
Flux: Multi-Surface Computing in Android

Alexander Van’t Hof†‡

alexvh@cs.columbia.edu
Hani Jamjoom‡

jamjoom@us.ibm.com
Jason Nieh†

nieh@cs.columbia.edu
Dan Williams‡

djwillia@us.ibm.com

†Columbia University, New York, NY
‡IBM T.J. Watson Research Center, Yorktown Heights, NY

Abstract

With the continued proliferation of mobile devices, apps

will increasingly become multi-surface, running seamlessly

across multiple user devices (e.g., phone, tablet, etc.). Yet

general systems support for multi-surface app is limited

to (1) screencasting, which relies on a single master de-

vice’s computing power and battery life or (2) cloud back-

ing, which is unsuitable in the face of disconnected opera-

tion or untrusted cloud providers. We present an alternative

approach: Flux, an Android-based system that enables any
app to become multi-surface through app migration. Flux

overcomes device heterogeneity and residual dependencies

through two key mechanisms. Selective Record/Adaptive Re-
play records just those device-agnostic app calls that lead to

the generation of app-specific device-dependent state in sys-

tem services and replays them on the target. Checkpoint/Re-
store in Android (CRIA) transitions an app into a state in

which device-specific information can be safely discarded

before checkpointing and restoring the app. Our implemen-

tation of Flux can migrate many popular, unmodified An-

droid apps—including those with extensive device interac-

tions like 3D accelerated graphics—across heterogeneous

devices and is fast enough for interactive use.

1. Introduction

Users increasingly own multiple mobile devices of various

shapes and sizes, with a recent survey reporting an average

of roughly three devices per person [59]. Accordingly, there

is a trend to run applications (apps) on multiple devices or

surfaces. For example, it is possible to begin a movie using

the Netflix app on a phone and switch to a larger screen to

continue watching. In general, we expect to see more multi-
surface apps emerge, including (1) switching from a larger

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2741948.2741955

Phone 

Tablet 

Hi, 

This 
is how 
Flux 
works 

App Step 1 

Phone 

Tablet 

Hi, 

This is how 
Flux works 

Step 2 

{Home Device} 

{Guest Device} 

Figure 1. Multi-surface support through app migration:

swipe to migrate unmodified app between paired devices

without cloud support.

device to a smartphone to travel, (2) displaying from a mo-

bile device to a projector, (3) switching to a different device

when the battery is running low, or even (4) collaboratively

using an app during meetings, allowing multiple people to

view, modify, and contribute.

However, despite this growth, there is little system sup-

port for multi-surface apps. Today, there are two trending

approaches. The first approach is screencasting, in which

screen output from one device is sent to another [8, 9, 31,

37, 38, 44, 65, 66]. For example, Apple AirPlay [3] allows

content on an iOS device to be displayed on an Apple TV.

However, the app continues to run on the original device, still

limited by its computing power and battery life. It cannot

take advantage of the capabilities of the new device, such as

CPU, GPU, or memory. Furthermore, apps often need to be

explicitly written for systems such as AirPlay to achieve the

best user experience. The second approach is to use a cloud-
based approach in which the actual app content is stored in a

back-end in the cloud. For example, iCloud or Google Drive

and devices like Chromecast [23] make cloud back-ends per-

vasive. However, cloud-based approaches suffer from both a

dependence on connectivity and a growing distrust of cloud

providers to handle data. Cloud provider distrust is actually

prohibitive in many enterprise environments with sensitive

client data [5, 15].

We propose a third approach to achieve multi-surface com-

puting: app migration. App migration enables the app to take

advantage of the device in use, allows the original device to

be used for other tasks, and does not require connectivity

1



to a cloud provider; if disconnected from the Internet, de-

vices can use ad-hoc networking. Furthermore, because it is

implemented at the systems level, apps do not need to be

written to support multi-surface operation.

Migration of an app is non-trivial. For example, in Android,

even though apps are written expecting to be killed at any

moment due to memory pressure, many apps do not auto-

matically save all of their runtime state. If these apps crash,

the state is lost. Therefore, it is not possible to migrate an

app by simply killing it and starting it on the destination.

Furthermore, app migration between mobile devices is more

complicated than many other environments due to device

heterogeneity. Smartphones and tablets are tightly inte-

grated hardware platforms that come in many different sizes

and incorporate a plethora of devices using non-standard

interfaces, such as GPUs and cameras. As of 2014, the

OpenSignal database shows 18,796 different Android de-

vices, up from 11,868 reported a year earlier [46].

Device heterogeneity complicates the usual challenges of

residual dependencies, or state left in the source system af-

ter migration, in two ways. First, apps interact with system
services, shared processes that may maintain app-specific

and device-specific state. It is not feasible to migrate a

shared system service along with the app or extract the

app-specific state from the service. Even if the entire state

of the system services was saved and restored on the tar-

get device, it may not work because the services man-

age device-specific state. Second, the running apps them-

selves contain—potentially device-dependent—state that is

not easily accessible to the system. Blindly saving device-

dependent app state and restoring it would not work across

the thousands of different Android devices.

To address these problems, we introduce Flux, an Android

framework for app migration. As shown in Figure 1, Flux

enables any app to migrate directly from one device to an-

other without any cloud support. Devices can be different

smartphone and tablet hardware, and Flux ensures that once

an application is migrated to a guest device, it is able to make

full use of the guest device’s hardware, including resizing

and reformatting the application content to fit the display of

the guest device. Flux accomplishes this seamless applica-

tion migration across heterogeneous devices by introducing

two novel mechanisms: Selective Record/Adaptive Replay
and Checkpoint/Restore In Android (CRIA).

Selective Record/Adaptive Replay eliminates residual de-

pendencies due to system services. Specifically, during app

execution, Flux interposes on app calls to system services

and only records those that modify app-specific device state,

automatically discarding stale interactions. Selective Record

is also used to guarantee correctness of Android services

after migration. During resume, the recorded app calls are

adaptively replayed through Flux’s service contextualization

proxy to match the guest OS’s system services. Importantly,

this record/replay mechanism ensures that device-dependent

state in the source is accurately recreated on the target.

CRIA checkpoints critical user- and OS-level state of the

running app at the source and restores it at the target. A

key feature of CRIA is that it integrates with Android to

eliminate most residual dependencies on the system and cus-

tomize the restoration of checkpointed state in a manner tai-

lored to the target, supporting device heterogeneity. CRIA

deals with device-specific state by putting the app into such

a state that it discards much of the device-specific state on

the source. Next, CRIA checkpoints core app state, including

app-specific state in Android specific drivers such as Binder,

the IPC mechanism through which apps interact with the

system-provided services that front most devices, e.g., GPS

and camera. On restore, Flux leverages Android app initial-

ization mechanisms to inform the app of changes to hard-

ware state so that app-specific device state can be recon-

structed in a manner customized to the guest platform, in-

cluding matching the UI to the screen size of the guest plat-

form. Restoring checkpointed state reestablishes the app’s

Binder connections to system services, now at the target.

We have implemented and evaluated a working prototype of

Flux on Android. Our results show that Flux successfully

migrates a wide range of the top apps from the Google Play

store across different smartphone and tablet hardware run-

ning different OS kernel versions. We show that the runtime

overhead of Flux during app execution is negligible. Not sur-

prisingly, the migration time is dominated by network trans-

fer times. Nonetheless, we found that migration time and

the amount of state transferred was modest in most cases,

demonstrating that Flux is fast enough for interactive use.

This paper presents the design and implementation of Flux.

Section 2 gives an overview of Android. Section 3 describes

the Flux architecture, focusing on Selective Record/Adap-

tive Replay and CRIA. Section 4 presents experimental re-

sults. Section 5 discusses related work. Finally, we present

some concluding remarks and directions for future work.

2. Android Background

Figure 2 gives an abridged overview of the Android system

components that apps are dependent on and are therefore

critical during app migration. An app in Android is written in

Java and runs inside an isolated instance of the Dalvik VM.

Typically, an app runs in a single process; less commonly,

an app may be split into multiple processes. Apps are in-

stalled with the PackageManagerService, which tracks app

metadata such as requested permissions. An app is typically

isolated to a single data directory through filesystem permis-

sions and access to storage such as an SD card requires ex-

plicit permission upon installation. An app consists of any

number of activities and, when necessary, talks to services
via Binder, Android’s primary IPC mechanism. An activity

2



is an app component providing a UI with which users can

interact with to perform tasks, such as send an email, or dial

the phone. A service is an app or system component that can

perform long-running operations in the background without

a UI. When migrating, the various device state associated

with both activities and services must be correctly handled.

Android apps rely heavily on interactions with shared, long-

running system services. For example, the NotificationMan-

agerService allows apps to post notifications to the status

bar, and the AlarmManagerService allows apps to schedule

code to be run at some point in the future. Apps commu-

nicate with these services and with each other exclusively

via Binder, either explicitly via RPC service interfaces or

through Intents. Intents are messaging objects used to re-

quest an action from another app, which can be broadcast to

all relevant apps by the ActivityManagerService. To simplify

the creation of RPC service interfaces, the Android Interface

Definition Language (AIDL) allows programmers to write

an interface by simply defining method prototypes. AIDL

will then generate the necessary serialization and IPC code

required for the interface.

