2021

C/HDTSC)S >

g e ‘*‘f""vﬂ“ 2
Por yl‘éqﬁw_;?w,qy.ﬂ(%?‘ﬂ% ._‘ :' ;}'} ", f- v ‘-."r.‘r.".l,,. .

ZeRQ: Zero-Overhead Resilient Operation :
Under Pointer Integrity Attacks.

b ! gl P e . « g) ! ~\..":' T *"’*"—"’i?" =T AT S "’“‘_"‘g'"i;t‘ .vr_ ? :
. -

9 p ¢

‘.

Mohamed Tarek, Miguel Arroyo, Evgeny Manzhosov, and Simha Sethumadhavan
Columbia University
04/15/2021

&5 COLUMBIA | ENGINEERING

7 N The Fu Foundation School of Engineering and Applied Science

About Me

Mohamed Tarek
4th year PhD Candidate

y @M _TareklbnZiad

https://cs.columbia.edu/~mtarek

https://cs.columbia.edu/~mtarek

Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking
campaign

The tech giant gave arare statement that bristled at Google’'s analysis
of the novel hacking operation.

Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking
campaign

The tech giant gave arare statement that bristled at Google's analysis
of the novel hacking operation.

Exclusive: Saudi Dissidents
Hit With Stealth iPhone
Spyware Before Khashoggi's
Murder

Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking
campaign

The tech giant gave arare statement that bristled at Google's analysis
of the novel hacking operation.

€he New YJork Eimes oS BIek | 4355 e | Now a1 2018, 07-00mm
Exclusive: Saudi Dissidents
Hit With Stealth iPhone

Spyware Before Khashoggi's
Murder

WhatsApp Rushes to Fix
Security Flaw Exposed in
Hacking of Lawyer’s Phone

It’s easy to make mistakes

It’s easy to make mistakes

§\\

SEGFAULT!

Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs

B Non-Memory Safety [l Memory Safety

100

75/\/_/\

50

25

2006 2008 2010 2012 2014 2016 2018

Microsoft Product CVEs

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs
B Non-Memory Safety [l Memory Safety
100

75/\/_/\

50

25

2006 2008 2010 2012 2014 2016 2018

Microsoft Product CVEs

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

OSS-Fuzz Bug Types

Other

Non-memory Safety

Memory Safety

Google OSS-Fuzz bugs from 2016-2018.

9
Source: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

ATTACKERS

MEMORY SAFETY

Attackers Prefer Memory Safety Vulns

B Non Memory Safety [l Memory Safety

30
8 20
S
Q
>
)
e
o
g
%5 10
H
0
2014 2015 2016 2017 2018 2019 2020

Year

Zero-day “in the wild” exploits
from 2014-2020

Source: Google Project Zero, Oday "In the Wild" spreadsheet. Last updated: April 2020

How To Fix Memory (Un)Safety?

How To Fix Memory (Un)Safety?

/ Memory Safe \

Languages

How To Fix Memory (Un)Safety?

/ Memory Safe \

Languages

Performance?

K Legacy Code? /

How To Fix Memory (Un)Safety?

/MemorySafe\ ﬁ’re-deployment\

Languages Testing

Performance?

\: Legacy Code? / \ /

How To Fix Memory (Un)Safety?

/MemorySafe\ ﬁ’re-deployment\

Languages Testing

Performance?

K Legacy Code? /

How To Fix Memory (Un)Safety?

/ Memory Safe \

Languages

Performance?

K Legacy Code? /

ﬁ?re-deployment\

Testing

ﬂ?ost-deploymerﬂ

Mitigations

@

ZeR@: Overview

Program

p

\

Memory

CALL <Foo>

N

Return Address

/

Return Address Protection

ZeR@: Overview

///’ Program

Memory

CALL <Foo>

RET

\

N

©

Return Address

©

/

Return Address Protection

ZeR@: Overview

Program

p

y_\
&/

\

CALL <Foo>
STORE - - - —
RET

Memory

N

Return Address

/

Return Address Protection

ZeR@: Overview

///' Program

Memory

CALL <Foo>

Return Address

Return Address Protection

ZeR@ uses 1-bit
tag per pointer to

protect return
addresses.

23

ZeR@: Overview

///' Program

CALL <Foo>

w STORE - - - =

Memory

Return Address

-

/

Return Address Protection

ZeRd rejects any
regular store that

accesses a tagged
return address.

24

ZeR@: Overview

///' Program

Memory

CALL <Foo>

Return Address

w STORE - - - =

-

Return Address Protection

ZeR@ uses advisory
exceptions to avoid
crashing the running
process under attack.

25

ZeR@: Overview

/ Program

CALL <Foo> ©

y N

wSTORE____ - --X
- ©

Memory

N

j Return Address

/

ZeR@ protects return addresses, code

pointers, and data pointers.

26

ZeR@: Overview

///(Program ‘\\\

Memory

©
B _® - - - Return Address
©

CALL <Foo>

STORE - - - =

RET

ZeR@ protects return addresses, code
pointers, and data pointers.

