-
erwise, IVy indicates the invariants that failed, which DistAI
then refines. DistAI introduces a novel monotonic invariant re-
finement approach that we prove is guaranteed to find the right
inductive invariant if it can be represented by a given formula
size. We prove that the candidate invariants initially generated
by DistAI are guaranteed to be stronger than the inductive
invariant. As a result, for each candidate invariant that failed,
DistAI does not need to discard it, but instead can refine it to a
weaker invariant, simply by adding literals. It then tries again by
feeding the updated candidate invariants back to IVy. This re-
finement procedure is strictly monotonic and will converge in a
finite number of rounds. If the procedure still fails to find the in-
ductive invariant, DistAI increases the formula size and repeats
the whole process of sampling, enumeration, and refinement.
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Figure 1: DistAI workflow.

We prove that if a protocol is verifiable with universal
invariants, DistAI is guaranteed to verify it eventually.
DistAI operates on formula space, and any invariant formula
contains a finite number of variables and literals, so DistAI
will converge eventually. Furthermore, DistAI is simple
and self-contained, only relying on IVy. It has no other
requirements for external components, such as a complex
model checker. It also supports protocol abstraction, making
it possible to verify protocols that use other protocols, without
the need of an executable protocol implementation; only the
protocol specification already required to use Ivy is needed.

We demonstrate the effectiveness of DistAI by evaluating
it using 14 widely-used distributed protocols in a head-to-head
comparison against I4 and FOL-IC3. DistAI outperforms I4
and FOL-IC3 in terms of both the number of protocols for
which it finds the inductive invariant and the speed at which
it does so. Most protocols take a few seconds and all solved
protocols are proven in less than a minute. DistAI succeeds on
almost 50% more protocols than either I4 or FOL-IC3. DistAI
achieves these results up to an order of magnitude faster than
I4 and two orders of magnitude faster than FOL-IC3, without
requiring manual effort to add constraints or tune parameters.

2 Overview

Figure 1 illustrates how DistAI works. Starting with a
distributed protocol specification for IVy, first, DistAI does
two-stage sampling, as discussed in Section 3. It simulates
the protocol on different sizes of systems, which we refer to as
different size protocol instances, and records the system state
as it changes as a sequence of data samples. It then projects the
samples into subsamples based on the formula size currently
being considered. We express formulas in prenex normal form

(PNF), so that the prefix, which we refer to as an invariant
template, has a maximum number of quantified variables and
the matrix has a maximum number of literals. Second, DistAI
does enumeration, as discussed in Section 4. It enumerates
all strongest candidate invariants that satisfy the subsamples.
Third, DistAI feeds the candidate invariants to IVy, which
either succeeds with the conjunction of the invariants and the
desired safety property as the inductive invariant, or fails and
indicates each invariant that does not hold. Fourth, DistAI
performs monotonic refinement, as discussed in Section 5. For
each candidate invariant that does not hold, DistAI weakens the
invariant by adding literals, then feeds the new set of candidate
invariants to IVy, repeatedly weakening failed invariants until
either it finds the inductive invariant or the safety property
itself fails. In the latter case, DistAI increases the formula size
by increasing either the maximum number of variables or the
maximum number of literals allowed, and repeats the whole
process of sampling, enumeration, and refinement.

We use the Ricart-Agrawala protocol [26] as an example
of how DistAI works. Figure 2 shows the IVy specification
of this classic distributed mutual exclusion protocol, which
has five key pieces we use for learning invariants:
1. Types. (line 2) Types define different domains of the pro-

tocol (e.g., nodes, packets, epochs). The Ricart-Agrawala
protocol only has one type, node.

2. Relations. (lines 4-6) Relations define the state of the
protocol, with variables that represent types used as argu-
ments. The Ricart-Agrawala protocol has three relations.
For example, relation holds(N) has one variable N of type
node, and indicates if N is in the critical section. If the
current instance has three nodes N1,N2,N3, then there are
three concrete predicates holds(N1),holds(N2),holds(N3)
associated with relation holds. Each predicate is either
true or false at a certain system state.

3. Initialization. (lines 8-12) Initialization defines the initial
state of the protocol in terms of its relations. For the
Ricart-Agrawala protocol, all relations are initially false.

4. Actions. (lines 13-35) Actions define how the protocol
may transition from one state to another, modifying the
state by setting relations to true or false. Actions are
defined with preconditions using the require keyword,
which must be satisfied for the protocol to take the action.

5. Safety Property. (line 43) The target invariant, defined
with logical constraints on the types and relations.
As shown in the specification, a node can send a request

for the critical section to another node and can only enter
the critical section after it has received replies from all other
nodes. When receiving a request, a node delays its reply if it is
currently holding the critical section, or if it has requested the
critical section and already received a reply from the requester,
which indicates an earlier timestamp and a higher priority.
The node then sends the reply after it leaves the critical section.
The safety property at line 43 asserts that at any time, there
is no more than one node holding the critical section. For
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1 #lang ivy1.7
2 type node
3

4 relation requested(N1:node , N2:node)
5 relation replied(N1:node , N2:node)
6 relation holds(N:node)
7

8 after init {
9 requested(N1, N2) := false;

10 replied(N1, N2) := false;
11 holds(N) := false;
12 }
13 action request(requester: node , responder: node) = {
14 require ~requested(requester , responder);
15 require requester ~= responder;
16 requested(requester , responder) := true;
17 }
18 action reply(requester: node , responder: node) = {
19 require ~replied(requester , responder);
20 require ~holds(responder);
21 require ~replied(responder , requester);
22 require requested(requester , responder);
23 require requester ~= responder;
24 requested(requester , responder) := false;
25 replied(requester , responder) := true;
26 }
27 action enter(requester: node) = {
28 require N ~= requester -> replied(requester , N);
29 holds(requester) := true;
30 }
31 action leave(requester: node) = {
32 require holds(requester);
33 holds(requester) := false;
34 replied(requester , N) := false;
35 }
36

37 export request
38 export reply
39 export enter
40 export leave
41

42 # safety property
43 invariant [safety] holds(N1) & holds(N2) -> N1 = N2

Figure 2: Ricart-Agrawala protocol written in IVy. “~” stands for
negation. Capitalized variables are implicitly quantified. For example,
line 9 means ∀N1 N2∈node, requested(N1,N2) := f alse.

simplicity, Figure 2 specifies the protocol without explicit
timestamps and only shows one requested relation as opposed
to separate request_send and request_received relations
which would be part of the real protocol. The safety property
of Ricart-Agrawala is not an inductive invariant itself. One
needs to add the following two invariants to the safety property
so that the resulting conjunction forms an inductive invariant:

∀N1 N2.¬(replied(N1,N2)∧replied(N2,N1)) (2)
∀N1 N2. holds(N1)∧N1 6=N2→replied(N1,N2). (3)

The first invariant asserts the absence of bidirectional reply,
meaning that any two nodes cannot both give the other one
a higher priority. The second invariant says that any node
holding the critical section must have received replies from all
other nodes. DistAI automatically finds the inductive invariant
by learning the additional invariants.

Two-stage sampling. To automatically learning the induc-
tive invariant and prove the correctness of the Ricart-Agrawala

protocol, DistAI first does two-stage sampling, as shown in
Figure 1. It simulates the protocol at different instance sizes
and records the system state as a sequence of data samples,
each of which presents the values of all the relations. For
example, a data sample for an instance size of five nodes (i.e.,
n1, n2, ···, n5) using the Ricart-Agrawala protocol consists of
55 boolean values denoting if the following 55 predicates hold
or not at the current state:

requested(n1,n1), requested(n1,n2),···, requested(n5,n5)

replied(n1,n1), replied(n1,n2),···, replied(n5,n5)

holds(n1), holds(n2),···, holds(n5).