In addition to distributing Intents, the ActivityManagerSer-

vice is responsible for managing the running of Android ap-

plications, including starting and stopping app components,

and registering app-requested BroadcastReceivers, which

act as listeners for apps for various events, e.g., informing

them of WiFi status changes. Another duty of the Activi-

tyManagerService is controlling the life cycle of activities.

In Android, activities transition between various states of

their life cycle. After creation, an activity enters the Re-

sumed state, where it remains until it is sent to the back-

ground or another activity partially obscures it from view.

Once sent to the background, the activity transitions to the

Paused state. In this state, the activity no longer receives

user input and cannot execute any code. If the activity is not

quickly brought back to the foreground, the Android task

idler will place it into the Stopped state. In this state, the ac-

tivity is guaranteed to not be visible to the user and it will no

longer be able to render its user interface.

The user interface of an Android app consists of a Win-

dow, provided by the WindowManagerService, for each ac-

tivity. A Window, similar to a desktop window, contains a

single Surface in which the content of the Window is ren-

dered. This Surface will be destroyed when the app is in the

Stopped state to conserve resources. Each Window also has a

View hierarchy attached to it. View hierarchies are rooted by

a ViewRoot and consist of ViewGroups containing Views,

which are interactive UI elements. Each time a Window is to

be rendered, the View hierarchy is traversed and each View

draws its portion of the UI.

Communication with devices takes place via system-

provided Binder services, e.g., the SensorService. An excep-

tion is the GPU, which is interacted with directly using the

Dalvik 

CameraService 

App 

Gyro Camera 

SensorService AlarmService 

GPU 

Binder 

NotificationService 

Dalvik 

Activity 

OpenGL ES Lib 

GPS 

App-specific 
device state 

Activity 

AIDL 
interface 

Figure 2. Overview of Android system components and

their relation to one another through Binder.

standardized OpenGL ES library that abstracts away hard-

ware details. Similar to other hardware libraries in Android,

OpenGL consists of both a generic library, presenting apps

with a well-known API, and a vendor-specific library, imple-

menting device-specific code called by the generic library.

All Android apps rely on the Android version of the Linux

kernel: it is therefore a shared resource. In the kernel, Binder

is implemented as a driver. Binder communication typically

consists of clients talking to services. In Binder, the ser-

vice side is dubbed a node and all clients reference nodes

via process-specific handles, identified by a simple integer.

Communication to another Binder node cannot occur with-

out first being given a reference to it by the process who cre-

ated it or a process already holding a reference to it. There-

fore, services wishing to offer other processes an RPC inter-

face must register themselves with the userspace ServiceM-
anager. The ServiceManager maintains a registry of Binder

references corresponding to names given when the service

was registered. It is up to the service itself to decide whether

or not a calling process has permission to make a particular

RPC. Other features of the kernel include ashmem, a shared

memory driver; pmem, a physically contiguous memory al-

locator used by devices like the GPU; an alarm driver, allow-

ing the AlarmManagerService to schedule alarms that can

trigger regardless of the machine’s sleep state; wakelocks, a

power management feature used to keep the machine awake

while a wakelock is held and to sleep otherwise; and the

Logger driver. When migrating between devices, the state

of all these Android specific drivers must be considered.

3. Flux

We assume an environment that consists of many mobile

devices running Flux. An app can be installed on some, but

not necessarily all, mobile devices. The device on which

the app is natively installed is called the home device. As

shown in Figure 1, users in our environment can migrate any

running app, along with all its active state, from its home

3



Migration 
Service 

Kernel 

Home 

Binder IPC 

Hardware 

Framework  
Libs 

Android 
Services 

CRIA 

Record Service Calls 

Migration 
Prep Handler 

Pairing 
Service 

Restoration 
Service 

Guest 

Hardware 

Framework 
Libs 

Android 
Services 

  W rapper App 

CRIA 

Replay Service Calls 

Pairing 
Service 

    App     App 

transfer 

Kernel 
Binder IPC 

Reintegrate 
Handler 

Figure 3. Overview of Android components involved in

migration. Components added by Flux highlighted in gray.

device to other guest devices. We do not rely on any back-

end (cloud) support or modifications to the app.

3.1 Migration Life Cycle

Figure 3 shows that Flux consists of a number of compo-

nents, which are highlighted in gray. We describe the high

level role of each component in the context of a migratable

app’s life cycle, as depicted in Figure 4: Pairing, App Exe-
cution, Migration Out, and Migration In.

Pairing. Before a user migrates an app from the home de-

vice to a guest device, Flux performs a one-time pairing op-

eration that synchronizes the home device’s core framework

and libraries to a custom location on the guest’s data parti-

tion. This is needed because the core framework and library

binaries may differ across devices; the frameworks and li-

braries used by an app must remain the same before and af-

ter migration. The differences between these files are gen-

erally small. Consequently, the synchronization operation is

performed efficiently since most files are linked against the

identical files on the guest’s system partition. In our current

implementation, we use rsync for synchronizing files and

its --link-dest option for linking identical files.

Similarly, Flux also verifies and synchronizes the home

device’s app binaries, known as Android Package Files

(APKs), and app data files to the guest device. This includes

any app-specific data directories residing on the SD card, but

not general SD card data available to all apps with SD card

access. Since apps may be updated frequently, the paired

APK is verified prior to migration and updated if necessary.

As part of the pairing, Flux pseudo-installs the APK’s meta-

data on the guest with its PackageManagerService. This al-

lows the guest to be aware of the app’s permissions and com-

ponents but does not actually install the app data, such as the

Home 

App 

Guest 

Execution 
Phase 

Migration 
Out Phase 

Migration 
In Phase 

Restore 
Replay 

Checkpoint 

Move app  
to background 

Call 
log 

Selective record 
of service calls 

Changed  
file set Transfer 

Pairing  
Phase 

APK, core 
frameworks, 
libraries, 

files 

Sync 

Android 

Figure 4. Workflow phases of Flux migration.

app executable and other resources. This pseudo-installed

app acts as a wrapper when migrating in; additionally, it

differentiates a migrated app on the guest device from the

natively-installed version.

Due to the fragmentation of the Android market, app bina-

ries are typically designed to run across a wide range of An-

droid versions. However, if a particular APK requires an API

level that is incompatible with the software stack of the guest

device, Flux informs the user the app cannot be migrated.

App Execution. During app execution, Flux selectively

records an app’s interactions with system services through

Binder’s IPC mechanism. This recording functionality, de-

scribed in Section 3.2, uses framework-level decorators of

the system services’ RPC interface. Additionally, the record-

ing functionality is provided in core framework-supplied li-

braries and is transparent to the app. The recorded log is pri-

marily used to restore the app-specific state of system ser-

vices once the app has migrated to a guest device, avoiding

the need to migrate these services along with the app. It is

kept small by automatically discarding stale calls.

Migration Out. A user initiates a migration operation

through a two-finger vertical swiping gesture. Flux’s first

step is to use Android’s built-in mechanisms to free as much

device-specific state as possible. Specifically, Flux instructs

apps to go to the background, which helps free drawing sur-

faces. Then, Flux triggers a low-memory condition, which

further releases graphic-related resources. Finally, Flux ex-

tends OpenGL to remove any remaining vendor-library-

specific state.

Next, Flux checkpoints the app’s process(es). Because the

primary way in which Android apps interact with the rest

4



of the system is through Android’s Binder IPC mechanism,

Binder IPC state must be saved as part of the checkpoint.

Flux achieves this using CRIA, as described in Section 3.3.

Flux’s checkpoint includes not only per-process app state,

but also the recorded log of calls made by the app to interact

with system services. Once complete, the checkpoint image

is compressed and sent to the guest device, along with the

app’s data directory.

Migration In. To restore the app from the checkpoint on the

guest device, Flux uses the wrapper app created at pairing

time as a shell in which to restore the checkpointed image of

the migrated app. The wrapper app is launched in a private

virtual namespace for process identifiers to ensure that app

processes see the same identifiers even if the underlying

operating system identifiers may have changed. The wrapper

app is also jailed to the previously synchronized filesystem

containing the home device’s libraries and the app’s APK.

Once complete, Flux restores the app from the checkpointed

image, as discussed in Section 3.3, including re-establishing

the same Binder state for the app so that the app sees the

same Binder handles. To complete the integration of the app

into the new guest environment, Flux informs the app of any

changes to hardware, and replays the recorded service calls,

as discussed in Section 3.2, for the guest device’s services to

restore necessary state on behalf of the app, permitting the

app to interact with system services right where it left off.

Flux does not restore the app’s original network state, but

rather leverages the fact that mobile apps are typically

built around transient wireless connectivity and therefore

are designed to correctly handle connectivity changes. When

restoring a migrated app, Flux informs it of a loss of connec-

tivity and availability of a new connection, allowing the app

to handle the connectivity interrupt in the normal way. Fi-

nally, the app is brought to the foreground so that it becomes

visible and available for use by the user.

3.2 Selective Record/Adaptive Replay

Because system services are shared by many apps and may

have device-specific implementations, it is not desirable to

migrate the system services themselves. Instead the corre-

sponding system services on the guest device should take

over after the app has been migrated. One approach could

be to add checkpoint and restore hooks to every service

an app may interact with, thereby enabling the extraction

and restoration of a service’s app-specific state. Doing so

would be an overwhelming undertaking, requiring special-

ized knowledge of service and device implementation details

that vary from one device to another. Instead of checkpoint-

restore, Flux introduces Selective Record/Adaptive Replay.

