
Homomorphic Encryption for
Secure Data Computations

By

Mohamed Tarek Ibn Ziad Mohamed Hassan

Supervised By
Dr. Hassan Mohamed Shehata Bedour

Dr. Yousra Mohsen Ali Alkabani

A presentation submitted in partial fulfillment of the requirements of

Master of Science in Electrical Engineering
(Computer and Systems Engineering)

Outline

 Introduction

 Thesis Contributions

 Background

 E-voting Attacks and Countermeasures

 Protection against Hardware Trojans

 Processing over Encrypted Images

 Conclusion

2 of 60

Outline

 Introduction

 Thesis Contributions

 Background

 E-voting Attacks and Countermeasures

 Protection against Hardware Trojans

 Processing over Encrypted Images

 Conclusion

3 of 60

Introduction

 Homomorphism comes from the two ancient Greek
words; homos (same) and morphe (shape or form).

 Homomorphic encryption (HE) is the kind of encryption,
which can be used to perform different arithmetic
operations on encrypted data to directly obtain an
encrypted result.

 Depending on the number of arithmetic computations
that are supported by an algorithm, an HE can be
considered as either fully homomorphic encryption
(FHE) or partially homomorphic encryption (PHE).

4 of 60

Homomorphic Encryption Importance

 HE is used to build many applications, such as secure
voting systems, privacy-preserving face recognition,
fingerprint recognition, zero-knowledge watermarking,
and location-based services.

 While FHE can help solve privacy issues, it is also
desirable to reduce the performance overhead
introduced by such methods.

 It is a good practice to utilize PHE techniques in the
desired applications, instead of the FHE ones, to avoid
such overheads.

5 of 60

Outline

 Introduction

 Thesis Contributions

 Background

 E-voting Attacks and Countermeasures

 Protection against Hardware Trojans

 Processing over Encrypted Images

 Conclusion

6 of 60

Thesis Contributions
 Secure electronic voting (e-voting)
◦ Implementing an e-voting machine, which uses PHE,

on a field programmable gate array (FPGA).

◦ Injecting a Hardware Trojan (HT) within the FPGA
design to tamper voting results.

◦ Providing a protection technique against the
proposed attack.

◦ Showing the different overheads resulting from the
protection technique, such as area, timing, and
power.

7 of 60

Thesis Contributions (2)
 Secure FPGA-based designs
◦ Implementing ElGamal encryption scheme and the

CRT-based ElGamal (CEG) encryption scheme as a
PHE techniques on an FPGA.

◦ Showing the resource utilization, timing performance,
and power analysis of both schemes.

◦ Introducing a dual-circuit design that supports both,
multiplicative and additive homomorphic properties
and providing the obtained savings on area and
power over a regular design that has no resource
sharing.

8 of 60

Thesis Contributions (3)
 Secure image processing
◦ Proposing a secure framework to perform image

processing computations over images stored on a
third-party server based on Paillier PHE scheme.

◦ Supporting image adjustment operations, spatial
filtering, edge detection, morphological operations,
and histogram equalization.

◦ Showing the overheads of the implementation using
a Personal Computer (PC) and Mobile device (Mob).

9 of 60

Outline

 Introduction

 Thesis Contributions

 Background

 E-voting Attacks and Countermeasures

 Protection against Hardware Trojans

 Processing over Encrypted Images

 Conclusion

10 of 60

Background

 Fully Homomorphic Encryption (FHE)

 Partially Homomorphic Encryption (PHE)

◦ ElGamal Scheme

◦ CRT-based ElGamal Scheme

◦ Paillier Scheme

 Hardware Trojan

11 of 60

Fully Homomorphic Encryption
(FHE)
 FHE can perform any operation directly on encrypted

data by converting it into a circuit of a certain depth

 FHE includes four basic algorithms: Keygen,
Encrypt, Decrypt, and Eval.