ISA extensions:

CPtrLD & CPtrST

/

ZeR@: Overview

ISA extensions:

CPtrLD & CPtrST
DPtrLD & DPtrST

///7 Program

CALL

<Foo>

Memory

\

ﬁ Return Address

/

ZeR@ protects return addresses, code
pointers, and data pointers.

28

ZeR@: Overview

/ Program \

Memory

CALL <Foo> @
y_\ Return Add
w _______ @ — - - eturn ress
©

_/

How can ZeR@ efficiently identify if a memory word is a

return address, code pointer, data pointer, or regular data?

ZeR@: Cache Line Formats

Normal

HE008080D

ZeR@: Cache Line Formats

Program
Pointers
Normal

o o D

32

ZeR@: Cache Line Formats

Program
Pointers
Normal

v v [7
~ .
N AN \ \ I ’ / .
N \ ’ 4 4
N \ \ 1 ’ .
~ N \ \ N / v ,
N N \ \ / 7 4
\\ N \ 1 ’ y //
N N \ ! ! ’ 4 .
N R \ \ I / R -
~ '
N N \ \ 1 U

d e
N N \ \ 1 / , -

bit-vector

33

ZeR@: Cache Line Formats

Program
Pointers

Type | Bits |
Normal

s 8 (4], a0

bit-vector

ZeR@: Cache Line Formats

Program
Pointers

Type | Bits |
Normal

e, 3 (4] |
Function pointer 10

bit-vector

ZeR@: Cache Line Formats

Program
Pointers

Type | Bits |
Normal

e 3 (4] |
Function pointer 10

Data pointer 11

bit-vector

ZeR@: Cache Line Formats

Program
Pointers

Tyoe ___ Bits Y

Regular data
Return address
Function pointer

Data pointer

00
01
10

11

Normal

EIU

bit-vector

37

ZeR@: Cache Line Formats

Program
Pointers
Normal

A 1 1 7 3. 1 25A ‘ ea
~ e
N AN \ \ f ’ 7 .
N \ \ \ I / ’ Pid
N N \ \ N / v ,
N N \ 7/ 7/ e
~ \ \ \ 1 ’ ’ ‘
AN A \ \ 1 7 ’ s
AN AN N ' ! ’ , .
N N \ \ 1 ’ , e
N \ \ \ 1 / , -

bit-vector

overhead

38

ZeR@: Cache Line Formats

Our Metadata: Encoded within unused pointer bits.

Program
Pointers

Normal Protected

ALB ole] mmmp [esder [a[s]c[D]E]

39

ZeR@: Cache Line Formats

Our Metadata: Encoded within unused pointer bits.

Program
Pointers

Normal

ALB DE

—.

Is

Protected? Protected

v

Header | A|B|C|D|E

40

ZeR@: Cache Line Formats

Our Metadata: Encoded within unused pointer bits.

Program
Pointers

Normal

ALB DE

Normal

1/2(3/4/5/6 7 8]

—)
—.

Is

Protected? Protected

v

Header | A|B|C|D|E

Is

Protected? Normal

N

12/3/4/5/6 7 8]

ZeR@: Cache Line Formats

Our Metadata: Encoded within unused pointer bits.

Program 0.2% area
Pointers
overhead

Is

Normal Protected? Protected
s ole] mmmp [neaser [afs]clofE
Normal rotesteds Normal

12(3]als]e[7]s] M [n]1]2/3]a]5]6]7]s]

Microarchitectural
Overview

ZeR@: Microarchitectural Overview

CPU

V L1-D I) I

L2

DRAM

44

ZeR@: Microarchitectural Overview

Bit vector format J

CPU

V L1-D I) I

L2

DRAM

45

ZeR@: Microarchitectural Overview

CPU

[Bir Vector % 1-bit Format

|11-D I I '

L2

ORAM

46

ZeR@: Microarchitectural Overview

flb data)

4)
CPU | |L1-D I I ' 12 : DRAM
_ ,

ZeR@: Microarchitectural Overview

CPU

V L1-D I) I

DRAM

48

ZeR@: Microarchitectural Overview

CPU

V L1-D I) I

L2

Protected Bits

DRAM

49

S VNG W,

ZeR@: ISA Extensions

CPtrST/CPtrLD Address, Value

DPtrST/DPtrLD Address, Value

51

ZeR@: ISA Extensions

DPtrST/DPtrLD Address, Value

CPtrST/CPtrLD Address, Value

Same Layout as

reqgular Loads/Stores

52

ZeR@: ISA Extensions

DPtrST/DPtrLD Address, Value

CPtrST/CPtrLD Address, Value

A

] Only invoked upon
free() or delete()

53

S VNG W,

ZeR@: Performance Overheads

f> Hardware Overheads.

"

> Software Overheads.

"

V2N

ZeR@: Performance Overheads

/> Hardware Overheads.

 Qur hardware measurements show that ZeR@ has minimal
latency/area/power overheads.

"

> Software Overheads.