In a straightforward implementation of record-replay to mi-

grate app-specific state, all calls that update the app-specific

state in system services are recorded, then deterministically

Framework Libs 

Intercept func call 

Android 
Service  

Recording 
Handler 

SQLite 

Call 
Log 

Rule 

Decorator 
( one per service method ) 

@record  { ...  
@if  {...} 
@drop {...} 
} 

Compile 

Binder IPC 

Payload 

Params 

Signature 
& drop 
list 

App 

Methods 

Payload 

Params 

Figure 5. Selective Record and its place in the Android

system. Flux-specific components highlighted in gray.

replayed on the guest device with its system services. This

approach, however, has three key problems. First, system

services support a wide range of features, each with dif-

ferent behavioral semantics. A one-size-fits-all approach to

recording service calls will not suffice. For some services,

particularly those that interact with the user, e.g., notifica-

tion or alarm, simply recording and replaying all service

calls would result in an incorrect state, e.g., the user would

see past notifications that he has already acknowledged. Sec-

ond, computing resources on a mobile device are scarce. A

straightforward record-replay mechanism may unnecessar-

ily record/replay all calls, wasting scarce mobile resources

during app execution and migration and introducing an un-

acceptable latency waiting for the entire log to be replayed.

Third, services across devices may not be identical and, in

some cases, not available. A straightforward record-replay

mechanism assumes a homogeneous environment and does

not adapt to device variations.

To address these problems, Flux introduces Selective

Record/Adaptive Replay to only record and replay calls to

system services that are relevant to reproducing the current

app-specific state in the respective services. As shown in

Figure 5, since apps interact with system services via An-

droid’s Binder IPC mechanism, Selective Record simply in-

terposes on the service interface calls used by Binder. These

calls are based on standard APIs that are device indepen-

dent, avoiding the need to understand device-dependent im-

plementation details. Selective Record leverages the higher-

level semantics available at these interfaces to identify which

recorded calls are no longer relevant to the current app-

specific state of a given service, and thereby can be dis-

carded. Adaptive Replay then modifies the recorded calls in

a way that best suits the characteristics of the guest device.

Selective Record. To capture the higher-level semantics

from Android frameworks, Flux provides decorators that can

be used by framework developers to instrument IPC ser-

5



SYNTAX PURPOSE

@record
Indicate that calls to this method should

be recorded.

@drop [method name], ... Remove all previous calls to this method.

@if [arg], ...

@elif [arg], ...

Qualifies @drop to only remove previ-

ous calls if all args given match.

@replayproxy [method]
When replaying, call proxy [method] in-

stead of replaying the actual call.

this
A keyword representing the current

method being decorated.

Table 1. Flux decoration syntax.

vice interface definitions. The decorators identify what calls

should be recorded and how they affect the current state of

the system. Our expectation is that the decorators are simple

to use and require only minimal additions to existing frame-

works. To further simplify the use of decorators, Flux takes

advantage of interface definition languages (IDLs), which

are commonly used to generate RPC interface serialization

code. Flux extends the IDL to support decorators. Specif-

ically, the Android IDL (AIDL), used for defining system

service interfaces. For decorated interface methods, AIDL

generates the necessary code to call our record function.

The record function then asynchronously performs the ac-

tual recording and the necessary removal of stale calls which

no longer affect the current state of services.

Table 1 lists the decorators that are supported by Flux. The

syntax is modeled after Python’s decorators, hence the name.

Each decorator indicates what action should be taken with

the subsequent call. There are four basic constructs. The

@record statement indicates that calls to the respective

function should be recorded to the log. The @drop state-

ment indicates that previous calls to the respective function

should be discarded from the log. The @if statement is used

to qualify a @drop statement to only discard previously

recorded calls from the log if all arguments provided with the

@if statement match. Finally, the @replayproxy state-

ment is used during replay to indicate that an alternative

proxy method should be used instead of replaying the actual

recorded call, thereby modifying the resulting replay.

Table 2 provides a full listing of all the decorated Android

services along with the number of lines of code (LOC)

required, separated into those that manage hardware devices

and those that do not. For comparison purposes, it also shows

the number of methods for each service interface, which

provides a loose measure of the complexity of the respective

interface. Generally speaking, services with larger interfaces

require more lines of code to decorate. A few services are not

yet decorated in the current Flux prototype, so their LOC are

indicated as TBD. Most services require less than 50 LOC,

except for ActivityService and AudioService, which require

130 and 150 LOC, respectively. As shown in Table 2, these

two services also have larger interfaces than other services.

HARDWARE SERVICE METHODS LOC

AudioService 71 150

BluetoothService 202 TBD

CameraManagerService 8 31

ConnectivityManagerService 59 26

CountryDetectorService 3 5

InputMethodManagerService 29 37

InputManagerService 15 11

LocationManagerService 13 15

PowerManagerService 19 14

SensorService 6 94

SerialService 2 TBD

UsbService 19 TBD

VibratorService 4 26

WifiService 47 54

SOFTWARE SERVICE METHODS LOC

ActivityManagerService 178 130

AlarmManagerService 4 20

ClipboardService 7 6

KeyguardService 22 16

NotificationManagerService 14 34

NsdService 2 3

TextServicesManagerService 9 16

UiModeManagerService 5 9

Table 2. Decorated services in Android comparing the num-

ber of methods for each service interface and the number of

lines of Flux decorator code for the service.

Example: NotificationManager. The NotificationManager,

the AIDL interface for the NotificationManagerService, is

used by apps to post and maintain notifications displayed

on the status bar and in the notification drawer. It provides

a simple example of how selective recording is performed.

To migrate the app state, we must record these notifications

to the guest device along with the app. Figure 6 shows a

portion of an IDL defined interface derived from Android’s

actual NotificationManager, and Figure 7 shows the same

definition with Flux decorations. The @record statement

above enqueueNotification indicates that all calls to

this function should be recorded. Inside the @record block

above cancelNotification, the @if statement indi-

cates that the n-tuple (id,) will be used as a signature

to determine if a call to cancelNotification matches

the signature of any previous calls to methods in the @drop
list. The @drop statement contains a list of interface meth-

ods whose effect on the device state will no longer matter

if cancelNotification is called with a matching sig-

nature. If a signature matches, any matching previous calls

will be removed from the record. this is a keyword in the

drop list, indicating that the call to the decorated method

cancelNotification, should not be recorded if there

is a match. Note that, because of the simplicity of this ex-

ample, the decorations comprise a substantial portion of the

resulting lines of code of the interface. However, this repre-

sents a small percentage of the total number of lines of code

6



interface INotificationManager {
void enqueueNotification(int id,

Notification notification);
void cancelNotification(int id);

}

Figure 6. Simplified interface definition for Notification-

Manager.

interface INotificationManager {
@record
void enqueueNotification(int id,

Notification notification);

@record {
@drop this, enqueueNotification;
@if id;

}
void cancelNotification(int id);

}

Figure 7. Simplified interface definition for Notification-

Manager with Flux decorations.

generated by AIDL to implement the interface, and it also

represents an even smaller percentage of the total number of

lines of code to implement the actual service.

Adaptive Replay. Once an app has been migrated to a new

device, changes to hardware state that can normally be mod-

ified by the user, such as the WiFi state, are replayed to any

listeners the app has set up. Should the guest device not con-

tain hardware that was previously in use, e.g., GPS, the user

is given the option to allow communication with that device

to continue to take place over the network.

To alter the replay as needed, the @replayproxy state-

ment may be used to decorate service methods to indicate

that when a particular method is called during replay, an al-

ternative proxy method should be used instead. For exam-

ple, a proxy method could be used to adjust volume levels

of music being played in accordance with the relative vol-

ume level differences between the home and guest devices.

This approach is specifically used to support services like

the AlarmManagerService.

Example: AlarmManager. The AlarmManager, the AIDL

interface for the AlarmManagerService, is used by apps to

schedule tasks to be run at some point in the future. It pro-

vides an example of how an alternative proxy method is used

on replay. In this case, knowing only the arguments to meth-

ods is insufficient for deciding which calls must be replayed.

This is because alarms are set through an API call, but then

typically expire with time, not by being explicitly removed

through a subsequent API call. To set an alarm, an app calls

the AlarmManager’s set API method, specifying a time for

the alarm to go off and an Intent to be broadcast at that time.

interface IAlarmManager {
void set(int type, long triggerAtTime,

in PendingIntent operation);
void remove(in PendingIntent operation);

}

Figure 8. Simplified interface definition for AlarmManager.

interface IAlarmManager {
@record {
@drop this;
@if operation;
@replayproxy \

flux.recordreplay.Proxies.alarmMgrSet;
}
void set(int type, long triggerAtTime,

in PendingIntent operation);

@record {
@drop this;
@if operation;

}
void remove(in PendingIntent operation);

}

Figure 9. Simplified interface definition for AlarmManager

with Flux decorations.

The app will have registered a BroadcastReceiver to listen

for this Intent in order to accomplish whatever task the alarm

was set for. If the app is not currently running when the alarm

expires, it will be started prior to the Intent broadcast. To

prematurely cancel an alarm, an app can call the remove
API method, specifying the Intent previously passed to set.