 Eval algorithm is built based on three different
algorithms: Add, Mult, and Recrypt.

 Recrypt operation: cleans the ciphertext from the

noise.

12 of 60

Fully Homomorphic Encryption
(FHE) (2)
 Why Add and Mult?

 XOR and AND is Turing-complete. Any function is a
combination of XOR and AND gates.

 If you can compute sums and products on encrypted
bits, you can compute any function on encrypted inputs

ADD = XOR MUL = AND

13 of 60

Fully Homomorphic Encryption
(FHE) Drawbacks
 System complexity

◦ FHE requires a lattice-based cryptosystem that is significantly
more complex than PHE cryptosystems.

 Massive ciphertext sizes

◦ When using recommended security parameters, ciphertexts
produced are on the order of 128MB and a public key of 128PB,
which are simply not practical.

 Computation time

◦ The key size is still on the order of several GB, with encryption of
a single bit still requiring up to 30 minutes.

 Solution: using partially homomorphic encryption (PHE)
techniques instead in order to avoid such drawbacks
and achieve reasonable outcome.

14 of 60

Partially Homomorphic Encryption
(PHE)

 PHE gives the chance to perform only one kind of
operations, either addition or multiplication, on
ciphertexts without revealing data.

Multiplicative
homomorphism

Additive
homomorphism

𝐸 𝑚1 𝑶𝒑 𝐸 𝑚2 = 𝐸(𝑚1 ×𝑚2)

𝐸 𝑚1 𝑶𝒑 𝐸 𝑚2 = 𝐸(𝑚1 +𝑚2)

15 of 60

ElGamal Scheme

 Key generation:

◦ The secret key 𝑘

◦ The public key (𝑔,ℎ), 𝑤ℎ𝑒𝑟𝑒 ℎ = 𝑔𝑘 𝑚𝑜𝑑 𝑛
 𝑘 and 𝑔 are random numbers. 𝑛 is a large prime.

 Encryption:

◦ 𝐶1 = 𝑔𝑙 (𝑚𝑜𝑑 𝑛) and 𝐶2 = ℎ𝑙 ×𝑚 (𝑚𝑜𝑑 𝑛)
 𝑙 is a random number.

 Decryption:

◦ 𝑚 = 𝐶1
−𝑘 × 𝐶2 (𝑚𝑜𝑑 𝑛)

 It is a multiplicative homomorphic scheme.

◦ If (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are valid encryptions for 𝑚1 and 𝑚2, with
the same key, then (𝑥1 𝑥2, 𝑦1 𝑦2) is a valid encryption of
𝑚1 𝑚2.

16 of 60

ElGamal Scheme

 Key generation:

◦ The secret key 𝑘

◦ The public key (𝑔,ℎ), 𝑤ℎ𝑒𝑟𝑒 ℎ = 𝑔𝑘 𝑚𝑜𝑑 𝑛
 𝑘 and 𝑔 are random numbers. 𝑛 is a large prime.

 Encryption:

◦ 𝐶1 = 𝑔𝑙 (𝑚𝑜𝑑 𝑛) and 𝐶2 = ℎ𝑙 ×𝑚 (𝑚𝑜𝑑 𝑛)
 𝑙 is a random number.

 Decryption:

◦ 𝑚 = 𝐶1
−𝑘 × 𝐶2 (𝑚𝑜𝑑 𝑛)

∵ 𝑥1, 𝑦1 = 𝑔𝑙 , ℎ𝑙 ×𝑚1

∵ 𝑥2, 𝑦2 = 𝑔𝑙
′
, ℎ𝑙

′
×𝑚2

∴ 𝑥1 𝑥2, 𝑦1𝑦2 = (𝑔𝑙+𝑙
′
, ℎ𝑙+𝑙

′
×𝑚1𝑚2)

17 of 60

CRT-based ElGamal (CEG) Scheme

 Key generation:

