Practical Memory Safety

Mohamed Tarek Ibn Ziad

https://research.nvidia.com/person/mohamed-tarek-ibn-ziad
Guest Lecture at CU Boulder - October 31%, 2022

https://research.nvidia.com/person/mohamed-tarek-ibn-ziad

About Me

e Research Scientist @ NVIDIA
o Member of the Architecture Research Group (ARG).

About Me

e Research Scientist @ NVIDIA
o Member of the Architecture Research Group (ARG).

e PhD from CS Department @ Columbia University
o Member of the Computer Architecture and Security Technologies Lab (CASTL)
o Hardware-Software Co-design for Practical Memory Safety

o Supervisor: Simha Sethumadhavan

About Me

e Research Scientist @ NVIDIA
o Member of the Architecture Research Group (ARG).

e PhD from CS Department @ Columbia University
o Member of the Computer Architecture and Security Technologies Lab (CASTL)
o Hardware-Software Co-design for Practical Memory Safety

o Supervisor: Simha Sethumadhavan

e Before joining Columbia
o B.Scand M.Sc in Computer Engineering from Ain Shams University, Egypt.

o Software development engineer at Mentor Graphics (now acquired by Siemens)

About Me

What is Memory Safety?

A program property that guarantees memory objects

can only be accessed:

Pointer (A)

| Memory Object

(A)

Memory

What is Memory Safety?

A program property that guarantees memory objects

can only be accessed:

- Between their intended bounds,

Pointer (A)

Memory Object
(A)

Memory

What is Memory Safety?

A program property that guarantees memory objects

can only be accessed:

- Between their intended bounds,

Pointer (A)

@ :

» During their lifetime, and

Memory

What is Memory Safety?

A program property that guarantees memory objects

can only be accessed:

- Between their intended bounds,

Pointer (A)

» During their lifetime, and

Memory Object
(A)

- Given their original

Pointer (B)

°

(or compatible) type.

Memory

Memory Attacks Taxonomy

4 Memory safety vulnerability

[Spatial]

Root cause

Memory Attacks Taxonomy

4 Memory safety vulnerability

[Spatial]

N

Non-] [Contiguous]

\[contiguous

Root cause

Memory Attacks Taxonomy

4 Memory safety vulnerability

[Spatial]

N

Non-] [Contiguous]

\[contiguous

Root cause

Memory Attacks Taxonomy

4 Memory safety vulnerability

[Spatial]

N

Non-] [Contiguous]

\[contiguous

Root cause

Memory Attacks Taxonomy

4 Memory safety vulnerability

[Spatial] [Temporal]

N

Non-] [Contiguous]

\[contiguous

Root cause

Memory Attacks Taxonomy

Root cause

-

Memory safety vulnerability N
[Spatial] [Temporal]
N
Non-] [,] [Use-after-] {Unini ialized]
: Contiguous
contiguous free read Y

X

Memory Attacks Taxonomy

Root cause

-

Memory safety vulnerability N
[Spatial] [Temporal]
N
Non-] [_] [Use-after-] {Unini ialized]
: Contiguous
contiguous free read Y

X

Memory Attacks Taxonomy

4 Memory safety vulnerability N
[Spatial] [Temporal]
¥
Non- , Use-after- Uninitialized
Root cause , Contiguous d
_ contiguous free rea Y

Memory Attacks Taxonomy

Root cause

Asset

-

N

Memory safety vulnerability N

[Spatial]

[Temporal]
N

Non-

\[contiguous

] [Contiguous] [

Use-after-] {Uninitialized

)

free

—

A 4

N

|

Program
code

J[

Return
address

)

Function
pointer

Data Non-
pointer pointer data

|

Memory Attacks Taxonomy

4 Memory safety vulnerability N

[Spatial] [Temporal]

N N

Non- , Use-after- Uninitialized
Root cause : Contiguous
\ contiguous free read /
Program Return Function Data Non-
Asset
code address pomter pointer pointer data

A 4 A 4

Code Control flow Data-flow Data
Result
corruption hijacking hijacking corruption

Memory Attacks Taxonomy

4 Memory safety vulnerability N

[Spatial] [Temporal]

N N

Non- , Use-after- Uninitialized
Root cause : Contiguous
\ contiguous free read /
Program Return Function Data Non-
Asset
code address pomter pointer pointer data

A 4 A 4

Code Control flow Data-flow Data
Result
corruption hijacking hijacking corruption

Memory Attacks Taxonomy

4 Memory safety vulnerability N

[Spatial] [Temporal]

N N

Non-] [,] [Use-after-] {Uninitialized
Contiguous

\[contiguous free read] /

Root cause

A 4

Program Return Function Data Non-
Asset
code address pomter pointer pointer data

A 4 A 4

Code Control flow Data-flow Data
Result
corruption hijacking hijacking corruption

Why is memory safety a concern?

-~

O®

Memory Safety is a serious problem!

Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking

campaign

The tech giant gave arare statement that bristled at Google's analysis
of the novel hacking operation.

Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking
campaign

The tech giant gave arare statement that bristled at Google's analysis
of the novel hacking operation.