When migrating an app we must also migrate any previously

set, and still active, alarms. Figure 8 shows a portion of an

IDL defined interface derived from Android’s actual Alar-

mManager, and Figure 9 shows the same definition with

Flux decorations. The decorations indicate that calls with

the same operation argument to set and remove should

be dropped from the record as either the alarm has been re-

moved or replaced with a new alarm and the previous calls

are no longer necessary or valid. However, if an alarm is set

and not removed but triggered by the advancement of time,

it is important to detect that the alarm has already been trig-

gered and should not be triggered again. To handle this com-

mon case, the @replayproxy statement is used to indi-

cate that when replaying calls, our alarmMgrSet method

should be called instead of simply replaying the call. This

method, as shown in Figure 10, will first verify if the alarm

is still active and, if it is, replay the call using Java Reflec-

tion. The method compares against the time of checkpoint

rather than the current time to avoid missing an alarm set to

trigger while the app was mid-migration. This ensures that

an alarm that is set for after the time of checkpoint will be

triggered as intended after migration.

7



void alarmMgrSet(Class alarmMgrClass,
Object newAlarmMgr,
String method, int type,
long triggerAtTime,
PendingIntent operation) {

if (triggerAtTime <= checkpointTime)
return;

Method set = alarmMgrClass.getMethod("set");
set.invoke(newAlarmMgr, type,

triggerAtTime, operation);
}

Figure 10. Simplified proxy method for replaying IAlarm-

Manager.set().

Example: SensorService. The SensorService is used by

apps to receive events from sensors, e.g. accelerome-

ters, gyroscopes, etc. It provides another example of us-

ing alternative proxy methods on replay. In this case,

API calls return handles to objects, such as Binder ob-

jects and socket descriptors, which are used by apps;

these return values are uncommon in app-facing Android

system services. To receive sensor events, an app asks

the SensorService for a SensorEventConnection via its

createSensorEventConnection method. The Sen-

sorEventConnection is a Binder object with an interface

of its own that allows the app to enable desired sen-

sors and receive a Unix domain socket via a call to

getSensorChannel, over which it will receive the sen-

sor events on via the SensorService.

When replaying calls to the SensorService, SensorEvent-

Connection objects must be restored. This requires that the

calls return the same handles to SensorEventConnection ob-

jects that the app was using before migration to ensure

that the app continues to function properly after migration.

Specifically, the Binder handle representing a SensorEvent-

Connection and its respective Unix domain socket descrip-

tor should remain the same after migration. To do this for

the Binder object, a @replayproxy method is created

for replaying the createSensorEventConnection
call. The arguments supplied to this proxy method include

the return value of the recorded call (the Binder handle

representing a SensorEventConnection). This allows the

proxy method to call the new device’s SensorService to re-

ceive a new SensorEventConnection and map it to the cor-

rect Binder handle. Previously recorded calls to the Sen-

sorEventConnection will then be replayed. Similarly, to

maintain the same descriptor for the Unix domain socket,

a @replayproxy method is created for the SensorEvent-

Connection’s getSensorChannel call. This proxy will

make the same call to the new SensorEventConnection’s get-

SensorChannel method, obtaining a new connection with the

SensorService (and by extension the Sensor). It will then

dup2 this descriptor into the original socket descriptor, re-

served during restoration of the app.

Table 2 shows that although there are only 6 methods for the

SensorService, it requires over 90 lines of code to decorate.

The extra complexity here is due to the fact that this service

is written natively in C++ and AIDL does not support gen-

eration of native code. The record/replay code that would

normally be generated automatically through Flux’s decora-

tion syntax must be written by hand, requiring more care and

time than would otherwise be needed. In the future, AIDL

can be extended to support generating native C++ code [45].

3.3 Checkpoint/Restore In Android (CRIA)

To support migration of an app’s processes, Flux extends tra-

ditional checkpoint-restart mechanisms [21, 25, 33, 47, 49]

in a manner that leverages the characteristics of Android

to save the core state of the app on one device and re-

store it on another; we call this Checkpoint-Restore In An-

droid (CRIA). There are four types of app state to consider

for checkpointing: process, device, filesystem, and network

state. As discussed in Section 3.1, filesystem state is synced

across devices and network state is simply re-established on

the guest device after migration so that it appears simply as

a loss of connectivity to apps, which are expected to han-

dle such interruptions on mobile devices. We focus here on

checkpointing process and device state.

Process State. CRIA builds on the Checkpoint/Restore in

Userspace (CRIU) project [47], which is supported in the

mainline Linux kernel. Hooks in the kernel allow CRIU to

transparently obtain and inject all necessary internal kernel

state required to represent the state of a running process. As

part of restarting the app after migration, the app is encapsu-

lated in a private virtual namespace [49] to ensure that oper-

ating system resource identifiers such as process identifiers

remain the same, even if the same numerical identifiers are

already in use on the guest system.

CRIA extends CRIU to take into consideration Android-

specific device drivers: Binder, Logger, ashmem, pmem, and

wakelocks. Of these, Binder required the most support. As

shown in Figure 11, to capture dependencies that result from

the use of Binder, CRIA checkpoints and restores three types

of Binder connections: (1) internal app, (2) external sys-

tem services, and (3) external non-system services. App pro-

cesses contain handles that refer to various Binder connec-

tions. CRIA checkpoints the Binder state of each app pro-

cess, including Binder handles, references and buffers, and

notes which references are internal versus external to system

services, including recording the association between refer-

ences to system services and those service names.

The restore process is different depending on the type of

connection. For Binder connections that are internal to the

app, CRIA restores both ends of the connections. For Binder

connections between the app and external system services,

CRIA establishes new Binder connections with the same

8



system services running on the guest device. CRIA asks the

ServiceManager on the guest device for references to the

equivalent new system services and injects those references

in Binder with the previously issued handle identifier. For

example, if the app references the NotificationManagerSer-

vice using reference id = 2, it can continue to do so even on

a new device with a different NotificationManagerService.

This process only restores the connection between an app

and various system services via Binder. As described in Sec-

tion 3.2, app-specific state maintained by system services is

restored via Selective Record/Adaptive Replay.

It is also possible that an app may have external Binder con-

nections that connect to non-system services, such as non-

system apps. A variety of solutions are possible to address

this case, including migrating both connected apps or tether-

ing the migrated app back to the home device. However, we

have not encountered any such apps. For simplicity, CRIA

currently checks for whether such Binder connections exist

and if so, informs the user that the app cannot be migrated.

Support for the other Android-specific device drivers, Log-

ger, ashmem, pmem, and wakelocks was relatively straight-

forward. Adding support for the Android Logger driver re-

quired few changes since the device is used like any regu-

lar file and does not persist per-process state. Although di-

rect support for ashmem is straightforward to implement,

its use is limited. ashmem is primarily used by Dalvik to

name memory regions. For the sake of simplicitly, we mod-

ified Dalvik to use mmap for obtaining memory instead of

ashmem. After this, we did not encounter other instances of

apps using ashmem at the time of checkpoint, so direct sup-

port for ashem was not needed. Similar to ashmem, CRIA

support for pmem is not necessary due to freeing resources

prior to checkpointing. Finally, CRIA support is not needed

for wakelocks and alarms as these are only used by Android

system services; therefore, their process-specific state is han-

dled by Selective Record/Adaptive Replay.

Device State. Checkpointing device-specific state is espe-

cially difficult on mobile devices because of the lack of hard-

ware standards in these vertically integrated platforms. In

Android, there are two cases: (1) devices are used indirectly

by apps via system services that manage those devices, and

(2) devices are used directly by apps. As described in Sec-

tion 3.2, Selective Record/Adaptive Replay addresses the

migration of device state in the first case.

For the second case, the GPU is the only device used di-

rectly by Android apps. Migration of graphical context is

difficult given the complexity of the hardware and software

and the substantial amount of app and device-specific state

involved. However, because using the GPU involves con-

suming substantial system resources, most mobile operating

systems have support for dynamically removing and restor-

ing GPU-related resources. CRIA leverages and extends this

support to avoid the need to checkpoint and restore GPU-

Binder IPC 

Android 
Service  

Global 
Service 
Manager 

name ref 

App 

Internal 
Service 

src 
ref handle 

Permission 
Service 

Figure 11. Binder dependencies captured with CRIA.

related state, dramatically simplifying the management of

device state for migration. CRIA repurposes three types of

Android mechanisms: background execution, low-memory

condition, and conditional initialization.

CRIA leverages Android’s background execution mecha-

nism by instructing apps to revert to running in the back-

ground prior to being migrated. Because background apps

are not visible to the user, various state associated with the

visible interface of apps is not needed. By having an app run

in the background, CRIA causes at least a partial removal of

drawing surfaces and contexts corresponding to the visible

state of an app. However, other graphical hardware resources

and OpenGL contexts will still be retained.

To eliminate the dependencies on the GPU hardware, CRIA

leverages Android’s low-memory mechanisms, which can

force apps to free graphics-related resources. CRIA in-

vokes a trim memory request for the migrating app with

the highest severity level via Android’s ActivityThread’s

handleTrimMemory method. handleTrimMemory
requests that the WindowManager trim its memory via

a startTrimMemory RPC method. This invokes the

HardwareRenderer’s startTrimMemory method caus-

ing its caches to be flushed, and then invokes all View-

Roots’ terminateHardwareResources method. This

then calls the HardwareRenderer’s destroyHardware-
Resources and destroy methods causing all hardware

rendering resources associated with those ViewRoots to

be destroyed, the Canvas removed, and disables the ren-

derer. ActivityThread will then call WindowManager’s

endTrimMemory method, which in-turn terminates all

OpenGL contexts causing the HardwareRenderer to termi-

nate and uninitialize OpenGL once all contexts are gone.