DistAI chooses a maximum formula size for a candidate
invariant, which defines the maximum number of quantified
variables that can be used per domain and the maximum num-
ber of literals (a predicate or its negation) in the formula. DistAI
projects data samples to subsamples, which only contain
values of predicates that match the formula size. For example,
given a formula with two variables {∀N1 N2}, indicating that
candidate invariants start with ∀N1 N2···, each subsample only
contains the value of predicates related to two assigned nodes.
Enumeration. DistAI then enumerates all strongest candi-
date invariants that satisfy the subsamples, up to the maximum
formula size. Invariants are expressed as formulas in first-order
logic. For example, given a maximum formula size of at most
two variables and two literals, the following three formulas
could be enumerated, assuming they all satisfy the subsamples:

∀N1 6=N2. replied(N1,N2) (4)
∀N1 6=N2. replied(N1,N2)∨replied(N2,N1) (5)
∀N1 6=N2. replied(N1,N2)∨¬holds(N1). (6)

However, DistAI would only generate the first one as a
candidate invariant because the first one implies the other two,
so the latter two formulas can be skipped. The first formula
is the strongest candidate invariant among the three formulas.
Monotonic refinement. DistAI feeds the candidate invari-
ants and the protocol specification to IVy, which runs its
SMT solver to check if the conjunction of the invariants with
the safety property is an inductive invariant. If the solver
passes, DistAI has succeeded. Succeeding means that if the
conjunction of the invariants with the safety property holds
before a protocol action is taken, each invariant still holds after
the action is taken. Otherwise, IVy outputs which candidate
invariants failed, and DistAI weakens each failed invariant and
tries again with IVy with the candidate invariants, each failed
invariant being replaced by weakened invariants with no more
variables and literals than the maximum formula size. For
the Ricart-Agrawala protocol, IVy shows that the invariant
in Equation (4) is incorrect. The invariant is then weakened
into Equations (5) and (6), among others, which will then be
checked by IVy. Later, IVy will also invalidate Equation (5),
and since it has reached the maximum formula size, it will be
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requested(X,Y):
X\Y n1 n2 n3 n4 n5
n1  0  1  1  1  0
n2  1  0  1  0  1
n3  0  0  0  0  0
n4  1  1  0  0  0
n5  1  1  1  1  0

replied(X,Y):
X\Y n1 n2 n3 n4 n5
n1  0  1  0  0  1
n2  0  0  0  0  1
n3  1  1  0  1  1
n4  1  1  0  0  0
n5  0  0  0  1  0

holds(X):
X n1 n2 n3 n4 n5
  0  0  1  0  0

Subsampling

Template:
Forall N1 N2,

requested(X,Y):
X\Y N1 N2
N1  0  1 
N2  0  0 

holds(X):
X N1 N2
  0  1  

replied(X,Y):
X\Y N1 N2
N1  0  0 
N2  1  0 

Subsample: N1 ← n2, N2 ← n3
Sample

Figure 3: The subsampling process. The frame on the left shows a single sample state of a finite instance of the Ricart-Agrawala protocol with
five nodes. A single subsample with two quantified variables {∀N1 N2} is generated by mapping the quantified variables to concrete nodes
in the finite instance, n2 and n3, and extracting their associated values (shown in blue boxes in the sample frame). 0/1 stand for false/true.

simply discarded. Equation (6) is never invalidated by IVy and
will be part of the inductive invariant in the end. If IVy indicates
that the safety property failed, it means that the formula size
is not sufficient. DistAI will then increase the formula size
by either increasing the maximum number of variables or the
maximum number of literals, then re-run the process.

3 Two-Stage Sampling

Obtaining data samples for a distributed protocol requires simu-
lating a finite instance of the protocol and recording the system
state on each action. However, invariants are usually composed
of quantified variables that impose constraints on all domains
of the protocol, not just the specific domains of a finite instance.
Therefore, DistAI projects the collected finite state samples
into abstract subsamples on quantified variables that also apply
to all domains of the protocol and represent potential predicates
in the invariant. We refer to these two procedures as sampling
and subsampling respectively, since many abstract subsamples
can be generated from a single concrete data sample.

The two-stage sampling has four parameters: the absolute
maximum number of instances to consider before terminating
(MI), the maximum number of instances to consider before
terminating if no further subsamples are generated (MIS), the
number of actions to take when simulating a finite instance
(MA), and the number of subsamples to generate from one
data sample (SD). As we show in Section 6, DistAI’s ability to
find an inductive invariant is not sensitive to the specific values
of these parameters, which are always set to their defaults of
1000, 20, 50, and 3, respectively.
Sampling. DistAI first translates the protocol from IVy into
Python, with relations simulated by multidimensional arrays,
and actions simulated by Python functions. This allows DistAI
to efficiently simulate the protocol. The translation is not in the
trusted computing base since learned invariants are eventually
validated by IVy.

DistAI then simulates the protocol in Python from different
valid initial states on randomly chosen finite instances of the
protocol. DistAI randomly chooses an instance size from some
range of sizes using a simple discrete uniform distribution. For

each domain T (e.g., node), a protocol typically has some min-
imum instance size to function well, which we refer to as NT

min.
In practice, the minimum instance size NT

min is determined as
the maximum number of variables of type T in any relation; a
protocol will not function well if its relations have variables that
cannot be mapped to the instance size. For example, for a pro-
tocol with two relations p(n1 :T1,n2 :T1,m1 :T2) and q(m1 :T2),
we have NT1

min =max(2,0)= 2 and NT2
min =max(1,1)= 1. The

probability for choosing a given domain size NT is then:

Pr[NT ]=1/w (NT
min≤NT <NT

min+w)

DistAI uses w = 4 by default. This allows sampling from
multiple instance sizes, but limits the instance sizes to within
w of the minimum instance size for performance, as larger
instances take more time to simulate.

For each valid initial state, DistAI simulates the protocol
by performing MA number of actions. Since the distributed
protocols are nondeterministic with regard to the next action
taken (e.g., we do not know which node will send the next
request or reply), multiple runs from the same initial state
will result in different samples. Given an initial state s0,
DistAI uses the simple method formalized in Algorithm 1, to
simulate a protocol, which randomly chooses an action from
an action pool (line 6) with randomly chosen arguments from
an argument pool (line 9) that satisfy the precondition (line
10). It then performs the action, records the new system state,
and repeats the process (line 16-17). An action is removed
from the action pool once its argument pool is exhausted,
and the protocol terminates if the action pool is exhausted.
Since some protocols may never terminate, MA defines an
upper bound on the number of actions performed. Once the
simulation completes, the set of reached states S is returned.

For example, for the Ricart-Agrawala protocol, during each
iteration of the algorithm, DistAI first randomly selects one of
the four possible actions: request, reply, enter, and leave. If
request is selected, DistAI then randomly chooses the nodes
for its two arguments, requester and responder. However,
not every pair of nodes are valid arguments as the two nodes
must satisfy lines 14-15, the two preconditions to legitimately
trigger the request action under the protocol. If the current
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Algorithm 1 Stochastic Sampling Algorithm.

Input: Protocol P with actions A . Initial state s0
Output: A simulation trace, represented by a set of states S

1: S :={s0}, s :=s0
2: for iter :=1 to MA do
3: action_pool :=A
4: action_ f ound := f alse
5: while¬action_ f ound∧|action_pool|>0 do
6: action := select_random(action_pool)
7: args_pool := enum_arguments(s,a)
8: while |args_pool|>0 do
9: args := select_random(args_pool)

10: if precondition_holds(P ,s,action,args) then
11: action_ f ound := true
12: break
13: args_pool :=args_pool\{args}
14: action_pool :=action_pool\{action}
15: if action_ f ound then
16: s:=execute_protocol(P ,s,a,args)
17: S:=S∪{s}
18: else
19: break
20: return S

〈requester,responder〉 pair violates the precondition, DistAI
removes it from the argument pool and randomly selects
another one. This repeats until a valid pair of arguments is
found or the pool is exhausted, in which case DistAI removes
request from the action pool and selects another action.