◦ The secret key 𝑘

◦ The public key (𝑔,ℎ), 𝑤ℎ𝑒𝑟𝑒 ℎ = 𝑔𝑘 𝑚𝑜𝑑 𝑛

 Encryption:

◦ 𝐶1 = 𝑔𝑙𝑖 (𝑚𝑜𝑑 𝑛) and 𝐶2 = ℎ𝑙𝑖 × 𝑔𝑚𝑖 (𝑚𝑜𝑑 𝑛)
 where 𝑚𝑖 = 𝑚 (𝑚𝑜𝑑 𝑑𝑖), 𝑑𝑖 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑖 = 1, … , 𝑡 and

gcd(𝑑𝑖 , 𝑑𝑗) = 1 𝑓𝑜𝑟 𝑖 ≠ 𝑗

 Decryption:

◦ 𝑚 = 𝐶𝑅𝑇−1 log𝑔 𝐶2𝑖 × 𝐶1𝑖
−𝑘 𝑚𝑜𝑑 𝑛 , 𝑖 = 1,… , 𝑡

 𝐶𝑅𝑇−1 𝐶𝑖 = σ𝑖=1
𝑡 𝐶𝑖

𝑑

𝑑𝑖

𝑑

𝑑𝑖

−1
𝑚𝑜𝑑 𝑑𝑖 𝑚𝑜𝑑 𝑑

 It is an additive homomorphic scheme that uses the
Chinese Remainder Theorem (CRT).

18 of 60

CRT-based ElGamal (CEG) Scheme

 Key generation:

◦ The secret key 𝑘

◦ The public key (𝑔,ℎ), 𝑤ℎ𝑒𝑟𝑒 ℎ = 𝑔𝑘 𝑚𝑜𝑑 𝑛

 Encryption:

◦ 𝐶1 = 𝑔𝑙𝑖 (𝑚𝑜𝑑 𝑛) and 𝐶2 = ℎ𝑙𝑖 × 𝑔𝑚𝑖 (𝑚𝑜𝑑 𝑛)
 where 𝑚𝑖 = 𝑚 (𝑚𝑜𝑑 𝑑𝑖), 𝑑𝑖 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑖 = 1, … , 𝑡 and

gcd(𝑑𝑖 , 𝑑𝑗) = 1 𝑓𝑜𝑟 𝑖 ≠ 𝑗

 Decryption:

◦ 𝑚 = 𝐶𝑅𝑇−1 log𝑔 𝐶2𝑖 × 𝐶1𝑖
−𝑘 𝑚𝑜𝑑 𝑛 , 𝑖 = 1,… , 𝑡

 𝐶𝑅𝑇−1 𝐶𝑖 = σ𝑖=1
𝑡 𝐶𝑖

𝑑

𝑑𝑖

𝑑

𝑑𝑖

−1
𝑚𝑜𝑑 𝑑𝑖 𝑚𝑜𝑑 𝑑

∵ 𝑥1, 𝑦1 = 𝑔𝑙 , ℎ𝑙 × 𝑔𝑚1

∵ 𝑥2, 𝑦2 = 𝑔𝑙
′
, ℎ𝑙

′
× 𝑔𝑚2

∴ 𝑥1 𝑥2, 𝑦1𝑦2 = (𝑔𝑙+𝑙
′
,ℎ𝑙+𝑙

′
× 𝑔𝑚1+𝑚2)

19 of 60

Paillier Scheme

 Key generation:

◦ The secret key λ , 𝑤ℎ𝑒𝑟𝑒 λ = 𝑙𝑐𝑚(𝑝 − 1,𝑞 − 1)

◦ The public key (𝑔,𝑁)

 𝑤ℎ𝑒𝑟𝑒 ℎ = 𝑔𝑐𝑑 𝐿 𝑔λ 𝑚𝑜𝑑 𝑁2 ,𝑁 = 1 and 𝐿 𝑢 =
𝑢−1

𝑁

 Encryption:

◦ 𝐶 = 𝑔𝑚 𝑟𝑁 (𝑚𝑜𝑑 𝑁2)

 Decryption:

◦ 𝑚 =
𝐿 𝐶λ𝑚𝑜𝑑𝑁2

𝐿 𝑔λ𝑚𝑜𝑑𝑁2 𝑚𝑜𝑑 𝑁

 It is an additive homomorphic scheme. It also supports
a self-blinding operation, which allows multiplication of
encrypted integer by a plaintext scalar.