The ViewRoot of the app is also destroyed, removing device-

specific state that reference the ViewRoot.

Once completed, this leaves only a small amount of lingering

native, graphics-related, vendor-library specific initialization

state that must be removed. To do so, we extend Android’s

native OpenGL library with an eglUnload function. This

9



is called after the HardwareRenderer is terminated and is

used to completely unload the linked vendor-specific graph-

ics libraries which are tied to the specific graphics hard-

ware on the respective device, allowing for any new vendor-

specific OpenGL library to be loaded when necessary.

Once an app is migrated and is being restored, CRIA lever-

ages conditional initialization used by Android. Because An-

droid is event-driven, various state used by apps is initialized

on demand at time of use by checking first if the state is ini-

tialized before using it. CRIA reinitializes graphical context

via the same initialization routines as used when starting an

app. It takes advantage of conditional initialization to ensure

that initialization is performed automatically due to the state

of all objects appearing as if they were just created. Once

graphics objects have been recreated and/or initialized, all

Views will be in an invalid state, forcing them to be redrawn

as they were prior to migrating. An important benefit of this

approach is that, because graphics state is reinitialized and

redrawn on the guest device, the resulting device-specific

state is customized for the guest device.

3.4 Discussion

In our design, we made several decisions to simplify the

system’s role in managing consistency between devices. At

the same time, we considered the impacts of the diversity of

the Android framework and “future-proofing” Flux against

changing versions.

Native vs. Guest Apps. Our current design differentiates na-

tive apps from migrated apps. This is because one cannot

easily, and may not desire to, merge two running app in-

stances, one that could be running natively and one that is

being migrated. Thus, until the migrated app is brought back

to its home device, an icon for the migrated app will exist

on the guest device’s launcher screen allowing for the user

to resume the migrated app even after its been stopped.

Cross-Device App State Consistency. Once an app is mi-

grated, it is guaranteed to have the latest and consistent snap-

shot of app state. When the user is finished with the app on

the guest device, he may initiate a migration of the app back

to its home device, thus resolving the inconsistency of app

state between the two devices. If the user attempts to start the

migrated app on the home device without having migrated

it back, he is prompted with a message asking if he would

like the app state from the guest device to be synced back to

the home device or proceed while losing modified state on

the guest device. Until an app has been migrated back to its

home device, any security credentials allowing it to access

online accounts will persist on the guest device until expira-

tion or manual revocation.

Supporting Different Android Versions. Flux is capable of

migrating apps between different kernel versions and minor

Android version differences. Support for migration across

major versions of Android would need to address two key

challenges. The first is that an app using features only found

in a newer Android API will be unable to migrate to an

older version lacking those features. It would be difficult to

surmount this obstacle and doing so would likely place a

dependency on the source device, e.g., require that the target

device continue to use some of the source’s services over

the network. The second is that the private APIs of services

used internally by the framework must maintain backward

compatibility with previous versions. Currently, these APIs

are commonly changed by Google in between versions.

Limitations. Apps that request their OpenGL context per-

sist while in the background are unsupported by Flux.

Apps are able to do this in Android by calling GLSurface-

View’s setPreserveEGLContextOnPause method.

Doing so allows them to cache textures, shaders, etc. in

graphics memory so there is no display delay once the app

moves back into the foreground. The downside of this is that

the app consumes resources even while not visible and as

such the feature is not commonly used. Unfortunately, if the

context never goes away and apps expect it to remain, they

may not use conditional reinitialization relied upon by Flux.

Completely unloading and reloading graphics state becomes

problematic in this case.

Apps that request to be run in multiple processes are cur-

rently unsupported by Flux. Because multi-process apps are

relatively rare, this feature was simply not yet implemented.

It can be added with modest additional engineering effort, as

CRIU already supports checkpointing an entire process tree.

Migrating an app while it is interacting with a Content-

Provider is currently unsupported, e.g., when an app is re-

ceiving data after querying the system for contacts informa-

tion. In Android, data intended for use by multiple apps, such

as contacts, can be shared using ContentProviders. Content-

Providers expose an API similar to databases, with methods

such as query, insert, and delete. This API is accessible via

Binder and ContentProviders are essentially Binder services

with short-lived app connections. As such, it should be pos-

sible to leverage Flux’s Selective Record/Adaptive Replay

for support, but due to the limited time frame during which

an app is typically interacting with ContentProviders and the

likelihood of it interfering with migration, we have not yet

implemented or exhaustively explored support for this.

Only app-specific SD card data directories are migrated

along with an app. Due to this, apps accessing common SD

card data at the time of migration will fail to migrate. Due

to the potential size and quantity of files on the SD card,

transferring them all is undesirable. Automatically transfer-

ring any open SD card files along with the app would allow

these apps to migrate successfully, but any other common

SD card files they were expecting to access would no longer

be available. A potential solution could be to migrate the app

10



and mount the home device’s common SD card data as a net-

work file system prior to restoring it, but this may not give

the user the desired, or expected behavior.

Applying Flux to other mobile platforms. Although Flux

is tailored to Android, the general design is applicable

beyond it. Flux relies on three key platform characteris-

tics: devices are utilized through system services and in-

teracted with through a single IPC mechanism, app graph-

ical resources can be released while the app is in the back-

ground, and the availability of an extensible checkpoint/re-

store mechanism. The first is a common mobile OS design

paradigm. The third can always be overcome through engi-

neering effort, and should be available for most Linux-based

mobile OSes through CRIU. The second is perhaps the most

problematic as any OS that does not already operate in this

manner cannot easily be changed without breaking existing

apps. For example, although iOS disallows apps from mak-

ing OpenGL calls while in the background, apps are allowed

to, and commonly do, retain their GL context. Removing

their context while in the background would likely break

most iOS apps. Existing work on checkpointing and restor-

ing OpenGL state could be leveraged and improved upon to

work around this requirement [30].

4. Evaluation

We have implemented a Flux prototype in Android and

demonstrated its complete functionality in migrating un-

modified Android apps across different Android devices,

including the LG Electronics produced Google Nexus 4

phone and different hardware versions of the ASUS pro-

duced Google Nexus 7 tablet. The prototype has been tested

to work with multiple versions of Android, including KitKat,

the most recent version at the time of our evaluation. In mi-

grating apps across devices with different screen sizes, Flux

seamlessly migrates Android apps from home to guest de-

vice, including refreshing the app display to match the reso-

lution of the target device.

We quantitatively measured the performance of our unop-

timized prototype migrating and running a wide range of

popular Android apps from Google Play. Our measurements

were obtained using a Nexus 4 phone (Qualcomm Snap-

dragon S4 Pro APQ8064, Adreno 320 GPU, 2 GB RAM,

768x1280 pixel IPS LCD), a Nexus 7 (2012) tablet (NVIDIA

Tegra 3 T30L, ULP GeForce GPU, 1 GB RAM, 1280x800

pixel IPS LCD), and two Nexus 7 (2013) tablets (Qual-

comm Snapdragon S4 Pro APQ8064, Adreno 320 GPU, 2

GB RAM, 1920x1200 pixel IPS LCD). The Flux implemen-

tation used for our measurements was based on the Android

Open Source Project (AOSP) version 4.4.2, the most recent

version available at the time our measurements were taken.

To measure the cost of migration, we installed and ran eigh-

teen different apps from the listing of top free Android apps

NAME WORKLOAD

Bible View page of the Bible

Bubble Witch Saga Play witch-themed puzzle game

Candy Crush Saga Play candy-themed puzzle game

eBay View online auction

Flappy Bird Play obstacle game

Surpax Flashlight Use LED flashlight

GroupOn View discount offer

Instagram Browse a friend’s photos

Netflix Browse available movies

Pinterest Explore “pinned” items of interest

Snapchat Take photo and compose text

Skype View contact status

Twitter View a user’s Tweets

Vine Browse a user’s video feed

Subway Surfers Play fast-paced obstacle game

Facebook Post comment on news feed

WhatsApp Send text to friend

ZEDGE Browse ringtones and select one

Table 3. Top free Android apps and how they were used

prior to migrating.

from Google Play, including Candy Crush Saga, the long-

standing most popular free game on Android. Figure 3 lists

the apps we used, along with a brief description of the work-

load used for each app. To demonstrate the ability of Flux

to migrate across heterogeneous Android devices, we mi-

grated these apps across all four Android devices in four dif-

ferent combinations: (1) Nexus 7 (2013) tablet to Nexus 7

(2013) tablet to show migration using the same type of de-

vice on both sides, (2) Nexus 4 phone to Nexus 7 (2013)

tablet to show migration from a smaller screen phone to a

larger screen tablet, (3) Nexus 7 tablet to Nexus 7 (2013)

tablet to show migration across two devices with very dif-

ferent hardware (GPUs, etc.) and kernel versions (3.1 and

3.4, respectively), and (4) Nexus 7 tablet to Nexus 4 phone

to show migration from a larger screen tablet to a smaller

screen phone, again with very different hardware and ker-

nel versions. All devices were connected to a campus WiFi

network. Before performing any migrations, all four devices

were paired with one another.