After each iteration, DistAI logs the current system state,
represented by the value of all the relations. In Figure 2, that
is the value of predicates requested(N1,N2), replied(N1,N2),
and holds(N1) for all N1 and N2. Figure 3 shows a sample
of the Ricart-Agrawala algorithm for an instance size of five
nodes in the left frame. The requested and replied relations
each take two nodes as arguments, so their samples record
the relations for all possible pairs of nodes, resulting in 25
boolean values each. The holds relation only takes a single
node as argument, so five boolean values are recorded, one
for each of the five nodes in the protocol instantiation.

DistAI can also simulate protocols calling other protocols,
even when the protocol being called is a blackbox. When a
protocol calls another protocol through a blackbox interface,
described by a specification without a concrete implemen-
tation, DistAI treats it as an action with nondeterministic
behavior. If the action is selected with arguments that satisfy
its preconditions, DistAI selects randomly updated states that
satisfy its postconditions as the execution result.

Our simple stochastic sampling procedure, while very
efficient, may not achieve high coverage and can leave corner
cases uncovered. More sophisticated techniques [1, 25, 30]

can be applied to improve coverage for complex protocols
with sparse inputs and difficult to reach states. However, the
correctness of learned invariants is guarded by the Z3 SMT
solver used by IVy. If the samples are incomplete and the
invariants fail the SMT check, DistAI will iteratively refine
the invariants until they are correct, as discussed in Section 5.

Subsampling. The data samples from protocol simulation
may be of all different lengths depending on the instance size
used. We want to map the concrete samples from simulation
to an invariant template, the small set of quantified variables
that may appear in the invariant, denoted by τ. Given a set
of data samples and an invariant template, DistAI applies a
subsampling procedure translating the variable length data
samples to fixed length vectors, which we call subsamples.
Formally, a subsample corresponds to an assignment α of
the variables in τ and contains the values of relations given
the assignment to the template. Subsamples taken with an
invariant template with variables V1,...,Vn can then be used
to learn invariants (denoted I) on those variables:

τ={∀V1...Vn} ∀V1...Vn. I(V1,...,Vn).

For example, in the Ricart-Agrawala protocol, the relations
requested and replied each operate on two nodes, so the initial
template is τ={∀N1 N2}. Under this template, there are only
10 predicates that may appear in an invariant formula, namely:

requested(N1,N1), requested(N1,N2), requested(N2,N1),

requested(N2,N2), replied(N1,N1), replied(N1,N2),

replied(N2,N1), replied(N2,N2), holds(N1), holds(N2).

For this template, a 5-node data sample can induce 5∗4=20
subsamples, by first assigning one node X1 for N1 and then an-
other node X2 for N2 , as illustrated in Figure 3. Since there are
10 predicates, each subsample has 10 possible boolean values,
so one data sample results in 20×10=200 boolean values.

Enumerating all valid subsamples from each sample can
be computationally undesirable, especially for multi-domain
protocols. If we add a new domain msg, and let the template be
{∀N1 N2∈node, M1 M2∈msg}, then a sample with five nodes
and 10 messages will induce 1,800 subsamples. Therefore,
DistAI randomly chooses SD valid subsamples from each sam-
ple. Two-stage sampling terminates when MI instances have
been simulated, or no new subsample is found after simulating
MIS consecutive instances of the protocol. The subsamples
are then deduplicated and passed on to invariant enumeration.

Although DistAI’s sampling has several parameters, they do
not need to be manually tuned to find inductive invariants. We
use the default values for all protocols. For example, when MA
or SD become larger, each simulation round will take longer,
but fewer rounds will be required to converge. Similarly, a
small MI/MIS may stop two-stage sampling prematurely,
but the missing states will be resolved later by monotonic
refinement. The parameters do not affect whether DistAI finds
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inductive invariants, only how fast it finds them. Sampling is
useful simply as a performance optimization that reduces the
number of SMT queries required during refinement.

4 Candidate Invariant Enumeration

Algorithm 2 shows DistAI’s enumeration-based algorithm to
generate candidate invariants from the subsamples obtained
in Section 3. To reduce the number of candidate invariants
required for covering the invariant space and reduce the
maximum number of literals needed for finding the inductive
invariant, we partition the invariant space into multiple
regions, each represented by a constrained template called a
subtemplate. We then enumerate all possible invariants in each
region (i.e., under each subtemplate), and retain candidate
invariants that hold for the collected subsamples.
Template decomposition. Before enumerating candidates
invariants, we decompose templates into subtemplates that
incorporate additional constraints (line 1). A template with N
variables in the same domain will be split into N subtemplates
which have from 1 to N variables. A subtemplate with more
variables is said to be larger than a subtemplate with fewer
variables. For example, a template τ={∀N1 N2}will be split
into two subtemplates, τ1 ={∀N1 N2. N1 =N2}={∀N1} and
τ2 ={∀N1 N2. N1 6=N2}, abbreviated as {∀N1 6=N2}, with τ2
being larger than τ1. All operations that use subtemplates in
Algorithm 2 traverse them from smallest to largest (lines 2 & 5).

This subtemplate optimization reduces the cost of enu-
meration in two ways. First, subtemplates reduce the number
of candidates that need to be enumerated due to symmetry.
For example, for the Ricart-Agrawala protocol, when using
template τ, both of the following invariants will be enumerated:

∀N1 N2.¬replied(N1,N1) ∀N1 N2.¬replied(N2,N2).

On the other hand, when using the subtemplate τ1, the
equivalent enumeration would only result in one candidate:

∀N1.¬replied(N1,N1). (7)

Furthermore, DistAI will project Equation (7) using τ2 to the
following candidate invariants:

∀N1 6=N2.¬replied(N1,N1) ∀N1 6=N2.¬replied(N2,N2),

which are then marked as validated using τ1, avoiding further
redundant validations. We refer to this as invariant projection.

Second, subtemplates can reduce the maximum number of
literals in the invariant formula. For example, one invariant of
the Ricart-Agrawala protocol (Equation 3) can be rewritten as:

∀N1 N2.¬(N1 6=N2)∨¬holds(N1)∨replied(N1,N2) (8)

This is a disjunction of three literals under the full template τ.
However, using subtemplate τ2 ={∀N1 6=N2}, an equivalent

Algorithm 2 Invariant Enumeration Algorithm.

Input: Template τ, subsample table ST , max-literal l
Output: A set of invariants I∗

1: subtemplates := decompose_templates(τ)
2: for τ′∈ traverse(subtemplates) do
3: proj_table[τ′] := ST|τ′
4: I[τ′] := /0

5: for τ′∈ traverse(subtemplates) do
6: predicates := proj_table[τ′].header
7: Pτ := predicates∪{¬p|p∈predicates}
8: for n :=1 to l do
9: for inv∈ combinations(Pτ, n) do

10: if check_subset_exists(inv, I[τ′]) then
11: continue
12: if check_inv_holds(inv, proj_table[τ′]) then
13: I[τ′] := I[τ′]∪{inv}
14: for τ′succ∈successors(τ′) do
15: for inv∈ I[τ′]) do
16: I[τ′succ] := I[τ′succ]∪ proj_inv(inv,τ′,τ′succ)
17: I∗ := {(τ′ : inv) | τ′ ∈ subtemplates, inv ∈

I[τ′], inv was checked against subsamples}

form of this invariant can be learned using a formula size with
a maximum of two literals:

∀N1 6=N2.¬holds(N1)∨replied(N1,N2)

We can denote an invariant as τ : inv, where τ is the subtemplate
under which the invariant formula inv is found and inv is
expressed as a disjunction of literals. In this example, we
effectively can denote the same invariant using subtemplate
τ2 as τ2 : inv′, where one literal that was previously part of inv
is no longer part of inv′ because it is now a part of τ2. Because
DistAI operates in formula space and the time complexity
of enumeration is exponential in the maximum number of
literals, such a small reduction in the number of literals can
have a significant impact on the overall cost of enumeration.