20 of 60

Paillier Scheme

 Key generation:

◦ The secret key λ , 𝑤ℎ𝑒𝑟𝑒 λ = 𝑙𝑐𝑚(𝑝 − 1,𝑞 − 1)

◦ The public key (𝑔,𝑁)

 𝑤ℎ𝑒𝑟𝑒 ℎ = 𝑔𝑐𝑑 𝐿 𝑔λ 𝑚𝑜𝑑 𝑁2 ,𝑁 = 1 and 𝐿 𝑢 =
𝑢−1

𝑁

 Encryption:

◦ 𝐶 = 𝑔𝑚 𝑟𝑁 (𝑚𝑜𝑑 𝑁2)

 Decryption:

◦ 𝑚 =
𝐿 𝐶λ𝑚𝑜𝑑𝑁2

𝐿 𝑔λ𝑚𝑜𝑑𝑁2 𝑚𝑜𝑑 𝑁

∵ 𝑥1 = 𝑔𝑚1 𝑟𝑁

∵ 𝑥2 = 𝑔𝑚2 𝑟′
𝑁

∴ 𝑥1𝑥2 = 𝑔𝑚1+𝑚2 𝑟𝑁𝑟′
𝑁

21 of 60

Hardware Trojan
 Hardware Trojan is a malicious alteration of one’s own hardware.

This alternation may, under specific rare circumstances, result in
information leakage out of the system or functional changes of the
system itself

22 of 60

Hardware Trojan (2)
 Hardware Trojan Taxonomy.

23 of 60

Outline

 Introduction

 Thesis Contributions

 Background

 E-voting Attacks and Countermeasures

 Protection against Hardware Trojans

 Processing over Encrypted Images

 Conclusion

24 of 60

E-voting Attacks and Countermeasures

 E-voting systems have started to be widely used as they
do offer various advantages over the traditional voting
methods.

 However, e-voting also introduces many security
challenges that need to be handled wisely, otherwise, it
might bomb the whole voting process.

 E-voting machines may contain harmful back-doors,
which can affect the dependability of the system.

25 of 60

E-voting System Overview

26 of 60

E-voting System Overview (2)

27 of 60

Scenario for a Possible Attack

 An untrusted FPGA-based voting machine may be used
to tamper with the legal votes of users.

 The attacker may add a hidden core, connected to the
MicroBlaze core, that replaces the user’s vote with
another one, if it receives a special external trigger.

28 of 60

Protection Against Proposed Attack

 First solution: Resetting unused bits
◦ We reset any unused bits to zero before receiving them at the

MicroBlaze

 Second solution: The enhanced Simple Blockage (SB)
method.

◦ Here, we choose to protect the design using a simple xoring
function.

◦ Obfuscation will take place between keypad and MicroBlaze.

29 of 60

Evaluation (Resetting Unused Bits)

 Device utilization for untrusted and protected systems (with and
without resetting unused bits) showing overhead percentage on a
Xilinx XC3S500E Spartan-3E FPGA.

 From the timing perspective, the untrusted design achieves max
frequency of 59.677 MHz, while the protected design achieves a
max frequency of 63.107 MHz.

 So, delay overhead is 0.206 ns, which is below 10%.
30 of 60

Evaluation (Resetting Unused Bits) (2)

 Power comparison between original and protected systems (with
and without resetting unused bits) on a Xilinx XC3S500E Spartan-3E
FPGA using Xilinx Power Analyzer.

