Is Your Unitary Low Dimensional?

Thomas Chen Shivam Nadimpalli Henry Yuen
Is Your Unitary Low Dimensional?

Thomas Chen Shivam Nadimpalli Henry Yuen
Informally, if unitary U acts non-trivially on only k of the n qubits...

$$U = \begin{bmatrix}
 V & 0 & 0 & 0 \\
 0 & V & 0 & 0 \\
 0 & 0 & \ddots & 0 \\
 0 & 0 & 0 & V \\
\end{bmatrix}_{2^n \times 2^n}$$

Definition: Unitary U acting on n qubits is a k-junta if $U = V \otimes I$ for some $2^k \times 2^k$ unitary V.
A Natural Question

\[|\psi\rangle \xrightarrow{\mathcal{O}_U} U |\psi\rangle \]

Question: Given query access to a unitary \(U \) on \(n \) qubits and \(k > 0 \), is \(U \) a \(k \)-junta?

Goal: Minimize \# of queries to \(\mathcal{O}_U \)
A Natural Question

|ψ⟩ → \(\mathcal{O}_U \) → \(U |ψ⟩ \)

Question: Given query access to a unitary \(U \) on \(n \) qubits and \(k > 0 \), is \(U \) a \(k \)-junta?

- **Goal:** Minimize \# of queries to \(\mathcal{O}_U \)
- Intuitively feels hard to do without dependence on \(n \)...
Relaxing The Question

(Old) Question: Given query access to a unitary U on n qubits and $k > 0$, is U a k-junta?

Relax

(New) Question: Given query access to a unitary U on n qubits and $k > 0$, decide with high probability

- if U is a k-junta; or
- if U is far from every k-junta? (Hilbert-Schmidt distance, up to phase)
Property Testing: It’s Like Eggs, Only Harder!

Old Question

New Question

k-juntas

ε
The Question We Consider

(New) Question: Given query access to a unitary U on n qubits and $k > 0$, decide with high probability

- if U is a k-junta; or
- if U is far from every k-junta?

Important Special Case: Boolean $f : \{0, 1\}^n \rightarrow \{0, 1\}$
Prior Work

Unitary U

$f : \{0, 1\}^n \rightarrow \{0, 1\}$

$O(k)$
[AS07]

$O(k)$
[W11]

This work: $\tilde{O}(\sqrt{k})$
$\Omega(\sqrt{k})$

$\tilde{O}(\sqrt{k})$
[ABRdW16]

$\Omega(\sqrt{k})$
[BKT17]
Prior Work

Unitary U

$f : \{0, 1\}^n \rightarrow \{0, 1\}$

$O(k)$

$O(k)$

$O(k)$

$O(k)$

$O(k)$

$O(k)$

This work: $\tilde{O}(\sqrt{k})$
$\Omega(\sqrt{k})$

[AS07]

[ABRdW16]

[BKT17]
Prior Work

Unitary U

$f : \{0, 1\}^n \rightarrow \{0, 1\}$

$O(k)$
[AS07]

$O(k)$
[W11]

$\tilde{O}(\sqrt{k})$
[ABRdW16]

$\Omega(\sqrt{k})$
[BKT17]

This work: $\tilde{O}(\sqrt{k})$
$\Omega(\sqrt{k})$
Our Main Result

Theorem: You can decide (w.h.p.) if a unitary is a k-junta or “far” from a k-junta with $\tilde{O}(\sqrt{k})$ queries. Furthermore, this is essentially tight: testing if a unitary is a k-junta requires $\Omega(\sqrt{k})$ queries.
The Upper Bound

Recall from HW 1 that any $2^n \times 2^n$ matrix can be written as

$$U = \sum_{x \in \{I,X,Y,Z\}^n} \hat{U}(x)\sigma_x.$$

Key Quantity: The influence of a qubit j on U is defined as

$$\text{Inf}_j[U] = \sum_{x : x_j \neq I} |\hat{U}(x)|^2.$$

- Informally captures how “non-trivially” U acts on the qubit j.
- Naturally extends to $\text{Inf}_S[U]$ for $S \subseteq U$.
The Upper Bound

Key Lemma: Can determine with $O(1/\sqrt{\delta})$ queries to U and U^\dagger if $\text{Inf}_S[U] \geq \delta$.

$= O(\sqrt{k} \log k \log k \varepsilon)$ queries for testing quantum k-juntas.
The Upper Bound

Key Lemma: Can determine with $O(1/\sqrt{\delta})$ queries to U and U^\dagger if $\text{Inf}_S[U] \geq \delta$.

+

[ABRdW16]: Given unknown $A \subseteq [n]$ and access to

$$\text{Intersects}_A(S) := \begin{cases}
1 & A \cap S \neq \emptyset \\
0 & \text{otherwise}
\end{cases},$$

can decide if $|A| \leq k$ or $|A| \geq k + d$ with $O(\sqrt{1 + k/d})$ queries.
The Upper Bound

Key Lemma: Can determine with $O(1/\sqrt{\delta})$ queries to U and U^\dagger if $\text{Inf}_S[U] \geq \delta$.

+

[ABRdW16]: Given unknown $A \subseteq [n]$ and access to

$$\text{Intersects}_A(S) := \begin{cases} 1 & A \cap S \neq \emptyset \\ 0 & \text{otherwise} \end{cases},$$

can decide if $|A| \leq k$ or $|A| \geq k + d$ with $O(\sqrt{1 + k/d})$ queries.

$$= O\left(\frac{\sqrt{k \log k \log k}}{\varepsilon}\right)$$ queries for testing quantum k-juntas
The Lower Bound

[BKT17]: Testing if $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is a k-junta requires $\Omega(\sqrt{k})$ queries.

- Encode $f : \{0, 1\}^n \rightarrow \{0, 1\}$ as $U_f := \text{diag}(-1^{f(x)})$.
- Essentially a reduction from [BKT17], but needs new structural result for unitary k-juntas.
Other Contributions

Learning unitary k-juntas:

- Upper bound via tomography
- A lower bound via communication complexity
Many thanks to
- Rocco Servedio and Xi Chen for helpful discussions, and
- All of you for listening 😊