Subtemplates can also reduce the maximum number of lit-
erals by exploiting another form of symmetry. If there is a
total order on a domain, such as with node identifiers, we will
further assign an order on the variables in the subtemplate and
strengthen {∀N1 6=N2} into {∀N1<N2}Because of symmetry,
invariant formulas with {∀N1 < N2} are equivalent to those
with{∀N2<N1}, so we do not need to enumerate the latter once
we have done the former. This is useful since inductive invari-
ants often contain comparisons between variables in a domain
with a total order. For example, this optimization helps reduce
the maximum number of literals required from six to four for
the database chain replication protocol evaluated in Section 6.

Subtemplates work with multiple domains as well. Consider
a protocol with two domains, T1 and T2, where T1 defines a total
order, and the template τ is {∀X1 X2 X3∈T1,Y1 Y2∈T2}. After
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Figure 4: Dependency relations between the six subtemplates
derived from the template {∀X1 X2 X3∈T1,Y1 Y2∈T2}.

template decomposition we get six subtemplates, as shown in
Figure 4. For multiple domains, there may not exist a total or-
dering of all subtemplates from smallest to largest, so the only
requirement for the order of traversal of subtemplates is that
the quantified variables in each subtemplate are not a subset of
a prior one, such that formulas can always be validated with the
smallest possible subtemplate. In Figure 4, A→B→C→D→
E→F is a valid traversal order, while A→D→E→B→C→
F would be invalid because the quantified variables {X1,X2,Y1}
for subtemplate B are a subset of {X1,X2,Y1,Y2} of subtemplate
E. We follow graph terminology and call subtemplates B and
D the successors of A, and A the predecessor of B and D.
Subtemplate projection. Because DistAI uses subtem-
plates for candidate enumeration instead of templates, the full
subsamples of the invariant template need to be projected onto
each subtemplate (line 3). This is done similarly to how data
samples are projected onto full subsamples using an invariant
template, as discussed in Section 3, except in this case, full
subsamples are projected onto subsamples using a subtemplate.
For example, for this multi-domain protocol, when projecting
full subsamples to subtemplate {∀X1 < X2 ∈ T1, ∀Y1 ∈ T2}
(node B in Figure 4), there are six possible variable mappings:
{X1→X1,X2→X2,Y1→Y1},...,{X1→X2,X2→X3,Y1→Y2}.
Note that the total order on T1 needs to be preserved, otherwise
there would be 12 possible mappings. Similarly, going to back
the Ricart-Agrawala protocol example, when projecting full
subsamples of the invariant template τ to subtemplate τ1, there
are two possible variable mappings: {N1→N1,N1→N2}.
Subtemplate candidate enumeration. DistAI enumerates
and checks all possible candidates for each subtemplate
τ′ (lines 6-13). Each subtemplate τ′ has a certain number
of predicates m. For example, for the Ricart-Agrawala
protocol using template τ1, there are three predicates:
requested(N1, N1), replied(N1, N1), holds(N1). DistAI
adds the m predicates p1, p2, ..., pm and their negations
¬p1,¬p2,...,¬pm to the literal pool Pτ (line 7).

Given a formula size with the maximum number of literals
l, DistAI enumerates all subsets of Pτ with size at most l as
candidate invariants. For example, if m = 3 and l = 1, there
would be six candidate invariants: p1,¬p1, p2,¬p2, p3,¬p3.
By default, DistAI initially sets l=3, and iteratively increases
it later in the refinement process (see Section 5). We only

consider invariants in the form of disjunctions of literals since
invariants with conjunctions can simply be split into multiple
invariants. If a candidate invariant C includes both a predicate
and its negation, it will be discarded. If not, DistAI checks
the validity of C against the subsamples. If C is satisfied by
all subsamples for the subtemplate, C is added to the set of
generated invariants, which we refer to as the invariant set.

DistAI exploits symmetry to prune the candidate enumer-
ation space. Whenever an invariant is learned, we permute the
quantified variables with the same type and emit equivalent
candidates without needing to check if they are satisfied
by the subsamples. For example, under the subtemplate
{∀ X 6=Y ∈T1, A 6=B∈T2}, if p(X ,Y )∨¬q(Y )∨r(X ,A,B) is
an invariant, then p(Y,X)∨¬q(X)∨r(Y,B,A), along with two
other formulas, are also invariants.

Enumeration is ordered by the number of literals in the
candidate invariants, and any candidate that is weaker than
an invariant already added to the invariant set is skipped (lines
8-11). For example, if we already know p∨¬q is an invariant,
then for any predicate r, p∨¬q∨r is guaranteed to be a valid
but weaker invariant, and can be skipped in the enumeration.
Based on Figure 3, applying this enumeration procedure to
the Ricart-Agrawala protocol with subtemplate {∀N1} and
l=2 results in the following two generated invariants:

¬requested(N1,N1) ¬replied(N1,N1)

Invariant projection. After finding all candidates on
one subtemplate, DistAI calculates the projection of the
candidates on each successor, then propagates the projection
and moves on to enumerate the next subtemplate (line 14-16).
This reduces the cost of validating candidates using larger
subtemplates against their subsamples. For example, for the
Ricart-Agrawala protocol, suppose we have learned two
invariants ¬requested(N1,N1) and ¬replied(N1,N1) under
subtemplate τ1 = {∀N1}. Before enumerating candidates
under subtemplate τ2={∀N1 N2}, we know the following four
candidates must hold under τ2 because they are projections
of the learned invariants under the simpler template τ1:

¬requested(N1,N1) ¬replied(N1,N1)

¬requested(N2,N2) ¬replied(N2,N2)

As a result, these four candidates can simply be added to the
invariant set under τ2 without enumerating and validating
them against any subsamples (line 16). Any weaker candidates
will also be skipped, further reducing the cost of enumeration.
For example,¬requested(N1,N1)∨holds(N1) can be skipped
since it is weaker than¬requested(N1,N1).
Strongest possible invariant set. Finally, after traversing
all subtemplates, DistAI unions together the subtemplate
invariant sets to form the initial set of generated invariants
(line 17) which will be fed to IVy. Since all possible candidate
invariants have been considered for each subtemplate, we can
prove that, for any invariant inv (in the form of disjunctions of
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literals) under template τ with a maximum number of literals
of no more than l, there must exist an invariant inv′ in the con-
structed invariant set such that inv′⇒ inv. General invariants
can be converted into conjunctive normal form (CNF) and
then split into multiple invariants in the form of disjunctions
of literals. Thus, the initial invariant set for a subtemplate is a
strongest possible invariant set that is guaranteed to be at least
as strong as the inductive invariant if there are no more than
τ variables, also known as quantifiers, and l literals.

Intuitively, since each subtemplate provides the strongest
possible invariant set, the invariant checked by IVy, which is
constructed using the conjunction of all invariants across the
union of subtemplate invariant sets, should also be the strongest
with regard to the subsamples. In practice, when unioning
the invariant sets, we can exclude invariants generated by
projection from predecessors because they can be implied by
their original counterparts. We formalize this in Theorem 1:

Theorem 1. Let I∗ be the output of Algorithm 2. For any invari-
ant set I under template τ with a maximum number of literals of
no more than l, if I is satisfied by every subsample, then I∗⇒ I.
Proof. First we consider a variant of Algorithm 2 where Line
17 does not exclude invariants generated by projection. We
prove this by contradiction. Suppose there exists I under
template τ with a maximum number of literals of no more
than l, I is satisfied by every subsample and I∗; I. Consider
any invariant τ′ : inv∈ I but τ′ : inv /∈ I∗. Recall each individual
invariant is a disjunction of literals, assuming CNF. Since I is
satisfied by every subsample, τ′ : inv is also satisfied by every
subsample. If we reach lines 12-13 in Algorithm 2, it will be
added to the invariant set. The only possibility of τ′ : inv /∈ I∗ is
that the branch condition at line 10 evaluates to true. However,
this indicates that a subset of inv is already in the invariant set.
The subset of inv implies inv (e.g., p∨q⇒ p∨q∨r). So we still
have I∗⇒τ′ : inv. To conclude, every τ′ : inv∈ I but τ′ : inv /∈ I∗

can be implied by I∗, which is a contradiction to I∗; I.
Now we exclude invariants generated by projection and get

a new I∗new. From lines 15-16, every excluded invariant can be
implied by another invariant in its predecessor subtemplate,
so we can show I∗⇔ I∗new, thus completing the proof.