Before and after each migration, a user used each app on

the respective device based on the respective app workload.

All but two of the apps, Facebook and Subway Surfers,

were migrated successfully across all four different device

combinations, with the visual layout of each app adapted

to the screen size of the respective device after migration.

Facebook could not be migrated because it is one of the few

apps that is multi-process, and the Flux prototype currently

does not support multi-process apps. Subway Surfer could

not be migrated because it requests that its EGL context

persist, a limitation discussed in Section 3.3. We provide

detailed measurements for migrating the other sixteen apps

to quantify the cost of migration.

11



0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

T
im

e 
(s

ec
o

nd
s)
�

Application�

Nexus 7 (2013) to Nexus 7 (2013)  
Nexus 4 to Nexus 7 (2013)
Nexus 7 to Nexus 7 (2013)
Nexus 7 to Nexus 4

Figure 12. Overall migration times.

0%

20%

40%

60%

80%

100%

%
 o

f 
To

ta
l M

ig
ra

ti
o

n 
T

im
e�

Application�

Preparation Checkpoint Transfer Restore Reintegration

Figure 13. Breakdown of time spent during migration.

0

1

2

3

T
im

e 
(s

ec
o

nd
s)
�

Application�

Nexus 7 (2013) to Nexus 7 (2013)  
Nexus 4 to Nexus 7 (2013)
Nexus 7 to Nexus 7 (2013)
Nexus 7 to Nexus 4

Figure 14. User-perceived migration time excluding data

transfer phase.

0

10

20

30

40

50

S
iz

e 
(M

B
)�

Application�

Data Transferred APK Size

Figure 15. Amount of data transferred during migration.

Figure 12 shows the time required to migrate each of the

apps across all four device combinations. Figure 13 shows

the percentage breakdown of average migration times across

the four device combinations. We breakdown the migration

time into five stages: (1) preparation involves putting the app

in the background to eliminate app-specific device state, (2)

checkpoint involves checkpointing the app and its recorded

log, (3) transfer involves verifying and syncing necessary file

system state and sending the checkpoint image from one

device to the other, (4) restore involves restoring the app

from the checkpoint image, and (5) reintegration involves

replaying calls to system services and bringing the app back

to the foreground. The relative cost of each migration stage is

fairly constant, with data transfer time dominating the cost of

migration. As shown, over half the time on average is spent

on the data and image transfer over WiFi.

Across all shown devices and apps, migrations required 7.88

seconds to complete on average. This is inclusive of the time

required for data transfer in a congested, urban environment,

as well as the preparation and checkpoint stages. However,

the preparation and checkpoint stages will largely go unno-

ticed as they occur while the user is presented with the mi-

gration target menu and they make their choice. This results

in a user-perceived average migration time closer to 5.8 sec-

onds. Given that the data transfer stage is bound by the net-

work bandwidth, it will continually improve as devices and

wireless technologies evolve. For example, the latest mobile

devices, such as the Google Nexus 5, feature 802.11ac wire-

less adapters. On 802.11ac capable networks, these devices

can significantly outperform the 802.11n performance of the

evaluated devices, especially the Nexus 7, which is only ca-

pable of operating on the extremely congested 2.4Ghz band.

In the future, the data transfer stage could also be greatly re-

duced by deferring memory transfer using techniques such

as post copy supplemented with adaptive pre-paging [26].

This also allows for the data transfer cost to be partially

overlapped with the restore and reintegration stages. Look-

ing ahead, to get a better idea of the potential migration

times, Figure 14 shows the user-perceived time required for

migration excluding data transfer, an average of 1.35 sec-

onds. Note that our prototype is not fully optimized and var-

ious migration stages can be improved. For example, Flux

currently implements an unoptimized preparation for check-

point that depends on the Android task idler to stop the app

after we have placed it into the background.

12



Figure 15 shows the average data transferred to migrate each

of the apps between devices. We also show the APK size of

each app for reference. The amount of data transferred is

dominated by the size of the checkpoint image, and in our

tests, the compressed data directories sync and record log

never exceeded a combined 200KB. None of the migrations

required transferring more than 14MB of state during the

data transfer stage. Comparing Figure 15 with Figure 12,

the migration times are generally correlated with the data

transfer sizes. We can loosely say that the larger the app’s

install size is, the longer it can be expected to take to migrate.

To demonstrate that the recording costs of Flux are modest,

we ran the Quadrant Standard [6] and SunSpider [4] bench-

marks on both Flux and vanilla Android. Figure 16 shows

the results of running the benchmarks on all three types of

devices normalized to AOSP and indicates that the overhead

is negligible in all cases.

To get a real-world idea of the challenges Flux faces, both

in migration performance and support of apps, we ana-

lyzed several hundred thousand free Android apps in Google

Play. We leveraged PlayDrone [63] to crawl the Google

Play store, download the metadata and APKs for a collec-

tion of 488,259 apps, and decompiled the APKs to ana-

lyze their sources. Since Flux cannot migrate apps which

choose to always retain their graphical context, we parsed

the sources to identify those that explicitly call Android’s

setPreserveEGLContextOnPause. Of the roughly

half million apps we downloaded, this call is only made by

3,300 of them. This indicates that only a small percentage of

the apps in Google Play use this feature, and that the Flux

approach is expected to work for the vast majority of apps.

Since the cost of pairing devices before migration involves

transferring APKs, we also analyzed the collection of apps in

Google Play to measure their installation sizes, information

included in the metadata associated with each app. To verify

that the installation size is a good measure of the actual

size of the app APKs, we looked at a random selection of

APKs from Google Play and compared their actual size to

the installation size. The installation size and actual APK

size matched in all cases. Figure 17 shows the cumulative

distribution function of all the apps versus their installation

size. Roughly 60% of the apps are less than 1 MB in size,

and roughly 90% of the apps are less than 10 MB in size.

We also measured the pairing costs for the various devices

we used for migration. Pairing consists of a constant data

cost component and a cost that scales linearly with the num-

ber of installed apps and their install size. The constant data

is comprised of a device’s system libraries, frameworks and

apps. When pairing a Nexus 7 to a Nexus 7 (2013), both run-

ning KitKat, the total constant data size that must be synced

was 215MB. After accounting for identical files on the tar-

get device that can be hard-linked, this is reduced to 123MB.

The compressed delta that must be transferred is 56MB.

0

0.2

0.4

0.6

0.8

1

1.2

Quadrant 
CPU

Quadrant 
Mem

Quadrant  
I/O

Quadrant 
2D

Quadrant 
3D

SunSpider

S
co

re
�

Benchmark Test�

Nexus 7 Nexus 4 Nexus 7 (2013)

Figure 16. Quadrant Standard and SunSpider benchmark

results normalized to AOSP.

0

0.2

0.4

0.6

0.8

1

10 100 1,000 10,000 100,000 1,000,00010,000,000
C

D
F 

o
f 

A
p

p
s�

Installation Size (kilobytes)�

Figure 17. Installation size of Google Play apps.

5. Related Work

Application migration has been extensively studied across

a broad range of desktop and server computing sys-

tems. Many research operating systems (OSes) have im-

plemented support for process migration, including Ac-

cent [54], Amoeba [41], Chorus [56], DEMOS/MP [53],

MOSIX [7], Sprite [22], and V [16]. These OSes provide a

global namespace and location transparent execution allow-

ing processes to migrate freely across machines. Migrated

processes often rely on their home machine for IPC, open

files, and system calls, forever tethering them to another ma-

chine. None of these approaches are designed for mobile de-

vices, and do not address the key device heterogeneity prob-

lems to support migration on mobile devices.

Arguably the most popular migration approach today is VM

migration, leveraging virtual machine monitors (VMMs) to

virtualize at the hardware level and encapsulate an entire

OS [19, 43]. These approaches are used in server and cloud

environments, where whole OS virtualization and migration

is practical and works well. However, using VMs on mobile

devices has been problematic, as existing approaches [10]

provide no effective mechanism to enable apps running in

VMs to directly leverage hardware device features without

substantial performance degradation, especially for apps us-

ing 3D accelerated graphics [2, 20]. As a result, no VM-

based solutions exist for enabling app migration across com-

modity smartphones and tablets.

13



There has been significant research in checkpoint-restore ap-

proaches which have been used for migration, spanning the

application-level [50, 55, 58], library-level [51, 62], library

OS-level [11, 52] and kernel-level [32–34, 39, 48, 49, 60].

None of these approaches work for commodity smartphones

and tablets, and do not address the key device hetero-

geneity problems to support migration on mobile devices.

Application-level mechanisms [12, 27], while efficient, are

non-transparent, require application-level modifications, and

may require nonstandard programming languages [29].

Library checkpoint-restart mechanisms require that applica-

tions be compiled or relinked against special libraries. Un-

like Flux, such approaches do not capture important parts

of the system state, such as interprocess communication and

process dependencies through the OS, and do not support

significant changes in underlying hardware or the plethora

of devices found in mobile platforms.

Library OS approaches encapsulate an entire OS at the user-

level to make checkpoint-restore of OS and application state

easier across desktop computers, but rely on remote display

mechanisms [52], limiting graphics performance. It is un-

clear how these systems might support app migration across

mobile devices. Like distributed OSes, the hard part is mi-

grating across heterogeneous graphics hardware; any library

OS attempting to migrate from a desktop to a tablet would

need to adopt exactly the kind of mechanisms that are pro-

vided by the Flux solution.

