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Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking
campaign

The tech giant gave arare statement that bristled at Google's analysis
of the novel hacking operation.
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Exclusive: Saudi Dissidents
Hit With Stealth iPhone

Spyware Before Khashoggi's
Murder

WhatsApp Rushes to Fix
Security Flaw Exposed in
Hacking of Lawyer’s Phone
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OSS-Fuzz Bug Types

Other

Non-memory Safety

Memory Safety

Google OSS-Fuzz bugs from 2016-2018.

9
Source: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
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Attackers Prefer Memory Safety Vulns
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ZeR@: Overview

///' Program

Memory

CALL <Foo>

Return Address

Return Address Protection

ZeR@ uses 1-bit
tag per pointer to

protect return
addresses.

23



ZeR@: Overview

///' Program

CALL <Foo>

w STORE - - - =

Memory

Return Address

-

/

Return Address Protection

ZeRd rejects any
regular store that

accesses a tagged
return address.
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ZeR@: Overview

///' Program

Memory

CALL <Foo>

Return Address

w STORE - - - =

-

Return Address Protection

ZeR@ uses advisory
exceptions to avoid
crashing the running
process under attack.

25



ZeR@: Overview

/ Program

CALL <Foo> ©

y N

wSTORE____ - --X
- ©

Memory

N

j Return Address

/

ZeR@ protects return addresses, code

pointers, and data pointers.
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ZeR@: Overview

///( Program ‘\\\

Memory

©
B _® - - - Return Address
©

CALL <Foo>

STORE - - - =

RET

ZeR@ protects return addresses, code
pointers, and data pointers.

ISA extensions:

CPtrLD & CPtrST
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ZeR@: Overview

ISA extensions:

CPtrLD & CPtrST
DPtrLD & DPtrST

///7 Program

CALL

<Foo>

Memory

\

ﬁ Return Address

/

ZeR@ protects return addresses, code
pointers, and data pointers.
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ZeR@: Overview

/ Program \

Memory

CALL <Foo> @
y_\ Return Add
w _______ @ — - - eturn ress
©

_/

How can ZeR@ efficiently identify if a memory word is a

return address, code pointer, data pointer, or regular data?
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ZeR@: Cache Line Formats

Program
Pointers

Tyoe ___ Bits Y

Regular data
Return address
Function pointer

Data pointer

00
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Normal

EIU

bit-vector
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Program
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ZeR@: Cache Line Formats

Our Metadata: Encoded within unused pointer bits.

Program 0.2% area
Pointers
overhead

Is

Normal Protected? Protected
s ole]  mmmp [ neaser [afs]clofE
Normal rotesteds Normal
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CPU
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L2
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CPU

V L1-D I ) I

DRAM
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CPU
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L2

Protected Bits

DRAM
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ZeR@: ISA Extensions

CPtrST/CPtrLD Address, Value

DPtrST/DPtrLD Address, Value

51



ZeR@: ISA Extensions

DPtrST/DPtrLD Address, Value

CPtrST/CPtrLD Address, Value

Same Layout as

reqgular Loads/Stores
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ZeR@: ISA Extensions

DPtrST/DPtrLD Address, Value

CPtrST/CPtrLD Address, Value

A

] Only invoked upon
free() or delete()
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ZeR@: Performance Overheads

> Hardware Overheads.

e Qur hardware measurements show that ZeR@ has minimal
latency/area/power overheads.

"

-

» Software Overheads.
* Qur special loads/stores do not change binary size.

 The ClearMeta instructions are only called upon memory
N deallocation.

The ClearMeta instructions are emulated
on x86_64 using dummy stores
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Performance Results on x86 64
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ZeR@: Performance Results on x86 64
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ZeR@: Limitations

4 N
» Non-pointer data corruption attacks.
* Require a full memory safety solution.
\_ J
( N

» Third-party code.

"

e Clear the metadata bits before passing pointers to shared libraries.
J




Conclusion

» ZeR@ provides an efficient pointer

integrity mechanism:
* |s easy to implement.
* Has no runtime overheads.
e Offers robust security.

» ZeR@ can be applied to a wide

variety of systems:
* Ranging from servers to mobile devices.