Exclusive: Saudi Dissidents
Hit With Stealth iPhone
Spyware Before Khashoggi's
Murder

Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking

campaign

The tech giant gave arare statement that bristled at Google's analysis

of the novel hacking operation.
€he New HJork Eimes

, Exclusive: Saudi Dissidents
WhatsApp Rushes to Fix Hit With Stealth iPhone

Security Flaw Exposed in .
Hacking of Lawyer’s Phone I%I[)lmzl;‘e Before Khashoggi's

26

Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs
B Non-Memory Safety [l Memory Safety

100

N N

50

25

0
2006 2008 2010 2012 2014 2016 2018

Microsoft Product CVEs
between 2006-2018

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs
B Non-Memory Safety [l Memory Safety H|gh+, impacting stable

100 Security-related assert

75
Other

50

Use-after-free
26 19,

25

Other memory unsafety

0
2006 2008 2010 2012 2014 2016 2018

Microsoft Product CVEs Chromium high severity security bugs
between 2006-2018 between 2015-2020

28
Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019 Source: https://www.chromium.org/Home/chromium-security/memory-safety/

29

ATTACKERS

MEMORY SAFETY

Attackers prefer Memory Safety Vulns

B Non memory safety [Memory safety

100%

2 67%
2
e
S
)
3
e
N

k) 33%
R

0%

2014 2015 2016 2017 2018 2019 2020 2021

Year

% of Zero-day “in the wild” exploits
from 2014-2021

Source: Google Project Zero, Oday "In the Wild" spreadsheet. Last updated: January 2022

C/C++is here to stay!

PERFORMANCE

33

C/C++is here to stay!

~ PERFORMANCE

n
]

[
Fff

C/C++is here to stay!

C/C++is here to stay!

AVERAGE

Applications

Home, Contacts, Phone, Browser, ...

Application Framework
Managers for Activity, Window, Package, ...

Libraries Runtime
SQLite, OpenGL, SSL, ... Dalvik VM, Core libs

36

C/C++is here to stay!

AVERAGE

Applications
Home, Contacts, Phone, Browser, ...

Application Framework
Managers for Activity, Window, Package, ...

Libraries Runtime
SQLite, OpenGL, SSL, ... Dalvik VM, Core libs

37

How to fix C/C++ memory (un)safety?

How to fix C/C++ memory (un)safety?

Memory Exploit
Blocklisting Mitigation

How to fix C/C++ memory (un)safety?

Memory
Blocklisting

Ptr

Object (A)

Memory
Permitlisting

Exploit
Mitigation

40

How to fix C/C++ memory (un)safety?

Memory
Blocklisting

Ptr

Memory
Permitlisting

Exploit
Mitigation

41

How to fix C/C++ memory (un)safety?

Memory Memory Exploit
Blocklisting Permitlisting Mitigation

Ptr

e.g., Google’s Address Sanitizer
42

How to fix C/C++ memory (un)safety?

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
Size
Ldse o Memor
Ptr Ptr \\ 1 Object (X)
o\

e.g., Google’s Address Sanitizer

How to fix C/C++ memory (un)safety?

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
Size
Ldse o Memor
Ptr Ptr \\ 1 Object (X)
o\

e.g., Google’s Address Sanitizer e.g., Intel's MPX and CHERI

How to fix C/C++ memory (un)safety?

Memory Exploit
Blocklisting Mitigation
./'II Enforcing strict memory safety rules comes

with non-negligible performance costs!

How to fix C/C++ memory (un)safety?

Memory Exploit
Blocklisting Mitigation

Memory

Ptr : Object (A)

How to fix C/C++ memory (un)safety?

Memory Exploit
Blocklisting Mitigation
Memory

Ptr ~—

\ Object (A)

‘.| Memory
Object (B)

How to fix C/C++ memory (un)safety?

Memory Exploit
Blocklisting Mitigation
Memor
Pr ‘\\ | Object (X) é

‘.| Memory | ., S
Object (B)

How to fix C/C++ memory (un)safety?

Memory Exploit
Blocklisting Mitigation
| Memory
Pr ‘\\ | Object (A) =
| ([
\ A
‘| Memory ’/,®
Object (B)

e.g., ARM’s PAC

How to fix C/C++ memory (un)safety?

Memory Exploit
Blocklisting Mitigation
.ﬂ All prior approaches share a common theme:
e

How to fix C/C++ memory (un)safety?

Memory Exploit
Blocklisting Mitigation
 ?] All prior approaches share a common theme:

®2 Adding more features to a program to make it secure

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation

My research work turns existent program features

into security primitives to save on performance.

52

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation

Uses dead bytes in
program memory

Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

53

https://www.cs.columbia.edu/~mtarek/publication/califorms/

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N

Leverages modern

software trends

Architectural Support for Low Overhead Memory Safety Checks. [ISCA 2021]

https://www.cs.columbia.edu/~mtarek/publication/nofat/

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N

Mitigates all known exploits
with zero runtime overheads.

ZeRD: Zero-Overhead Resilient Operation Under Pointer Integrity Attacks. [ISCA 2021]

55

https://www.cs.columbia.edu/~mtarek/publication/zero/

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N

[MICRO 2019] [ISCA 2021] [ISCA 2021]

56

https://www.cs.columbia.edu/~mtarek/publication/califorms/
https://www.cs.columbia.edu/~mtarek/publication/nofat/
https://www.cs.columbia.edu/~mtarek/publication/zero/

Hiroshi Sasaki, Miguel A. Arroyo, Mohamed Tarek Ibn Ziad, Koustubha Bhat, Kanad Sinha,
and Simha Sethumadhavan, Practical byte-granular memory blacklisting using Califorms.
[MICRO 2019] [IEEE Micro Top Picks Honorable Mention]

https://www.cs.columbia.edu/~mtarek/publication/califorms/

CaLiForms Memory Blocklisting

This is

program data. \

A blocklisted /

location.