31 of 60

Evaluation (Enhanced SB Method)

 Device utilization for untrusted and protected systems (with and
without enhanced Simple Blockage) showing overhead percentage
on a Xilinx XC3S500E Spartan-3E FPGA.

 From the timing perspective, the untrusted design achieves max
frequency of 59.677 MHz, while the protected design achieves a
max frequency of 50.666 MHz.

 So, delay overhead is 0.205 ns.
32 of 60

Evaluation (Enhanced SB Method) (2)

 Power comparison between original and protected systems (with
and without enhanced Simple Blockage) on a Xilinx XC3S500E
Spartan-3E FPGA using Xilinx Power Analyzer.

33 of 60

Outline

 Introduction

 Thesis Contributions

 Background

 E-voting Attacks and Countermeasures

 Protection against Hardware Trojans

 Processing over Encrypted Images

 Conclusion

34 of 60

Protection against Hardware Trojans

 Maintaining technology secrets of the fabrication
facilities and design royalties of third party IP owners
raises the difficulty of Hardware Trojan detection and
protection.

 Homomorphic encryption may be used to solve this
issue and defeat Hardware Trojans.

35 of 60

HT Protection using PHE
Methods (ElGamal Scheme)
 The block diagram of our implementation of ElGamal

encryption/decryption scheme.

36 of 60

HT Protection using PHE
Methods (CEG Scheme)
 The block diagram of our implementation of CEG

encryption/decryption scheme.

37 of 60

HT Protection using PHE
Methods (Dual-Circuit Design)

 Some third party IPs require the usage of more than
one single type of operation. Ex: an ALU that uses a
selection line to switch its mode between two different
operations.

 We suggest a solution by combining the two previously
schemes, ElGamal and the CEG, in a single dual-circuit
design. Thus, the proposed design supports both
additive and multiplicative homomorphism.

 We try to share resources as much as we can between
the two schemes in order to have minimal design cost.

38 of 60

Evaluation (PHE Methods)

 Resource utilization of ElGamal and CEG encryption/decryption
schemes for k = 8 bits on Xilinx Spartan-6 XC6SLX75 FPGA.

 Timing performance of ElGamal and CEG encryption/decryption
schemes for k = 8 bits on Xilinx Spartan-6 XC6SLX75 FPGA.

39 of 60

Evaluation (PHE Methods) (2)

 Power consumption (mW) of ElGamal and CEG
encryption/decryption schemes for k = 8 bits on Xilinx Spartan-6
XC6SLX75 FPGA.

40 of 60

Evaluation (Dual-Circuit Design)

 Area reduction of our dual ElGamal design over the regular
ElGamal design for k = 8 bits on Xilinx Spartan-6 XC6SLX75 FPGA.

41 of 60

Evaluation (Dual-Circuit Design) (2)

 Timing comparisons between our dual ElGamal design and the
regular ElGamal design for k = 8 bits on Xilinx Spartan-6 XC6SLX75
FPGA.

42 of 60

Evaluation (Dual-Circuit Design) (3)

 Power consumption (mW) of our dual ElGamal design and the
regular ElGamal design for k = 8 bits on Xilinx Spartan-6 XC6SLX75
FPGA.

43 of 60

Outline

 Introduction

 Thesis Contributions

 Background

 E-voting Attacks and Countermeasures

 Protection against Hardware Trojans

 Processing over Encrypted Images

 Conclusion

44 of 60

Processing over Encrypted Images

 Cloud computing provide scalable solution for data
storage and processing.

 Emerging solutions for image editing on the cloud:
Adobe creative cloud, Pixlr, etc.

 Images usually contain privacy sensitive data.
Outsourcing the raw data exposes a lot of information.

 How to protect user’s privacy while editing images in
the cloud?