Constants and function symbols. Although the discussion
above assumes a literal can only be a predicate or its negation,
DistAI also supports constants and function symbols as literals.
For example, given a template {∀X Y ∈ T} and a constant
c∈T , DistAI considers X = c and Y = c as two independent
predicates and reasons about them like any other predicate. As
another example, given a template {∀X1 X2∈T1,Y1∈T2} and
a function f : T1→T2, DistAI can introduce Y2 = f (X1),Y3 =
f (X2) and treat Y2,Y3 as variables like Y1.

5 Monotonic Invariant Refinement

When DistAI feeds the enumerated invariants to IVy, IVy
may find that the conjunction of the invariants and the safety

Algorithm 3 Minimum Weakening Algorithm.

Input: Invariant set
I[τ′] for each subtemplate τ′, and the broken invariant τ′0 : inv
Output: Updated invariant set I[τ′] for each subtemplate τ′

1: I[τ′0] := I[τ′0]\{inv}
2: if inv.length< l then
3: for literal∈ valid_literals(τ′0) do
4: if literal /∈ inv then
5: new_inv := inv∪{literal}
6: if ¬ check_subset_exists(new_inv, I[τ′0]) then
7: I[τ′0] := I[τ′0]∪{new_inv}
8: for τ′succ∈successors(τ′0) do
9: new_invs:=proj_inv(inv,τ′0,τ

′
succ)

10: for new_inv∈new_invs do
11: I[τ′succ] := I[τ′succ]∪{new_inv}

property are not inductive and return a list of invariants that
failed. This is likely to happen at least for the initial invariants
that DistAI enumerates as its sampling is not guaranteed to be
complete. Because sampling is not complete and is primarily
to improve performance, DistAI may generate invariants
that would not hold if sampling was done for more protocol
instances. In general, when IVy indicates that an invariant
fails, it is difficult to know whether the solution is to weaken or
strengthen the invariant. Prior work uses different methods to
evade this challenge but gives no fundamental solution [19,35].

DistAI provides a simple and clean solution to this problem
by starting with the strongest possible invariants and ensuring
that the invariants remains the strongest possible ones
throughout the refinement process. For each invariant that
fails, which we refer to as a broken invariant, DistAI applies
mimimum weakening to the invariant. The candidate invariant
space becomes strictly smaller after each failure. DistAI
ensures that the conjunction of the weakened invariants will
remain stronger than the eventual invariants that must be added
to the safety property to make it inductive, if it is expressible
under the current template τ and maximum number of literals
l. The overall process is guaranteed to converge to find the
inductive invariant.

Algorithm 3 shows the minimum weakening algorithm used,
given an initial invariant set and a broken invariant. We denote
an invariant as τ′ : inv, where τ′ is the subtemplate under which
inv is found and inv is the invariant expressed as a disjunction
of literals. The algorithm consists of three steps. First, DistAI
removes the broken invariant from the initial invariant set.
When IVy returns that τ′0 : inv fails, DistAI removes τ′ : inv
from the invariant set that was initially passed to IVy (line 1).

Second, DistAI finds all weakened versions of the broken
invariant and adds them back to the invariant set. A weakened
version of τ′ : inv is created by add one more literal via disjunc-
tion to inv (lines 2-7). For example, suppose inv = p∨¬q is
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rejected by IVy. Recall that during the invariant enumeration,
since p∨¬q was considered as an invariant, for all literals r,
the candidate p∨¬q∨r would be skipped. Now, for any literal
r, p∨¬q∨r becomes a meaningful invariant. DistAI updates
the invariant set by adding the weakened invariants back to
the invariant set as long as they can not be implied by some
other invariant that is already in the invariant set (e.g., p∨r).
If the broken invariant has reached the maximum number of
literals, this second step will be skipped.

Third, DistAI projects the broken invariant to higher subtem-
plates, and adds all such projections. For each successor τ′succ
of τ′0, DistAI adds all the projections of inv on τ′succ to the invari-
ant set (line 8-11). To see why this is necessary, consider the
following candidate invariant in some leader election protocol:

∀X ∈T.¬leader(X). (9)

This asserts no one can be a leader. This invariant may fail
in IVy because the SMT solver observes a system state
{leader(i1),¬leader(i2), i2< i1} (suppose T has total order).
Recall that DistAI uses a traversal order to enumerate invariants
under different subtemplates, and the invariants from smaller
subtemplates will be projected to larger subtemplates to
avoid repeated enumeration. So previously, the following two
candidate invariants, under a larger subtemplate {∀X <Y ∈T},
were skipped because they could be implied by Invariant (9).

∀X <Y ∈T.¬leader(X) (10)
∀X <Y ∈T.¬leader(Y ). (11)

But now, after Invariant (9) is invalidated and removed, we
need to reconsider Invariants (10) and (11) and add them to the
candidate invariant set. We validate the new invariants using
IVy again. If successful, DistAI outputs the current invariant
set as the inductive invariant, otherwise we will enter the
next refinement round. In this case, if the distributed protocol
has the property that only the greatest user can be the leader,
then Invariant (11) will be invalidated in a later round, while
Invariant (10) is likely to be correct and remain valid to the end.

The three-step minimum weakening procedure guarantees
after any number of refinement rounds, the invariant set is
always a strongest possible one that is satisfied by all the
subsamples. This “strongest possible” property implies that
throughout refinement, the invariant set is always stronger than
the correct invariant set required for an inductive invariant,
so whenever an invariant fails, we should always weaken the
broken invariant. The guarantee can be formally stated as:

Theorem 2. Let I∗ be the invariant set after n refinement
rounds, and Bn={τ′1 : inv1,τ

′
2 : inv2,...,τ

′
n : invn} be the broken

invariants in each round. For any invariant set I under template
τ with no more than l literals, if I is satisfied by every subsample,
and does not imply any broken invariant in Bn, then I∗⇒ I.

Proof. We prove this by induction on the number of rounds.
The base case is simple. In Round 0, there is no broken

invariant, and the statement degenerates to Theorem 1. Now we
focus on the induction case. Suppose after k refinement rounds,
we get invariant set I∗k . For any invariant set I under template τ

with no more than l literals, if I is satisfied by every subsample,
and does not imply any broken invariant in Bk, then I∗k⇒ I.

Now we come to round k+1. We prove by contradiction.
Suppose we have an invariant set I under template τ with no
more than l literals such that 1) I is satisfied by every subsam-
ple, 2) I does not imply any broken invariant in Bk+1, and 3)
I∗k+1 ; I. Consider any invariant τ′ : inv such that I⇒ τ′ : inv
but I∗k+1 ; τ′ : inv. From the induction hypothesis, we know
I∗k ⇒ τ′ : inv. Let τ′k+1 : invk+1 be the invalidated invariant
in round k+1. From the algorithm, τ′k+1 : invk+1 is the only
removed invariant in this round. Since each invariant is a dis-
junction of literals,we can show τ′k+1 : invk+1⇒τ′ : inv. In other
words, the hypothetical “missing” invariant must be implied
by the removed invariant. We further know either inv includes
more literals than inv, or τ′ includes more quantified variables
not in τ′k+1, or both. Otherwise we have τ′ : inv⇒τ′k+1 : invk+1.
Then τ′ : inv= τ′k+1 : invk+1, a contradiction to I⇒ τ′ : inv and
I does not imply the broken invariant τ′k+1 : invk+1.