Program Memory

Challenge
How to efficiently

track the state of
memory locations?

58

CaLiForms Memory Blocklisting

Shadow

memory

Program Memory

Disjoint Memory

59

CaLiForms Memory Blocklisting

Shadow
memory

~ 2X runtime overheads!

~ 3X memory overheads!

Program Memory

Disjoint Memory

60

CaLiForms Memory Blocklisting

Metadata

Memory Tagging

n bits per cache line

Program Memory

61

CaLiForms Memory Blocklisting

Metadata

Memory Tagging
n bits per cache line

Limited entropy!

Program Memory

62

CaLiForms Memory Blocklisting

Metadata

CaLiForms
1 bit per cache line

Program Memory

63

CaLiForms Memory Blocklisting

Metadata

0.2% memory overhead!

2-14% runtime overhead!
CaliForms
1 bit per cache line

Program Memory "

CaLiForms Memory Blocklisting

{?) The key insight is to change how
data is stored in cache lines!

CaLiForms Cache Line Formats

Our Metadata: Encoded within unused data.

Normal

HBaRnnnnn

CaLiForms Cache Line Formats

Our Metadata: Encoded within unused data.

Blocklisted
Location

Normal

-l

CaLiForms Cache Line Formats

Our Metadata: Encoded within unused data.

Blocklisted
Location

Normal

Y T 7 7
~ .
N AN \ \ I ’ e .
N \ / .
N \ \ 1 ’ .
S N \ \ N / v ,
N N s \ K ’ , .
A \ ’ . <
N N \ ' ! ’ ’ pad
N N \ \ 1) ’ .

N N 4 4
N N \ \ 1 U ’ ’
S \ \ \ 1 / , 4

bit-vector

68

CaLiForms Cache Line Formats

Our Metadata: Encoded within unused data.

Blocklisted
Location

Normal

) T] 7
< .
N AN \ \ I ’ / .
N \ ’ ’ ’
N \ \ 1 ’ .
S N \ \ N / v ,
AN N N \ 1 4 ’ ‘
A \ ’ . <
N N \ \ ! / ’ e
N N \ \ I / ’ P
S N \ \ 1 ’ it e
N \ \ \ 1 / , .

bit-vector

12.5% memory

overhead

69

CaLiForms Cache Line Formats

Our Metadata: Encoded within unused data.

Blocklisted
Location

Normal

AlB DE

-

Califorms

besder | 4| [C[D]E

70

CaLiForms Cache Line Formats

Our Metadata: Encoded within unused data.

Blocklisted
Location

Normal

AlB DE

-

Is

Califormed? Califor ms

Y

Hesder | 4| [C[D]E

71

CaLiForms Cache Line Formats

Our Metadata: Encoded within unused data.

Blocklisted
Location

N l Is .
orma Califormed? Califorms

AlB DE Y J|[Header || A[B|C|D]|E]

Is
Normal Califormed? Normal

-
2(3]4]5]e]7(s] mmmp [N]1]2]504]s5 67 8]

72

CaLiForms Microarchitectural Overview

Core

' LI_D I A I

L2

DRAM

73

CaLiForms Microarchitectural Overview

Bit vector format J

Core

' LI_D I A I

L2

DRAM

74

CaLiForms Microarchitectural Overview

Core

[Bir Vector % 1-bit CaLiForm%

'Ll-DIA l | L2

DRAM

75

CaLiForms Microarchitectural Overview

Core

' LI_D I A I

flb data)

L2

DRAM

76

CaLiForms Microarchitectural Overview

Core

" |L1-D I I

-
&

[. " \ ..
—
- »

DRAM

77

CaLiForms Microarchitectural Overview

Core

' LI_D I A I

-

N

CaLiForms Bits

L2

S

_/

DRAM

78

CaLiForms Performance Overheads

Hardware Modifications

Our measurements show no impact on the cache access latency.

CaLiForms Performance Overheads

Hardware Modifications

Our measurements show no impact on the cache access latency.

Software Modifications

* We evaluate three different insertion policies using Clang/LLVM.

CalLiForms Insertion Polices

struct

A _opportunistic {
char c;
char tripwire[3];
int i;
char buf[64];
void (*fp)();

(1) Opportunistic

CalLiForms Insertion Polices

struct struct A full {
A_opportunistic { char tripwire[2];
char c; char c;
char tripwire[3]; char tripwire[1];
int i; int i;
char buf[64]; char tripwire[3];
void (*fp)(); char buf[64];
} char tripwire[2];
void (*fp)();
char tripwire[1];

(1) Opportunistic (2) Full

CalLiForms Insertion Polices

struct struct A_full { struct A_intelligent
A_opportunistic { char tripwire[2]; {
char c; char c; char c;
char tripwire[3]; char tripwire[1]; int i;
int i; int 1ij; char tripwire[3];
char buf[64]; char tripwire[3]; char buf[64];
void (*fp)(); char buf[64]; char tripwire[2];
} char tripwire[2]; void (*fp)();
void (*fp)(); char tripwire[3];
char tripwire[1]; }
}

(1) Opportunistic (2) Full (3) Intelligent

CaLiForms Performance Overheads

Software Modifications

* We evaluate three different insertion policies using Clang/LLVM.