"

V2N

ZeR@: Performance Overheads

/> Hardware Overheads.

 Qur hardware measurements show that ZeR@ has minimal
latency/area/power overheads.

"

» Software Overheads.
* Qur special loads/stores do not change binary size.

"

RN

ZeR@: Performance Overheads

/> Hardware Overheads.

 Qur hardware measurements show that ZeR@ has minimal
latency/area/power overheads.

"

» Software Overheads.

* Qur special loads/stores do not change binary size.

* The ClearMeta instructions are only called upon memory
_ deallocation.

RN

ZeR@: Performance Overheads

> Hardware Overheads.

e Qur hardware measurements show that ZeR@ has minimal
latency/area/power overheads.

"

-

» Software Overheads.
* Qur special loads/stores do not change binary size.

 The ClearMeta instructions are only called upon memory
N deallocation.

The ClearMeta instructions are emulated
on x86_64 using dummy stores

59

Performance Results on x86 64

ZeR0O

B ZeR@

60

0%

1.05

gMean

1.00
0.95
0.90
0.85
0.80

'149d "WLION

ZeR@: Performance Results on x86 64

) B PAC-FPtr W ZeRQ
. 16
T 14
Qq_-’ 12
. 10
& os
5 06
0.4
< 02
0.0
< < < < < < < < < < < < < < < < o o
/ o/ K/ % X/ / / / / / / N >/ / A/ o 0
&g & & FT & & &L
S o g P S - @ X - S > D
N S X o N Q o & N v 4
& 9 Q o)) “ 9
S I AR o° o
X o
1.05
Y= 1.0
)
O 09
g 0.90
®)
Z 08
0.80
gMean ol

Norm. Perf.

ZeR@: Performance Results on x86 64

B PAC-FPtr W PAC-RET mZeRQ

1.8
1.6
14
1.2

1.0
0.8
0.6
0.4
0.2
0.0

‘\ X / / <
@Q&/ ’1/?30/ @@g ’b®6/ 'b&c) : o\‘@A/ & ?’/&Q/ &(& be‘/ 066 : c;\Q’Q%/ ,b\e#/ \‘?/\,b/ »‘0’50 ";*:W ’b® Q/ °§ e
NS N g s Q Q \, & QS < @ Q & NS ™ %
& ° P S 3 ° 09{0 & Y sy 9 °
%) %
1.10
G 1.05
o
a 1.00
- 095
=
o 0.90
Z o8
0.80
gMean =

ZeR@: Performance Results on x86 64

1.8
. 16

T 14
é'_J 1.2
S 10
E 0.8
B 0.6
0.4
= 0.2
0.0
\(\
9
Q <°
Q q,- .
Ny X <0°<° NS
9)
o2
<,)Q

B PAC-FPtr

é”

m PAC-RET

W ZeR@

K ARM PAC S overheads are attr/buted to the extra %

Norm. Perf.

1.10

1.05

1.00

0.95

0.90

0.85

0.80

6%

gMean

63

Norm. Perf.

ZeR@: Performance Results on x86 64

2.0
1.8

B PAC-FPtr m PAC-RET

PAC-Full m ZeR@

1.6
1.4
1.2
1.0
0.8
0.6
04
0.2
0.0
NOTPH IS O T S A END ERY EE O S END SO SO TP N
. < <
& Qﬂ/?g <o$°g & & & 0}0.@ o""& ¥ q}‘be & & & o ST NS
ISR A S N P M A I L P
S %> > o0 o A0 S o
v 4
14%
R
g
S 1.10
(O}
Q. 105
- 1.00
§0.95
§ 0.90
0.85
0.80
gMean ol

ZeR@: Performance Results on x86 64

B PAC-FPtr m PAC-RET m PAC-Full m ZeR®

2.0
1.8

Y 16
QO 14
Q. 1>
- 1.0
E o8
0.4
Z 0.2
0.0
K / v & / '\,
(\e’(\ ?3'0/ N <° @c) \\{“’A KO &QQ/ <° \° ¥ -e}\%/ Qo\° q,\,b 0'50 AT
& % 4 N Q- AR 4 S NG &V 0 & S &> 4
Q 9 &Y N (> © X ®
S i DT 4F 4V N <
(,)Q 15 <9'\, (,?)

1.20
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80

ZeRd reduces the average
runtime overheads of pointer

integrity from 14% to 0%

Norm. Perf.

S VNG W,

ZeR@: Limitations

-~

» Non-pointer data corruption attacks.

"

* Require a full memory safety solution.

ZeR@: Limitations

4 N
» Non-pointer data corruption attacks.
* Require a full memory safety solution.
_ J
(N

» Third-party code.

"

e Clear the metadata bits before passing pointers to shared libraries.
J

Conclusion

» ZeR@ provides an efficient pointer

integrity mechanism:
* |s easy to implement.
* Has no runtime overheads.
e Offers robust security.

» ZeR@ can be applied to a wide

variety of systems:
* Ranging from servers to mobile devices.