Now we consider the two cases separately. 1) inv includes a
literal p not in invk+1. Consider the formula F =τk+1 : invk+1∨
p. From τ′k+1 : invk+1 ⇒ τ′ : inv, we can show F ⇒ τ′ : inv.
However, F is added to the new invariant set I∗k+1 unless it can
be implied by existing invariants (Line 3-7 in Algorithm 3). So
we have I∗k+1⇒F⇒τ′ : inv. 2) τ′ includes a quantified variable
X not in τ′k+1. Consider the formula G=τ′′ : invk+1, where τ′′ is
τ′ extended with X . Again, from τ′k+1 : invk+1⇒τ′ : inv, we can
show G⇒τ′ : inv. However, G is added to the new invariant set
I∗k+1(Line 8-11 in Algorithm 3). So we have I∗k+1⇒G⇒τ′ : inv.
In both 1) and 2), we reach I∗k+1⇒ τ′ : inv, which means the
“missing” invariant is already implied by the existing invariant
set output by the algorithm, a contradiction.

Intuitively, Theorem 2 ensures that starting from a too
strong invariant set, the minimum weakening steps never
over-weaken the invariants and “bypass” the correct invariants
in between. Combined with Theorem 1, which guarantees
that monotonic refinement indeed starts from the strongest
invariant set, we have the following corollary:

Corollary 1. If there exists a correct invariant set expressible
with template τ and maximum number of literals l, then the
refinement procedure will terminate with one such invariant
set within a finite number of rounds, otherwise the refinement
procedure will terminate with a broken safety property.

Sometimes, the weakened versions of a broken invariant are
all discarded in the end. Then, minimum weakening provides
no benefits versus just removing the broken invariants. In
practice, DistAI first applies only the first step of minimum
weakening — removing the broken invariants. Then if failed,
DistAI applies refinement again with the first and second
step. If failed again, DistAI applies the standard three-step
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minimum weakening in Algorithm 3. This practice optimizes
performance when the weakened versions of a broken invariant
are all discarded while maintaining Theorem 2 and Corollary 1.

If available, DistAI can use counterexamples to check
weakened invariants, only adding them if they satisfy the
counterexamples. However, DistAI’s refinement procedure
currently does not use them because obtaining counterexam-
ples from IVy for an entire invariant set is extremely inefficient.
When IVy is configured to return a counterexample, it halts
early and returns the counterexample once it identifies the
first broken invariant in a set. Using IVy in this configuration
would force DistAI to weaken broken invariants one at a time
and perform many redundant SMT checks of the invariant set
through IVy, instead of weakening all failed invariants at once
between each IVy call.
Convergence and Feedback loop. Since the invariant set
is weakened after each refinement round, we can prove that the
refinement procedure terminates in a finite number of rounds,
resulting in an inductive invariant set.

If the safety property has never been violated during the
refinement process, the resulting set is the correct inductive set
and can derive the desired safety property. If, at any point, the
safety property is violated and needs to be weakened (when all
other candidates are weak enough), it means that the correct in-
variant set cannot be expressed under the current formula size,
with its per-domain template size and maximum number of
literals. DistAI will then increase the formula size, increasing
the per-domain template size or the maximum number of liter-
als, and relearn the invariants. By default, DistAI increases the
formula size by alternating between increasing the maximum
number of literals or increasing the template size, the latter by
increasing the number of quantified variables for each domain
in the template. For example, in Figure 4, i) we first increase
the maximum number of literals by one, ii) if it fails, increase
the template size by adding a new variable in type T1, iii) if
fails again, add another new variable in T2, iv) and if still fails,
increase the maximum number of literals by one again.

After increasing the formula size, we redo sampling,
enumeration, and refinement. Since any invariant contains a
finite number of quantified variables and a finite number of
literals, the feedback loop will eventually reach a template
and literal size large enough to express the correct invariant
set if one exists. Once a sufficient formula size is reached,
Corollary 1 guarantees that a correct invariant set will
be generated. Therefore, DistAI provides the following
end-to-end convergence guarantee:

Theorem 3. If the safety property of a protocol is provable
with a ∃-free invariant set, then DistAI will terminate with one
such invariant set in finite time.

Theorem 3 guarantees conditional convergence of DistAI.
However, if the safety property does not hold for the protocol
or existential quantifiers are necessary to prove it correct,
DistAI may continue in the feedback loop forever.

6 Evaluation

To demonstrate its effectiveness at determining inductive
invariants, we implemented and evaluate DistAI on a collection
of 14 distributed protocols, including all 7 protocols previously
evaluated with I4 [18]. The implementation consists of 1.6K
lines of Python code for protocol simulation and sampling and
1.6K lines of C++ code for enumeration and refinement. For
comparison, we also evaluated I4 and FOL-IC3, in both cases
using the implementations created by the original authors. All
experiments were performed on a Dell Precision 5829 worksta-
tion with a 4.3GHz 28-core Intel Xeon W-2175, 62GB RAM,
and a 512GB Intel SSD Pro 600p. Table 1 shows the results for
each protocol, including the number of domains and relations
for each protocol as indicators of protocol complexity.

DistAI outperforms both I4 and FOL-IC3 in terms of the
number of protocols for which it infers the correct invariants.
DistAI automatically infers the correct invariants for 13 out of
the 14 protocols, only failing for Paxos, on which both I4 and
FOL-IC3 also fail. I4 only solves 9 protocols, and FOL-IC3
only solves 3 protocols using its default setting, which searches
over all first-order logic formulas, but improves to solving 9
protocols if an option is enabled that limits the search space
to only ∀ quantifiers. Each approach was allowed to run for an
entire week, 168 hours, per protocol before timing out, more
than two orders of magnitude longer than the worst runtime
reported in Table 1.

DistAI and I4 only time out trying to solve Paxos, but FOL-
IC3 times out on many protocols. This is because DistAI only
uses the SMT solver for validating rather than generating in-
variants, I4 uses a model checker to generate invariants only
for a specific, small instance, while FOL-IC3 invokes the SMT
solver to generate invariants for the general protocol, multiple
times for each invariant, which is undecidable in general and
very expensive in practice. FOL-IC3 performs worse with the
default setting since the formula search space is larger and the
SMT solver performs worse for formulas with existential quan-
tifiers. In fact, FOL-IC3 fails for database chain replication, de-
centralized lock, and distributed lock with the default setting be-
cause Z3, the underlying SMT solver, fails and reports unknown,
indicating that the formula generated by FOL-IC3 does not
fall in the supported decidable fragment of first-order logic. In
contrast, DistAI never generates an undecidable formula.

Although both DistAI and I4 fail to solve Paxos, a complex
and realistic consensus protocol, the reasons for the failures
are different. I4 fails because its model checker is unable to
produce any candidate invariants. Model checking is complex
and quite resource intensive, and I4’s authors report its model
checker runs out of memory trying to solve Paxos [18].
In contrast, DistAI produces candidate invariants, but it
fails because it does not support invariants with existential
quantifers, which Paxos requires; I4 also has this limitation.
Upon failed refinement, DistAI keeps increasing the formula
size until it times out or exhausts memory. By manual
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Distributed Domains Variables Refinements DistAI time(s) I4 time(s) FOL-IC3 time(s)
Protocol Relations Literals Invariants final total ∀ default
asynchronous lock server [5] 2 5 3 2 0 12 1.1 generalize fails 6.9 -*

chord ring maintenance [24] 1 8 3 4 48 163 52.8 586.1‡ 594.4 -* -*

database chain replication [24] 4 13 7 4 158 66 58.8 20.2‡ 63.1 -* Z3 fail
decentralized lock [9] 2 2 4 2 150 16 9.4 generalize fails 37.1d Z3 fail
distributed lock [24] 2 4 4 3 82 45 12.6 152.1‡ 204.7 1451.3 Z3 fail
hashed sharding [11] 3 3 5 2 0 15 1.1 nondet fails 9.2 -*

leader election [24] 2 3 6 3 0 17 1.9 4.9‡ 4.9 26.3 -*

learning switch [24] 2 4 4 3 8 71 27.6 10.5‡ 12.4 -* -*

lock server [24] 2 2 2 2 0 1 0.8 0.5‡ 0.8 0.5 2.1
Paxos [13, 15, 23] 4 9 - - - - -* -* -* -* -*

permissioned blockchain [17] 4 10 6 3 2 13 4.9 blackbox fails 21.2 -*

Ricart-Agrawala [26] 1 3 2 2 0 6 0.9 0.8 0.8 0.7 3.2
simple consensus [11] 3 8 5 3 19 50 23.3 41.8 68.7 -* -*

two-phase commit [18] 1 7 2 3 3 30 1.9 3.1‡ 8.0 3.4 7.9
* Time out after 1 week.
‡ I4 runtimes on our machine are similar (6 out of 7 protocols slightly faster) to those previously reported for I4 [18].
s “generalize fail” means I4’s implementation fails to convert invariants from the AVR model checker to generalized universally quantified invariants.