CaLiForms Performance Overheads

Software Modifications

* We evaluate three different insertion policies using Clang/LLVM.
* We emulate the overheads of BLOC instructions that are used
during malloc/free to mark the blocklisted locations per cacheline.

CaLiForms Performance Results (x86 64)

/ \
I 20.0% \
I |
I |
I 15.0% |
I |
: 10.0% 7.9% :
I |
I 5.0% |
I |
| 0.0% .
‘ /
\ AMean
\~ ------------------ _’/
o Opportunistic (BLOC)

) 40:002 80.3%

3 30.0%

'g 20.0%

3 10.0%

@ 0.0% — — . . — .

-10.0% o o - o o - -
N o - N 8 LN
X 3 Q& & & S Q& ¢ NN & &
< & & NS $ S O S
& & X

CaLiForms Performance Results (x86 64)

,’ ------------------ \

’/

20.0%

15.0%

10.0% 7.9%

5.0% -
0.0%

s----------_

AMean
\~ ------------------ _’/
B Opportunistic (BLOC) Full (BLOC)
50.0% 80.3% 85.2%
c 40.0% -
g 30.0%
g 20.0% - - B i
3 10.0% B .
a o 0.0% o — — I I . B _ — o I —m — .
-10.0%
< N < & :
’b‘;{b ,\,\&/ ‘Q<$& VKQ/ (QQ ®® \'0((\ ((\(/ (Q\\ & ,b(ob QJQ(\'Q Aﬁfb* . \Q,QQO Q\Q’+ . \(\'C) \0($$
0 & " & " Q NS S S 0 N &
NN < N & ° N

87

CaLiForms Performance Results (x86 64)

,’ ------------------ \

’/

20.0%

15.0%

10.0% 7.9%

5.0% . 1.5%
0.0% [|

s----------_

\~---------é|\-/|ia-n ----- _’/
W Opportunistic (BLOC) Full (BLOC) mIntelligent (BLOC)
50.0% 80.3% 85.2%
c 40.0% :
g 30.0%
3 20.0% - = B |
10.0% I .
% 0.00/Z __; — I I . - e — .I;_ - Ll — — [. P — - — [. - — =
-10.0%
> SV - & & & & & N¥ o o) >N & et & il
S $¥ N a & ¥ & ¢ < &@ & S & & & S
® \Q’\’ AN 0?’6 Q}\ N ° R \’bo

88

CaLiForms Performance Overheads

struct struct A_full { struct A intelligent
A _opportunistic { char tripwire[2]; {

char c; char c; char c;

char tripwire[3]; int i;

int i; The intelligent pOliCY char tripwire[3];

char buf[64]; : char buf[64];

void (*fp)(); provides the best char trigwile[Z];
} performance-security void (*fp)();

char tripwire[3];

tradeoft.

(1) Opportunistic (2) Full (3) Intelligent

Memory Attacks Taxonomy

CaLiForms
4 Memory safety vulnerability (+1.5% runtime)
: (+0.2% memory)
[Spatial] [Temporal] *probabilistic
P e i i N = X, Detect
Roof catise I[Non-] [Contiguous] { Use-after-] [Ummtlahzed]I violation
\contiguons) L~ L fee))
Asset { Program } { Return } { Function } { Data } [Non- } B
code address pointer pointer pointer data
exploitation

Code Control-flow Data-flow Data
Result : 1 1 :
corruption hijacking hijacking corruption

90

S\

No
FAT

N

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo Evgeny Manzhosov, Ryan Piersma, and Simha
Sethumadhavan, Architectural Support for Low Overhead Memory Safety Checks. [ISCA 2021]
[IEEE Top Picks in Hardware and Embedded Security 2022 Candidate]

https://www.cs.columbia.edu/~mtarek/publication/nofat/

No-FAT: Key Observation

F‘ Current software trends can be used to
(RS enhance systems security

No-FAT: Key Observation

F‘ Current software trends can be used to
(RS enhance systems security

Increasing adoption of binning allocators

No-FAT: Key Observation

Current software trends can be used to
(RSl

enhance systems security

Increasing adoption of binning allocators

* Maintains memory locality.
* Implicit lookup of allocation information.

No-FAT: Key Observation

h-‘ Current software trends can be used to
(RS enhance systems security

Increasing adoption of binning allocators

* Maintains memory locality.
* Implicit lookup of allocation information.

’
@) mi-malioc {7

Free BSD tcMalloc

Binning Memory Allocators

40.
41.
42.
50.

int main() {
char* ptr = malloc(12);

Virtual Memory

Binning Memory Allocators

a0. int main() {
» 41. char* ptr = malloc(12);

42.

s

Virtual Memory

Binning Memory Allocators

40. int main() 1

a1. char* ptr = malloc(12); Memory is

» P () ? requested by
e the allocator.
50. }

Virtual Memory

98

Binning Memory Allocators

40. 1int main() {

Memory is
» 41. char* ptr = malloc(12); divided into
42. bins.