Kernel-level approaches include those that require entirely

new OSes [32, 39], limiting their deployment, and those

that work with commodity OSes such as Linux [33, 48, 49],

which led to the current CRIU checkpoint-restore support

in Linux [47]. Flux builds on CRIU but specifically targets

mobile devices, focusing on providing the necessary hooks

to extract and reintegrate application state from Android-

specific software device drivers, as well as interactions with

system services, and hardware devices to support migration

across disparate devices.

Recently, an Android-specific checkpoint-restore project

was created for restoring the Android Zygote process for

faster booting [1]. However, the project does not support

checkpoint-restore of interactive or GUI-based processes

and therefore does not support Android apps, supports only

same-device checkpoint and restoration, and does not sup-

port interaction with hardware devices.

There has also been significant research in record-replay ap-

proaches [13, 17, 24, 40, 42, 57, 61], in some cases to even

replicate application state across different computers [14].

Unlike Flux, these systems assume a homogeneous environ-

ment and are not designed to allow replay with any modifi-

cations to the recorded execution.

Other approaches enable replay with varying degrees of

modifications from the recorded execution. Crosscut [18]

can reduce the information recorded in a log so that, for ex-

ample, sensitive information can be purged before replay.

Scribe [35] replays a recorded application execution until a

specified point, and then transitions to live execution instead

of replaying the rest of the log. Racepro [36] detects process

races due to dependencies in the ordering of system calls

by recording an application execution to a log, identifying

a pair of system calls that may be racy, truncating the log

at the occurrence of the pair of system calls, inverting their

order, and replaying the truncated log with the reordered sys-

tem calls. A few record-replay systems allow new code to be

run while replaying a recorded execution [17, 28]. However,

this new code cannot have any side effects on the program.

More recently, Dora [64] allows transparent mutable replay

of application execution even when applications change. Re-

cent work also applies record-replay to graphical contexts

by leveraging a record-prune-replay mechanism capable of

restoring an OpenGL state by replaying the minimal num-

ber of calls necessary [30]. Flux differs from previous ap-

proaches in that it targets mobile service invocations and

leverages their semantics to guarantee correctness as device

state changes, adapts to changes in hardware, and is much

lighter weight, making it more suitable for mobile devices.

6. Conclusions and Future Work

Moving computation across glass surfaces has been the vi-

sion of science fiction for decades. Recent advances in mo-

bile device computing capacity as well as the proliferation of

glass surfaces in cell phones, phablets, tablets, smart TVs,

and smart watches, all running similar OSs, will likely en-

able new forms of computing interactions that extend be-

yond a single device. We have demonstrated that such ex-

periences are indeed possible with Flux. A user can move

apps—mid execution—across Android-based mobile and

tablet devices. Our design focused on minimizing the intru-

siveness on existing mobile OS stacks and apps. At same

time, we wanted to leverage the clean separation between

apps and services within a mobile OS to allow for a fluid

migration experience where apps can gracefully adapt to

changes in hardware devices. We have showed that many

popular apps can be migrated without any modifications. In

the process, we have fully captured the various overheads

in migrating an app. These overheads, while small, are still

noticeable. We are exploring various optimizations to mask

away these overheads during app migration.

7. Acknowledgments

Nicolas Viennot made possible the analysis of Google Play

apps. Donald Porter provided helpful comments on earlier

drafts of this paper. This work was supported in part by a

Google Research Award, an IBM PhD Fellowship, and NSF

grants CNS-1162447, CNS-1422909, and CCF-1162021.

14



References
[1] 0xlab. Android DMTCP. http://github.com/0xlab.

Accessed: 2014-04-02.

[2] J. Andrus, C. Dall, A. Van’t Hof, O. Laadan, and J. Nieh.

Cells: A Virtual Mobile Smartphone Architecture. In Pro-
ceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP 2011), pages 173–187, Cascais, Portugal,

Oct. 2011.

[3] Apple Inc. Apple Airplay - Play content from iOS devices

on Apple TV. https://www.apple.com/airplay/.

Accessed: 2015-03-02.

[4] Apple Inc. SunSpider 1.0.2. https://www.webkit.
org/perf/sunspider/sunspider.html. Accessed:

2014-07-19.

[5] Archana Venkatraman. CIOs Distrust Public Cloud

for Mission-Critical Work, says IDC. http://www.
computerweekly.com/news/2240170818/CIOs-
distrust-public-cloud-for-mission-
critical-work-says-IDC, Nov. 2012. Accessed:

2015-03-12.

[6] Aurora Software. Quadrant Standard. http://www.
aurorasoftworks.com/products/quadrant. Ac-

cessed: 2014-07-19.

[7] A. Barak and O. Laádan. The MOSIX Multicomputer Operat-

ing System for High Performance Cluster Computing. Journal
of Future Generation Computer Systems, 13(4–5):361–372,

Mar. 1998.

[8] R. Baratto, L. Kim, and J. Nieh. THINC: A Virtual Display

Architecture for Thin-Client Computing. In Proceedings of
the 20th ACM Symposium on Operating Systems Principles
(SOSP 2005), pages 277–290, Brighton, United Kingdom,

Oct. 2005.

[9] R. Baratto, S. Potter, G. Su, , and J. Nieh. MobiDesk: Mo-

bile Virtual Desktop Computing. In Proceedings of the 10th
Annual ACM International Conference on Mobile Computing
and Networking (MobiCom 2004), pages 1–15, Philadelphia,

PA, USA, Sept. 2004.

[10] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell,

H. Tuch, and B. Zoppis. The VMware Mobile Virtualization

Platform: Is That a Hypervisor in Your Pocket? ACM SIGOPS
Operating Systems in Review, 44(4):124–135, Dec. 2010.

[11] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R. Lorch,

B. Bond, R. Olinsky, and G. C. Hunt. Composing OS Exten-

sions Safely and Efficiently with Bascule. In Proceedings of
the 8th ACM European Conference on Computer Systems (Eu-
roSys 2013), pages 239–252, Prague, Czech Republic, 2013.

[12] A. Beguelin, E. Seligman, and P. Stephan. Application Level

Fault Tolerance in Heterogeneous Networks of Workstations.

Journal of Parallel and Distributed Computing, 43(2):147–

155, June 1997.

[13] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Mur-

ray, M. Drinić, D. Mihočka, and J. Chau. Framework for

Instruction-level Tracing and Analysis of Program Execu-

tions. In Proceedings of the 2nd International Conference on
Virtual Execution Environments (VEE 2006), pages 154–163,

Ottawa, Ontario, Canada, June 2006.

[14] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault

tolerance. In Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles (SOSP 1995), pages 1–11, Copper

Mountain, Colorado, USA, 1995.

[15] Carly Page. Cloud Computing Voted as Fundamentally Inse-

cure. http://www.theinquirer.net/inquirer/
news/2381817/cloud-computing-voted-as-
fundamentally-insecure, Nov. 2014. Accessed:

2015-03-12.

[16] D. R. Cheriton. The V Kernel: A Software Base for Dis-

tributed Systems. IEEE Software, 1(2):19–42, Apr. 1984.

[17] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling Dynamic

Program Analysis from Execution in Virtual Environments.

In Proceedings of the USENIX Annual Technical Conference,

pages 1–14, Boston, MA, USA, June 2008.

[18] J. Chow, D. Lucchetti, T. Garfinkel, G. Lefebvre, R. Gardner,

J. Mason, S. Small, and P. M. Chen. Multi-stage Replay with

Crosscut. In Proceedings of the 6th International Conference
on Virtual Execution Environments (VEE 2010), pages 13–24,

Pittsburgh, Pennsylvania, USA, Mar. 2010.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,

I. Pratt, and A. Warfield. Live Migration of Virtual Machines.

In Proceedings of the 2nd Symposium on Networked Systems
Design and Implementation (NSDI 2005), pages 273–286,

Boston, MA, USA, May 2005.

[20] C. Dall, J. Andrus, A. Van’t Hof, O. Laadan, and J. Nieh. The

Design, Implementation, and Evaluation of Cells: A Virtual

Mobile Smartphone Architecture. ACM Transactions on Com-
puter Systems (TOCS), 30(3):9:1–31, Aug. 2012.

[21] W. R. Dieter and J. E. Lumpp Jr. User-Level Checkpoint-

ing for LinuxThreads Programs. In Proceedings of the 2001
USENIX Annual Technical Conference, pages 81–92, Berke-

ley, CA, USA, June 2001.

[22] F. Douglis and J. K. Ousterhout. Transparent Process Migra-

tion: Design Alternatives and the Sprite Implementation. Soft-
ware - Practice and Experience, 21(8):757–785, Aug. 1991.

[23] Google Inc. Chromecast. https://www.google.com/
chrome/devices/chromecast/. Accessed: 2014-04-

12.

[24] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.

Kaashoek, and Z. Zhang. R2: An Application-Level Ker-

nel for Record and Replay. In Proceedings of the 8th Sym-
posium on Operating Systems Design and Implementation
(OSDI 2008), pages 193–208, Berkeley, CA, USA, Dec. 2008.

[25] P. H. Hargrove and J. C. Duell. Berkeley Lab Check-

point/Restart (BLCR) for Linux Clusters. Journal of Physics:
Conference Series, 46:494–499, Sept. 2006.