“nondet fail” means failed on nondeterministic initialization. “blackbox fail” means error triggered on reasoning of blackbox functions.
d FOL-IC3 initially completed in less than a second, but this turned out to be incorrect due to a bug in the mypyvy protocol specification used by

FOL-IC3, which does not exist in the Ivy protocol specification used by DistAI and I4.

Table 1: Evaluation results on 14 distributed protocols from multiple sources.

inspection, we find that DistAI infers all ∃-free invariants for
Paxos. FOL-IC3 supports finding invariants with existential
quantifiers, but it also fails to solve Paxos, the one protocol
in our evaluation with existential quantifiers.

The most common reason overall why I4 fails to solve
protocols is its dependency on modeling checking a small size
implementation of the protocol to generate candidate invariants.
I4 also fails to infer the correct invariants for decentralized lock
and asynchronous lock server because it cannot generalize
the candidate invariants generated by the model checker for a
small size implementation to universally quantified invariants.
Although I4 succeeds on lock server, it fails on asynchronous
lock server because the latter explicitly models packet loss
in the network, resulting in more complex invariants.

DistAI takes a fundamentally different approach that does
not require model checking a finite instance. DistAI operates
in formula space, allowing it to enumerate invariants that hold
for any instance size. It optimizes the enumeration by running
protocol simulations across different size systems, but does
not rely on the simulations to find candidate invariants, only
to reduce the number of invariants it needs to enumerate. By
taking this data-driven approach, it is able to produce better
initial invariants to achieve greater success with more protocols
and guarantee success if there are no invariants with existential
quantifiers. Unlike I4, DistAI is simple and self-contained,
avoiding the need for, and dependence on, a complex external
model checker that, like all complex software, may have bugs.

Permissioned blockchain is another example that demon-
strates the effectiveness of DistAI. It has a blackbox Byzan-
tine broadcast protocol as a subprocedure. In permissioned
blockchain, n users have a synchronized clock. At epoch E,
only one user nE , the round-robin leader of the epoch, can (op-

tionally) propose a block, if it has found a valid one extending
its longest chain. The epoch leader uses the Byzantine broad-
cast protocol to broadcast the block in the P2P network. An hon-
est user always adds all outstanding transactions in the block it
proposed and follows the Byzantine broadcast protocol, while
an adversary can neglect certain transactions, delay block pro-
posal, and send conflicting block messages to any node at any
epoch, regardless of who the leader is. A Byzantine broadcast
protocol satisfies agreement, if all honest users always share
the same eventual result regardless of the leader is honest or
not. A Byzantine broadcast protocol satisfies validity, if when
the leader is honest, all honest users will eventually decide on
the message of the leader. A blockchain satisfies consistency,
if at any epoch, all honest users have the same view of the
blockchain (i.e., no forks or orphaned blocks). That is, for any
two honest users at any time,a block is either confirmed by both,
or confirmed by none. A blockchain satisfies liveness, if all
transaction will be confirmed within a finite number of epochs.

DistAI successfully proves that for any Byzantine broadcast
procedure that satisfies agreement and validity, the resulting
permissioned blockchain satisfies consistency and liveness1.
The Byzantine broadcast procedure is described by pre-
conditions and post-conditions in IVy without the need for
an executable implementation. When simulating the blackbox
Byzantine procedure, DistAI simply picks a random state that
satisfies the post-condition as the execution result. This random
selection may leave corner cases uncovered, but the eventual
correctness is guarded by the SMT solver, and we monoton-

1We prove a variant of the liveness property — if the leader of epoch T
is honest, then all transactions before T will be confirmed at T . The original
liveness property cannot be encoded as a safety property, thus falling out of
the scope of DistAI, I4, and FOL-IC3.

416    15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Distributed Protocol Sample Enumerate Refine Total
asynchronous lock server 0.6 0.0 0.5 1.1
chord ring maintenance 11.1 1.2 40.5 52.8
database chain replication 36.3 0.1 24.4 58.8
decentralized lock 2.1 0.1 7.2 9.4
distributed lock 0.8 0.1 11.7 12.6
hashed sharding 0.6 0.1 0.4 1.1
leader election 0.8 0.1 1.0 1.9
learning switch 19.4 0.3 7.9 27.6
lock server 0.5 0.0 0.3 0.8
permissioned blockchain 3.5 0.1 1.3 4.9
Ricart-Agrawala 0.5 0.0 0.4 0.9
simple consensus 18.8 0.4 4.1 23.3
two-phase commit 0.5 0.1 1.3 1.9

Table 2: DistAI runtime breakdown in seconds for each protocol.

ically weaken the invariant set to reach a correct solution. In
contrast, the use of a blackbox procedure poses difficulty and
triggers errors in I4. We should note DistAI solves permis-
sioned blockchain for not one, but any valid implementation of
the Byzantine broadcast protocol because it does not depend
on or require its implementation, a key benefit of our approach.

DistAI also outperforms both I4 and FOL-IC3 in terms of the
time required to infer the correct invariants. For I4, we report
both the runtime for the final instance size on which the correct
invariant is generated, as reported in [18], as well as the total
runtime, which includes trying increasingly larger instance
sizes that fail until the final instance size succeeds. Except for
learning switch, DistAI is about the same or faster than I4 for all
of the protocols solved by I4, up to an order of magnitude faster.
The runtime comparisons between DistAI and I4 are conser-
vative as they do not include the time required for concretiza-
tion [18], a step required by I4 to manually introduce additional
constraints to the protocol to limit the search space of the model
checker. DistAI is also faster than FOL-IC3 for all but the two
simplest protocols solved by FOL-IC3, in many cases by more
than one to two orders of magnitude. This is because SMT
queries are expensive and FOL-IC3 uses them extensively.

Table 1 also shows for DistAI the number of invariants identi-
fied for the correct invariant set, the total number of refinement
steps required (i.e., the number of times Algorithm 3 is called),
the total number of quantified variables of all domains in the
final template used, and the maximum number of literals used
for each protocol. Most protocols have a maximum number
of literals of 2 or 3, and in two cases 4. This validates our key
assumption that inductive invariants of distributed protocols
should be human-readable and concise. DistAI uses invariant
refinement to address missing cases during sampling for all but
the five simplest protocols, Ricart-Agrawala, hashed sharding,
leader election, lock server, and asynchronous lock server, in
which no refinement is needed as the subsample set is complete
and the correct invariant is learned without refinement.

Runtime breakdown. Table 2 provides a breakdown of the
total runtime using DistAI for each protocol. One can see the

bottleneck is either sampling or refinement, but not enumer-
ation. Sampling is expensive when the argument space for
actions is sparse because DistAI randomly selects arguments
so it can end up trying many arguments that are invalid for
each set of valid arguments, increasing the simulation runtime.
This is the reason why sampling is most expensive for database
chain replication, a protocol that guarantees serializability
and atomicity for distributed databases. A transaction is split
into subtransactions that operate sequentially on data that
is sharded across multiple nodes. For one subtransaction
to commit, it must operate on the correct node and satisfy
a set of constraints (e.g., no uncommited previous writes).
Most randomly selected subtransactions will not satisfy these
constraints. As a result, sampling spends significant time
finding valid arguments because most arguments are invalid.