50.)

Bins

C

Virtual Memory

99

Binning Memory Allocators

40.

_ 38

42.
50.

int main() {
char* ptr = malloc(12);

Each bin is
associated with
a size.

Bins

A

C

Virtual Memory

Sizes

16B

24B

32B

100

Binning Memory Allocators

Bins Sizes

40. 1nt mai

N
@ o char (- I A |

42.

50, }

B 24B

C 32B

Virtual Memory

101

Binning Memory Allocators

40. 1int main() { ‘

41, char* ptr = malloc(12); N

50. }

B 24B

C 32B

Virtual Memory

102

Binning Memory Allocators

Bins Sizes
a0. 1int main() {
A
» a1. char* ptr = malloc(12); A, 16B
42. ————p>
50. }
B 24B
Given any pointer, we can derive its C -
allocation size and base address.

Virtual Memory

How No-FAT Provides Memory Safety

a0. int main() {

21. char* ptr = malloc(12);
2. ptr[l] = ‘A’;

43.

-

How No-FAT Provides Memory Safety

40.
41.
42.
43,
50.

int main() A

char* ptr = malloc(12);

ptr[l] = ‘A’;

—

store ptr[1], ‘A’

105

How No-FAT Provides Memory Safety

40. int main() {
41. char* ptr = malloc(12);,
42. ptr[l] = ‘A°; =) EJESdeIl-NoRdol NIV N PER e ted base

P —. =
s6. } We add one extra operand for loads/stores.

106

How No-FAT Provides Memory Safety

40.
41.
42.
43,
50.

int main() {
char* ptr = malloc(12); \

ptr[l] = ‘A’; S store ptrll], ‘A% ptri . cted pace

) The compiler propagates the allocation base address.

107

How No-FAT Provides Memory Safety

40. int main() {
char* ptr = malloc(12);

41.
42.
43.
50.

ptrll] = “A%;

s_stor'e ptr\[l]) ‘A’) ptr\tr-usted base

108

How No-FAT Provides Memory Safety

109

How No-FAT Provides Memory Safety
= X3 — N,

110

How No-FAT Provides Memory Safety

ptr[1]
= getSize(ptr‘tr‘usted base)

111

How No-FAT Provides Memory Safety

= [— NS
m = getSize(ptrtrusted base)

Bounds .

112

How No-FAT Provides Memory Safety

Il

 size
Bounds
Check

ptri1] Lol Ptrerycced bace

Il

gEtSize(ptrtrusted base)

Temporal

Check ptr‘[l] [63:48] ptr‘tr‘usted_base [63:48]

113

How No-FAT Provides Memory Safety

The allocation size information is made available to
the hardware to verify memory accesses.

offset ¢ ?

ptr(1] = [N ?

114

How No-FAT Provides Memory Safety

a0. int main() {

41. char* ptr = malloc(12);
2. ptr[l] = ‘A’;

43,

-

How No-FAT Provides Memory Safety

40. int main() {

41. char* ptr = malloc(12);
42. ptr[l] = ‘A’; s_store ptr[l], ‘A’,ptri.ycted base

Let’s pass the pointer to another context (e.g., f00).

116

How No-FAT Provides Memory Safety

a0. int main() {

41. char* ptr = malloc(12);
2. ptr[l] = ‘A’;

43,

49, foo(ptr);

5.}

s1. void Foo (char*)xptr){

52.

53. xptr[7] = ‘B’;

54,

. ..

How No-FAT Provides Memory Safety

40. int main() {
char* ptr = malloc(12);

41.
42.
43,
49,
50.
51.
52.
53.
54.
60.

ptrll] = “A%;

;oo(ptr);
}

void Foo (char* xptr){

xptr[7] = ‘B’;

s_stor‘e Xptl"[7]) ‘B’ prtr‘tr‘usted base

118

How No-FAT Provides Memory Safety

40. int main() {

41. char* ptr = malloc(12);
42. ptr[l] = ‘A’; s_store ptr[l], ‘A’,ptri.ycted base

43,

49, foo(ptr);
50. }

s1. void Foo (char* xptr){
52.

54.
66. } How do we get this?

53. Xptl’[7] = ‘B,; s_stor'e Xptr[7]) ‘B’ -{Xptr‘trusted_base)

119

How No-FAT Provides Memory Safety

40. int main() {

41.
42.
43,
49,
50.
51.
52.
53.
54.
60.

char* ptr = malloc(12);
ptr[1] = ‘A’;

foo(ptr);

}

void Foo (char* xptr)
Xptr‘tr‘usted base é compBase(xptr‘[7])
xptr[7] = ‘B’;

120

How No-FAT Provides Memory Safety
Xptrtrusted base < compBase(xptr‘[7])

121

How No-FAT Provides Memory Safety

m = > log, (5)) where S is the size of the bins.

122

How No-FAT Provides Memory Safety

where S is the size of the bins.

Size Il cetsize(Bin).

123

How No-FAT Provides Memory Safety

where S is the size of the bins.

RN = B =« (/) * EED

124

How No-FAT Provides Memory Safety
Xptrtrusted base < compBase(xptr‘[7])

where S is the size of the bins.

Base pointer is implicitly derived!

125

How No-FAT Provides Memory Safety

a0. int main() {

21. char* ptr = malloc(12);
2. ptr[l] = ‘A’;

43.