[26] M. R. Hines and K. Gopalan. Post-Copy Based Live Virtual

Machine Migration Using Adaptive Pre-Paging and Dynamic

Self-Ballooning. In Proceedings of the 5th International Con-
ference on Virtual Execution Environments (VEE 2009), pages

51–60, Washington, DC, USA, Mar. 2009.

[27] Y. Huang, C. Kintala, and Y. M. Wang. Software Tools and

Libraries for Fault Tolerance. IEEE Bulletin of the Tecnni-
cal Committee on Operating System and Application Environ-
ments, 7(4):5–9, Winter 1995.

15



[28] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detect-

ing Past and Present Intrusions through Vulnerability-Specific

Predicates. In Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP 2005), pages 91–104,

Brighton, United Kingdom, Oct. 2005.

[29] L. V. Kale and S. Krishnan. CHARM++: a Portable Concur-

rent Object Oriented System Based on C++. In Proceedings
of the 8th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA 1993),
pages 91–108, Washington, DC, USA, Sept. 1993.

[30] S. Kazemi, R. Garg, and G. Cooperman. Transparent

Checkpoint-Restart for Hardware-Accelerated 3D Graphics.

CoRR, abs/1312.6650, Dec. 2013.

[31] J. Kim, R. Baratto, and J. Nieh. pTHINC: A Thin-Client

Architecture for Mobile Wireless Web. In Proceedings of the
15th International World Wide Web Conference (WWW 2006),
pages 143–152, Edinburgh, Scotland, May 2006.

[32] B. A. Kingsbury and J. T. Kline. Job and Process Recovery

in a UNIX-based Operating System. In Proceedings of the
1989 USENIX Winter Technical Conference, pages 355–364,

San Diego, CA, USA, Jan. 1989.

[33] O. Laadan and J. Nieh. Transparent Checkpoint-Restart of

Multiple Processes on Commodity Operating Systems. In

Proceedings of the 2007 USENIX Annual Technical Confer-
ence, pages 323–336, Santa Clara, CA, USA, June 2007.

[34] O. Laadan, D. Phung, and J. Nieh. Transparent Checkpoint-

Restart of Distributed Applications on Commodity Clusters.

In Proceedings of the 2005 IEEE International Conference on
Cluster Computing (Cluster 2005), pages 1–13, Boston, MA,

USA, Sept. 2005.

[35] O. Laadan, N. Viennot, and J. Nieh. Transparent, Lightweight

Application Execution Replay on Commodity Multiprocessor

Operating Systems. In Proceedings of the ACM International
Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS 2010), pages 155–166, New York, NY,

USA, June 2010.

[36] O. Laadan, N. Viennot, C.-C. Tsai, C. Blinn, J. Yang, , and

J. Nieh. Pervasive Detection of Process Races in Deployed

Systems. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP 2011), pages 353–367,

Cascais, Portugal, Oct. 2011.

[37] A. Lai and J. Nieh. Limits of Wide-Area Thin-Client Comput-

ing. In Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMET-
RICS 2002), pages 228–239, Marina del Rey, CA, USA, June

2002.

[38] A. Lai, J. Nieh, B. Bohra, V. Nandikonda, A. P. Surana, and

S. Varshneya. Improving Web Browsing on Wireless PDAs

Using Thin-Client Computing. In Proceedings of the 13th In-
ternational World Wide Web Conference (WWW 2004), pages

143–154, New York, NY, May 2004.

[39] C. R. Landau. The Checkpoint Mechanism in KeyKOS. In

Proceedings of the 2nd International Workshop on Object
Orientation in Operating Systems, pages 86–91, Dourdan,

France, Sept. 1992.

[40] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel

Programs with Instant Replay. IEEE Transactions on Com-

puters, 36(4), Apr. 1987.

[41] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse,

and H. van Staveren. Amoeba: a Distributed Operating Sys-

tem for the 1990s. IEEE Computer, 23(5):44–53, May 1990.

[42] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and

B. Calder. Automatically Classifying Benign and Harmful

Data Races Using Replay Analysis. In Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI 2007), pages 22–31, San

Diego, California, USA, June 2007.

[43] M. Nelson, B.-H. Lim, and G. Hutchins. Fast Transparent

Migration for Virtual Machines. In Proceedings of the 2005
USENIX Annual Technical Conference, pages 25–25, Ana-

heim, CA, USA, Apr. 2005.

[44] J. Nieh, S. J. Yang, and N. Novik. Measuring Thin-Client Per-

formance Using Slow-Motion Benchmarking. ACM Transac-
tions on Computer Systems (TOCS), 21(1):87–115, Feb. 2003.

[45] J. Onorato. Modifying AIDL Compiler to Generate

C++ Code. https://groups.google.com/forum/
#!topic/android-framework/i0SWc9cHEJ0, Nov.

2011. Accessed: 2015-03-12.

[46] OpenSignal. Android Fragmentation Visualized. http:
//opensignal.com/reports/2014/android-
fragmentation/, Aug. 2014. Accessed: 2015-03-11.

[47] OpenVZ. Checkpoint/Restore in Userspace. http://www.
criu.org. Accessed: 2014-03-14.

[48] OpenVZ Linux Containers. http://www.openvz.org.

Accessed: 2014-03-15.

[49] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design

and Implementation of Zap: A System for Migrating Comput-

ing Environments. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002),
pages 361–376, Boston, MA, USA, Dec. 2002.

[50] J. S. Plank. An Overview of Checkpointing in Uniproces-

sor and Distributed Systems, Focusing on Implementation

and Performance. Technical Report UT-CS-97-372, Dept. of

Computer Science, University of Tennessee, July 1997.

[51] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:

Transparent Checkpointing under Unix. In Proceedings of the
1995 USENIX Winter Technical Conference, pages 213–223,

New Orleans, LA, USA, Jan. 1995.

[52] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and

G. C. Hunt. Rethinking the Library OS from the Top Down.

In Proceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and Operat-
ing Systems (ASPLOS 2011), pages 291–304, Newport Beach,

CA, USA, Mar. 2011.

[53] M. L. Powell and B. P. Miller. Process Migration in DE-

MOS/MP. In Proceedings of the Ninth ACM Symposium on
Operating Systems Principles (SOSP 1983), pages 110–119,

Bretton Woods, NH, USA, Oct. 1983.

[54] R. Rashid and G. Robertson. Accent: A Communication Ori-

ented Network Operating System Kernel. In Proceedings of
the Eighth ACM Symposium on Operating Systems Principles

16



(SOSP 1981), pages 64–75, Pacific Grove, California, USA,

Dec. 1981.

[55] E. Roman. A Survey of Checkpoint/Restart Implementations.

Technical Report LBNL-54942, Lawrence Berkeley National

Laboratory, July 2002.

[56] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,

M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois,

P. Leonard, and W. Neuhauser. Chorus Distributed Operating

System. Computing Systems, 1(4):305–370, 1988.

[57] Y. Saito. Jockey: a User-Space Library for Record-Replay

Debugging. In Proceedings of the 6th International Sympo-
sium on Automated Analysis-Driven Debugging (AADEBUG
2005), pages 69–76, Monterey, CA, USA, Sept. 2005.

[58] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, and

S. Jiang. Current Practice and a Direction Forward in Check-

point/Restart Implementations for Fault Tolerance. In Pro-
ceedings of the 19th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS ’05) - Workshop 18,

page 300.2, Washington, DC, USA, Apr. 2005.

[59] SC Magazine. 2013 Mobile Device Survey. http:
//www.scmagazine.com/2013-mobile-device-
survey/slideshow/1222/, 2013. Accessed: 2014-04-

20.

[60] B. K. Schmidt. Supporting Ubiquitous Computing with State-
less Consoles and Computation Caches. PhD thesis, Stanford

University, Aug. 2000.

[61] D. Subhraveti and J. Nieh. Record and Transplay: Partial

Checkpointing for Replay Debugging Across Heterogeneous

Systems. In Proceedings of the ACM International Confer-
ence on Measurement and Modeling of Computer Systems
(SIGMETRICS 2011), pages 109–120, San Jose, CA, USA,

June 2011.

[62] T. Tannenbaum and M. Litzkow. The Condor Distributed

Processing System. Dr. Dobb’s Journal, 20(227):40–48, Feb.

1995.

[63] N. Viennot, E. Garcia, and J. Nieh. A Measurement Study of

Google Play. In Proceedings of the ACM International Con-
ference on Measurement and Modeling of Computer Systems
(SIGMETRICS 2014), pages 221–233, Austin, TX, USA, June

2014.

[64] N. Viennot, S. Nair, and J. Nieh. Transparent Mutable Replay

for Multicore Debugging and Patch Validation. In Proceed-
ings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS 2013), pages 127–138, Houston, TX, USA, Mar.

2013.

[65] S. J. Yang, J. Nieh, S. Krishnappa, A. Mohla, and M. Saj-

jadpour. Web Browsing Performance of Wireless Thin-Client

Computing. In Proceedings of the 12th International World
Wide Web Conference (WWW 2003), pages 68–79, Budapest,

Hungary, May 2003.

[66] S. J. Yang, J. Nieh, M. Selsky, and N. Tiwari. The Perfor-

mance of Remote Display Mechanisms for Thin-Client Com-

puting. In Proceedings of the 2002 USENIX Annual Technical
Conference, pages 131–146, Monterey, CA, USA, June 2002.

17