Sampling is also expensive for learning switch, the only pro-
tocol for which DistAI is slower than I4. One reason is the argu-
ment space for actions is sparse, so it takes a while to find a data
sample,but the other is because the subsample space is too large
to explore. With learning switch, each node maintains a routing
table that matches destination addresses to outbound ports (i.e.,
neighbors), and updates the table upon receiving new packets.
It has a 3-ary single-domain relation route_tc(N1,N2,N3),
which means the routing trace from N2 to N1 includes N3.
Under template ∀N1 N2 N3, this single relation yields 27
predicates (route_tc(N1,N1,N1),route(N1,N1,N2),...). There
are 60 predicates across all relations, meaning that each
subsample is a 60-bit vector, so the candidate subsample space
has size 260. Although valid subsamples are sparse, DistAI
generates 33K subsamples before it cannot find anymore and
terminates. This takes a while.

Refinement can be the dominant factor in performance,
as is the case for chord ring maintenance, database chain
replication, and distributed lock, but Table 2 shows that DistAI
is successful overall at avoiding substantial SMT query costs
as refinement runtime, which includes the cost of IVy checking
the initial candidate invariants, is modest in most cases.

Figure 5 shows how sampling helps reduce the cost of
refinement for the simple consensus protocol. DistAI has prov-
able guarantees to find the correct invariants for any sample
sizes, but if the number of samples is too small (e.g., 100 in
Figure 5), it takes much longer due to many more SMT queries
on refinement. Increasing the number of samples increases
sampling time roughly linearly but decreases refinement time
roughly exponentially. However, once a minimum threshold of
samples is met, it becomes more of an even tradeoff. Sampling
can be faster by obtaining fewer samples, but because more
corner cases are missing, the refinement process takes longer to
“fix” the invariants through monotonic weakening. Conversely,
more samples require more time to simulate the protocol, while
the refinement process will be faster. The default sampling
parameters, discussed in Section 3 and used for all experiments,
resulted in 50K samples for the simple consensus protocol.

We also reran the protocol experiments with DistAI for other
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Figure 5: Runtime breakdown of DistAI on simple consensus.

sampling parameters, ranging from MA = 25 to MA = 100,
and SD= 2 to SD= 5. In all cases, DistAI was able to solve
the same 13 protocols with mostly similar runtimes and in
the worst case, three times slower runtimes than the defaults.
Detailed runtimes are omitted due to space constraints.

7 Related Work

Much work [10,14,16,28,31–33] has shown how to verify the
correctness of distributed protocols and distributed systems
given inductive invariants,but they rely on a user or external sys-
tem to provide them. Various approaches have explored learn-
ing invariants for distributed protocols. Dinv [8] identifies and
tracks critical variables in distributed systems, and then infers
likely correct invariants over these variables with Daikon [2],
a data-driven invariant learning tool. The invariants inferred
using Dinv are not guaranteed to be valid and may not be induc-
tive. Phase-PDR∀ [5] showed how to generate invariants for
distributed protocols if users can provide phase structures. In
contrast, DistAI is fully automated and does not require users
to provide any additional knowledge about the protocol.

More recently, approaches have been developed for learning
inductive invariants for distributed protocols. I4 [18] is the
first. Its key idea is to use model checking on a finite protocol
instance to generate candidate invariants. Although generated
invariants by model checking some small instance always gen-
eralized in [18], this is not guaranteed. Our evaluation shows
several protocols for which generalizing fails. I4 does not
support existential quantifiers and also requires a manual con-
cretization step. In contrast, DistAI is fully automated and
provably guaranteed to learn inductive invariants without ex-
istential quantifiers. FOL-IC3 [11] can learn invariants with
existential quantifiers by invoking an SMT solver to generate a
candidate formula that can separate a positive and a negative ex-
ample set. However, its heavy use of an SMT solvers slows its
performance to the point that in practice, it fails to find inductive
invariants for protocols that are efficiently handled by DistAI.

SWISS [9] is concurrent work that searches for invariants by
template enumeration and checking candidate invariants with
SMT queries. It does not do sampling, enumerating strongest
possible invariants, or monotonic refinement, but does
incorporate existential quantifiers in its invariant templates and

uses counterexamples to prune the formula search space. In its
reported evaluation, SWISS finds a correct existentially quan-
tified invariant for Paxos, but fails or takes orders of magnitude
more time than DistAI to find correct invariants for many other
protocols listed in Table 1, despite being multithreaded.

Many automated invariant inference tools have been built
for systems verification. Most of these tools focus on finding
invariants in sequential programs with loops. Traditional meth-
ods use symbolic reasoning to infer invariants [6, 12], while re-
cently data-driven methods using execution traces and/or coun-
terexamples have shown promise. Guess-and-check, Numinv,
and G-CLN recast invariant inference as a curve-fitting task
on execution traces, and learn loop invariants represented by
polynomials of program variables [20,27,29,34]. ICE-DT and
LoopInvGen (PIE) apply decision tree learning and PAC learn-
ing on counterexamples and iteratively refine the invariants [7,
21,22]. FreqHorn exploits both syntax and data in its inference
tool and learns ∀-quantified array invariants [3, 4]. Recently,
data-driven invariant inference has been used in other domains,
such as solving CHC clauses [35] and proving properties on
inductive algebraic data types [19]. None of these methods
consider nondeterminism in concurrent or distributed settings,
thus they cannot be directly applied to distributed protocols.

8 Conclusions

DistAI is a fully automated, data-driven methodology for
learning inductive invariants for distributed protocols. DistAI
uses data samples from protocol simulation to enumerate the
strongest possible set of candidate invariants, then feeds them
to an SMT solver to check if adding them to the safety property
is inductive. If any invariants fail, DistAI refines them by mono-
tonically weakening the invariant set and tries again with the
solver until it eventually succeeds. Starting with small invariant
formulas and strongest possible invariants based on data from
protocol simulation avoids large and frequent SMT queries,
improving performance. Starting with strongest possible in-
variants makes refinement via monotonic weakening possible,
enabling DistAI to provably guarantee that it will learn the cor-
rect inductive invariant set without existential quantifiers in fi-
nite time. Our evaluation shows that DistAI successfully learns
inductive invariants for real distributed protocols and outper-
forms alternative methods, solving almost 50% more protocols
and doing so up to one to two orders of magnitude faster.
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A Artifact Appendix

Abstract
An accompanying artifact includes all DistAI source code as
well a docker image. Instructions are provided to reproduce
the results in Table 1, Table 2, and Figure 5. The artifact can
also be used to learn inductive invariants for other distributed
protocols written in IVy.

Scope
The docker image can reproduce Table 1, Table 2, and Figure 5.
The file https://github.com/VeriGu/DistAI/blob/
master/docker_usage.md provides instructions to set up
and use the docker. Alternatively, one can build DistAI from
source, and reproduce the DistAI results in Table 1, Table 2,
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and Figure 5. The README file (https://github.com/
VeriGu/DistAI/blob/master/README.md) describes how
to use DistAI to learn inductive invariants for other distributed
protocols written in IVy.

Contents
The README file describes the structure of the artifact. The
src-py and src-c directories include the Python portion and
C++ portion of the source code. The benchmarks directory
includes IVy specifications for the 14 protocols used in the
evaluation.

Hosting
The artifact is hosted on GitHub in the repository
https://github.com/VeriGu/DistAI. Future updates
will be pushed to the master branch, and we encourage you
to use the latest version available.

Requirements
The docker image has all dependencies installed. The
installation guide (https://github.com/VeriGu/DistAI/
blob/master/install.md) provides instructions to build
DistAI from source. Note that IVy only works on Python 2,
while the source code of DistAI is written in Python 3 and
C++. The artifact has been tested on Ubuntu 20.04.1 LTS with
ms-ivy 1.7.0, Python 2.7.18, and Python 3.8.5.
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