29. foo(ptr);

5.}

How No-FAT Provides Memory Safety

40.
41.
42.
43,
44.
49.
50.

int main() A

¥

char* ptr = malloc(12);

Pptrli] = A%

S s_store ptr[l], ‘A’,ptri.ycted base

jptr = ptr + 100;,

foo(ptr);

Pointer arithmetic can push the pointer

out-of-bounds before calling foo!

127

How No-FAT Provides Memory Safety

40.
41.
42.
43,
S i Bounds ptrpire i]
45,
49,
50.

int main() A

char* ptr = malloc(12);
f

ptr[l] =

’ ’ s_stor‘e ptr\[l]) ‘A’) ptrtrusted base

prf_; EFP + 100;

¥

foo(ptr);

Verity the bounds of all pointers that

escape to memory (or another function).

128

No-FAT Microarchitectural Overview

Core | | L1-D A ' 12 DRAM

No-FAT Microarchitectural Overview

NO changes to the memory subsystems!

L1-D

L2

130

No-FAT Microarchitectural Overview

Core | L1-D 4 ' 12 DRAM

No-FAT Microarchitectural Overview

1-KiB Memory Allocation
Sizes Table (MAST)

Core 4 : L1-D

L2

DRAM

132

No-FAT Microarchitectural Overview

Bounds Checker

Core) ' L1-D | ' L2
\\ J

DRAM

133

No-FAT Microarchitectural Overview

(

Core

~

Dedicated Register File

L1-D

L2

DRAM

134

No-FAT Performance Results (x86 64)

’-------------------\

\

\
,' 2.50 \
' I
1 2.00 "
- i
| 1.50 I
- i
I 00 I
- i
I 0.50 |
- i
I l I
i 0.00 /
M Software-Base&Bounds M Binning-Malloc No-FAT
5
|9}
S 4
=3
¥ I I I I I
2 I T (T (T T
, 1N Inn Rux N0 60 Emp Hon Bs i Inn Hmn Hnn A e
~Q> c,} K,J/\’ bj’ \ ﬁ/ > / \g./ b; &/ QJ \1;./ :z,/ ‘0/ «\)/
& % & e & & & “QQ o~ o & Y & & & 4"
¥ N Ng & < ° o & %3 2 < < > » 3
< 9 ® Q S 2 & & v S ¢ < o “
N fel & 135
3 s & 9

No-FAT Performance Results (x86 64)

kN
’ N
I]
1 i
1 i
1 i
1 i
1 i
1 i
1 i
1 i
1 i
1 I
! I
\ /
N -
M Software-Base&Bounds M Binning-Malloc No-FAT
5
9]
S 4
M3
¥ I I I I I
¥ [Ie Don I B D
. | Bug Inn AN0 E00 0mn Ben s n Inn Bem Imn I
~Q> c,} K,J/\’ bj’ \/ ﬁ/ > / \g./ b; &/ QJ \1;./ :z,/ ‘0> «\)/
é\b ’1,98 o ,SQC“ Q‘b‘& %,&Q«G" 04(,% ‘& Q/Q “0‘& @‘O eob,@ % '%'Q %'Q'B,CJ \Qé w,S{b' {/;\ R
RN o X & Q¥ S %X & M oo > &8 & & c °
Q&QJ 9 %\’ <’)\ %Q © ‘%& E 09/(0 \,.b' <,;’)oo .
Q ol it} 136
3 s & 9

No-FAT Performance Results (x86 64)

Most of No-FAT’s overheads are attributed to:
* The binning memory allocator, and

137

No-FAT Performance Results (x86 64)

4%

8%
* The back-to-back MULs during base

address computation

Most of No-FAT’s overheads are attributed to:
* The binning memory allocator, and

138

No-FAT Performance Results (x86 64)

Most of No-FAT’s overheads are eliminated with:
* A performant binning memory allocator

4%

8%

(e.g., MiMalloc), and

139

No-FAT Performance Results (x86 64)

R N

I 2.50 \I

i 200 ! Most of No-FAT’s overheads are eliminated with:
L s <1% i * A performant binning memory allocator

i 100 ! (e.g., MiMalloc), and

Lo I | * A base address cache for derived pointers.
1 0.00 1

\ gMean /I

140

Memory Attacks Taxonomy

No-FAT
(<1% runtime)

(+0% memory)
*deterministic

Root cause

Asset {

1

Result { . } {
corruption

Memory safety Vulnerability
[Spatial] Temporal]
/ {_/\
Non- Conti Use- after- Un1n1t1ahzed
contiguous on 1guous free read
Program Return Function Data Non-
code address pointer pointer pointer data
Code Control-flow Data- ﬂow Data
hijacking hijacking corruption

o

Detect
violation

Prevent
exploitation

141

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N

[MICRO 2019] [ISCA 2021]

142

https://www.cs.columbia.edu/~mtarek/publication/califorms/
https://www.cs.columbia.edu/~mtarek/publication/nofat/

Comparison with prior work

Comparison with prior work

Metadata Concerns

: : : : Spatial & temporal safety
Memory Tagging N bits per pointer & allocation e [y v il

144

Comparison with prior work

Metadata Concerns

Spatial & temporal safety

N bits per pointer & allocation limited by tag width

Memory Tagging

Tripwires

Susceptible to non-adjacent

N bits per allocation
overflows

145

Comparison with prior work

Metadata Concerns

Spatial & temporal safety

Memory Tagging N bits per pointer & allocation limited by tag width

Susceptible to non-adjacent
overflows

P . .1. o
1 bit per cache line rovides probabilistic
guarantees

Tripwires N bits per allocation

CaLiForms

146

Comparison with prior work

Metadata Concerns

Spatial & temporal safety
limited by tag width

- . . Susceptible to non-adjacent
Tripwires N bits per allocation P J
overflows

Memory Tagging N bits per pointer & allocation

Breaks compatibility with the rest of

NRISpeapoitcoRaiocation the system (eg. unprotected libraries).