45 of 60

CryptoImg System Overview

Client Device Cloud Server

Encrypt

Decrypt

CryptoImg
Operation

46 of 60

CryptoImg Operations

 CyrptoImg supports the following image processing
operations:

◦ Image Adjustment

◦ Noise Reduction

◦ Edge Detection

◦ Morphological Operations

◦ Histogram Equalization

 Problem: Paillier scheme is defined over the group of
positive integers. In practice, we also need to deal with
negative and real numbers.

 Solution: Use an encoding scheme that maps negative and
real numbers to integers and preserves the Paillier
encryption homomorphic properties.

47 of 60

Secure Image Adjustment

 Adding or subtracting adjustment value
from each pixel.

 Client sends the encrypted Image [I],and
adjustment value v to the server.

 Server applies the adjustment to each pixel.

 Client decrypts the result.

48 of 60

Secure Noise Reduction

 Client sends the encrypted Image [I],
and the filter values f to the server.

 Server computes the output image and
sends it to the client.

 Client decrypts the result.

49 of 60

Secure Edge Detection

 Client encrypts the source image I.

 Servers computes the encrypted horizontal
and vertical gradients of image.

 Client decrypts the result to compute the
gradient magnitude and direction.

50 of 60

Secure Morphological Operations

 Client encrypts the source image I.

 Servers computes, and sends it to
client.

 Client decrypts L and applies a
threshold T to get the output image.

51 of 60

Secure Histogram Equalization

 Client computes and encrypts the image
histogram [H].

 Server computes the brightness
transformation [T(p)]

 Server sends [T(p)] to client.

 Client decrypts T(p) and applies it to get
the output image.

52 of 60

Evaluation (Visual Output Results)

 CryptoImg is implemented as an extension for OpenCV library.

53 of 60

Evaluation (Visual Output Results) (2)

 CryptoImg is implemented as an extension for OpenCV library.

54 of 60

Evaluation (Computation Time Results)

 Execution Time (sec) of the Paillier encryption/decryption of image
using different key sizes on both personal computer (PC) and
mobile device (Mob) clients. We used 512 × 512 images for PC
and 256 × 256 images for Mob.

55 of 60

Evaluation (Computation Time Results) (2)

 Execution Time (sec) of the proposed operations using 1024-bit
and 2048-bit keys on both personal computer (PC) and mobile
device (Mob) clients in plaintext domain (PD) and encrypted
domain (ED). The server is modeled as the PC. We used 512 ×
512 images.

56 of 60

Outline

 Introduction

 Thesis Contributions

 Background

 E-voting Attacks and Countermeasures

 Protection against Hardware Trojans

 Processing over Encrypted Images

 Conclusion

57 of 60

Conclusion
 We tackled the problem of computing securely over

encrypted data.

 Instead of going through the non-practical techniques of FHE,
our target was to implement PHE methods and extend their
functionality.

 We applied our idea on three different cases.
◦ Securing e-voting machines against intruders.

◦ Securing FPGA-based designs against untrusted third party IPs .

◦ Securing image processing operations over untrusted clouds.

 The overheads accompanied by using such techniques are
reasonable compared to the huge overheads of the FHE
techniques reported in the literature.

58 of 60

Publications

 M. Tarek Ibn Ziad, A. Al-Anwar, Y. Alkabani, M. W. El-
Kharashi, and H. Bedour. “E-voting attacks and
countermeasures”. In Proceedings of the 10th International
Symposium on Frontiers of Information Systems and Network
Aplications (FINA 2014), held in conjunction with the 28th
IEEE International Conference on Advanced Information
Networking and Applications (AINA-2014), pages 269–274,
Victoria, BC, Canada, May 13–16, 2014.

 M. Tarek Ibn Ziad, A. Alanwar, Y. Alkabani, M. W. El-Kharashi,
and H. Bedour. “Homomorphic data isolation for hardware
Trojan protection”. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 131–136,
Montpellier, France, July 8–10, 2015.

59 of 60

Thank You

60 of 60