Explicit Base & Bounds

147

Comparison with prior work

Metadata Concerns

Spatial & temporal safety

Memory Tagging N bits per pointer & allocation limited by tag width

Susceptible to non-adjacent
overflows

Tripwires N bits per allocation

CaLiForms

1 bit per cache line Provides probabilistic
guarantees

Breaks compatibility with the rest of
the system (eg. unprotected libraries).

Fixed (1K) bits per process Requires binning allocator

Explicit Base & Bounds N bits per pointer or allocation

No-FAT

148

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N

[MICRO 2019] [ISCA 2021] [ISCA 2021]

149

https://www.cs.columbia.edu/~mtarek/publication/califorms/
https://www.cs.columbia.edu/~mtarek/publication/nofat/
https://www.cs.columbia.edu/~mtarek/publication/zero/

ZeRO

.EI
E&r

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, and Simha Sethumadhavan, I-E"
ZeRQ: Zero-Overhead Resilient Operation Under Pointer Integrity Attacks. [ISCA 2021] Ei’ T

https://www.cs.columbia.edu/~mtarek/publication/zero/

Return Address Protection with ZeR@

CALL <Foo>

STORE

RET

Program Memory

Return Address Protection with ZeR@

CALL <Foo> A

STORE Return Address

RET

Program Memory

Return Address Protection with ZeR@

CALL <Foo>

STORE Return Address

RET

Program Memory

Return Address Protection with ZeR@

CALL <Foo> |

Return Address

Program Memory

Return Address Protection with ZeR@

CALL <Foo>

STORE Return Address

RET

Program Memory

Return Address Protection with ZeR@

Return Address

Program Memory

Return Address Protection with ZeR@

RO

CALL <Foo> : e
- CPD 9 0 AVO0l1d %
Q S Return Address . e

Program Memory

157

Code Pointer Integrity with ZeR@

CPtrST A

Function Pointer

CPtrLD

Program Memory

Code Pointer Integrity with ZeR@

CPtrST

Function Pointer

CPtrLD

Program Memory

Code Pointer Integrity with ZeR@

CPtrST

vy

Function Pointer

CPtrLD

Program Memory

Data Pointer Integrity with ZeR@

Works in the same way as DPtrST

Code Pointer Integrity but
for data pointers!

Data Pointer

DPtrLD

Program Memory

161

How can we keep
track of ZeR@ bits?

Efficiently Tracking Metadata

In ZeRO, we encode metadata

within unused pointer bits.

63 48 47 0

Unused Bits Address Bits

64-bit Pointer

163

Efficiently Tracking Metadata

‘ We use a novel variant of

e CaLiForms
Pointers
Normal POE?;,S? Encoded
A B C D | E Y AIB|C|D]|E

Has
Normal Pointere? Normal

0|1, 2|3/4|5|6]|7 > INPI|O[1]|2/3]4 |5 6|7

164

ZeR@ Performance Overheads

Hardware Modifications

Our measurements show no impact on the cache access latency.

ZeR@ Performance Overheads

Hardware Modifications

Our measurements show no impact on the cache access latency.

Software Modifications
* Our special load/stores do not change the binary size.

ZeR@ Performance Overheads

Hardware Modifications

Our measurements show no impact on the cache access latency.

Software Modifications
* Our special load/stores do not change the binary size.
* The ClearMeta instructions are only called on memory deletion.

ZeR@ Performance Results (x86 64)

—-------------------~
A Y

d

0%

1.05

=
(=]

—

IS
N
S

=
o))

S

LN
>}

S

JId "WLION

/4

0.80

‘IIIIIIIIII',

R4

gMean

~-------------------

\

—— .

B ZeRO

N o xR Y W A
—. - o O o O

JI9d "WLION

0.0

168

%
Q/w,

ZeR@ Performance Results (x86 64)

—-------------------

" 1.05 3% ‘I
: u: 1.00 |
1 9 -
I 0-4 0.95 :
: é 0.90 |
1 O -
| 4 o8 :
: 0.80 I
\ /
B PAC-FPtr H ZeRO
1.8
. 16
“‘8 1.4
12
D'f 1.0
E 0.8
5 06
0.4
Z 0,
0.0
> c,,/ ‘g/ b,/ \/ b p; >) V,/ &/ b >), (\)/ I >
*O@Q\Q @*qg $* 6"& Q’@ o&rﬁ %%0& oé&s 606& ‘Q"o @0& é\é&/ @%& \.@Q}% uf\‘%o é\dy > ’ Q§\ @
Qe}\ ° > S %\Q& %\g o Qo& X 47 pr'o\ ARG U °
O ' ¥ N
o i & S ° 169

ZeR@ Performance Results (x86 64)

—-------------------

/’ 0]
I 1.10 6 A) \I
I s 105 I
' ?1-‘) 1.00 I
e |
I E 0.95 :
: 5 090 I
| Z 0.85 :
: 0.80 |
\ I
e Mean A
L Hm PAC-FPtr m PAC-RET m ZeRO
. 16
(S
14
Lo,
Q'f 1.0
E 0.8
:5 0.6
0.4
Z o2
0.0
~Q/ g/ ‘g/ b,/ \, / / \g./ b;/ g/) \g,./ rb./ ‘0/ «\,/ ‘Zr
S SIS FT S FFE T
~oe4 Qq’ 6’) I ,Q‘b' 0 0) Q, O <0 \@ N 2 o b?& <,§’3 Qo
D 4 S - Q- N N & > N 0 K & D %)
& N & > d A 9 6 W % 2
9 v s 170

ZeR@ Performance Results (x86 64)

—-------------------

' 1.20 0) \\
{ . LIs 4 A) 1
I = 10 I
| éj 1.05 :
I 1 1.00 1
: é 0.95 :
o

I 0.90

| /. 0.85 :
: 0.80 :
“ gMean J

~-------------------’

m PAC-FPtr m PAC-RET mPAC-Full mZeRO

2.0
1.8

1
L 14
A 12
;10
é 0.8
o 06
0.4
0.0
> &
/ g/ ‘g/ b,/ X/ / / / / V,/ (,/ / rb./ ‘0 «\)/ i &
@Q\Q 0% S & S° S n*& » & '\“&/ %& & AT N %\Q“
@@o > W QOO'Q o Q,o <’>\’°) 0@0 \%QO 05\?)' Go\e @‘Z‘Q’% > g %b}' >
S 9 e 4 I o Q) %\P &
9

<,;1» 9 171

ZeR@ Performance Results (x86 64)

1.20
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80

Norm. Perf.

PAC’s overheads are attributed to the extra QARMA
encryption invocations upon pointer:

* Joads/stores
* usages

172

ZeR@ Performance Results (x86 64)

1.20

. LIS
T 10
d‘j 1.05
I 1.00
é 0.95
2 0.90
0.85
0.80

ZeRO reduces the average runtime overheads of
pointer integrity from 14% to 0%!

173

An efficient pointer integrity mechanism

- An ideal candidate for end-user deployment.

Easy to Implement

No Runtime Overheads
Z eR ﬂ Provides Strong Security

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N

[MICRO 2019] [ISCA 2021] [ISCA 2021]

175

https://www.cs.columbia.edu/~mtarek/publication/califorms/
https://www.cs.columbia.edu/~mtarek/publication/nofat/
https://www.cs.columbia.edu/~mtarek/publication/zero/

Memory Attacks Taxonomy

CaLiForms
4 Memory safety vulnerability (+1.5% runtime)
: (+0.2% memory)
[Spatial] [Temporal] *probabilistic
P e i i N = X, Detect
Roof catise I[Non-] [Contiguous] { Use-after-] [Ummtlahzed]I violation
R fee)
Asset { Program } { Return } { Function } { Data } [Non- } B
code address pointer pointer pointer data
exploitation

Code Control-flow Data-flow Data
Result : 1 1 :
corruption hijacking hijacking corruption

176

Memory Attacks Taxonomy

CaLiForms

Memory safety vulnerability (+1.5% runtime)

(+0.2% memory)
*probabilistic

No-FAT
(<1% runtime)

(+0% memory) [Spatial] [Temporal]
*deterministic P——

e = N— == == === Detect
Root cause [Non-] [C nti] [Use-after-] olati
contiguous ontiguous free violaiion
Asset Program Return Function Data Non- p "
code address pointer pointer pointer data reven
— exploitation
Code Control-flow Data- ﬂow Data
Result : 1. :
corruption hijacking hijacking corruption

177

Memory Attacks Taxonomy

CaLiForms

Memory safety vulnerability (+1.5% runtime)
(+0.2% memory)
[Temporal] *probabilistic

No-FAT
(<1% runtime)

(+0% memory) [Spatial]
*deterministic P——

=l L N o = e = Detect
Root cause [Non-] [C ati] [Use-after- olati
contiguous ontiguous free violaiion

-l l

Asset Program Return Function Data Non- P /
code address pointer pointer pointer data reven
— exploitation

ZeRO
Result Code‘ Cor.l.troljﬂow a S)
corruption hijacking hijack (+0.2% memory) |

*deterministic

178

Acknowledgement

Simha Sethumadhavan Miguel A. Arroyo Evgeny Manzhosov Vasileios P. Kemerlis

Columbia University Columbia University Columbia University Brown University

e

Kanad Sinha Koustubha Bhat Ryan Piersma Hiroshi Sasaki

Columbia University Vrije Universiteit Amsterdam Columbia University Tokyo Institute of Technology

179

My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N
[MICRO 2019] [ISCA 2021] [ISCA 2021]

Thank You!

180

https://www.cs.columbia.edu/~mtarek/publication/califorms/
https://www.cs.columbia.edu/~mtarek/publication/nofat/
https://www.cs.columbia.edu/~mtarek/publication/zero/

