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Why is memory safety a concern?
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Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking

campaign

The tech giant gave arare statement that bristled at Google's analysis

of the novel hacking operation.
€he New HJork Eimes

, Exclusive: Saudi Dissidents
WhatsApp Rushes to Fix Hit With Stealth iPhone

Security Flaw Exposed in .
Hacking of Lawyer’s Phone I%I[)lmzl;‘e Before Khashoggi's
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Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs
B Non-Memory Safety [l Memory Safety

100

N N

50

25

0
2006 2008 2010 2012 2014 2016 2018

Microsoft Product CVEs
between 2006-2018

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019



Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs
B Non-Memory Safety [l Memory Safety H|gh+, impacting stable

100 Security-related assert

75
Other

50

Use-after-free
26 19,

25

Other memory unsafety

0
2006 2008 2010 2012 2014 2016 2018

Microsoft Product CVEs Chromium high severity security bugs
between 2006-2018 between 2015-2020

28
Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019 Source: https://www.chromium.org/Home/chromium-security/memory-safety/




29



ATTACKERS

MEMORY SAFETY



Attackers prefer Memory Safety Vulns
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Memory Exploit
Blocklisting Mitigation
 ? ] All prior approaches share a common theme:

®2 Adding more features to a program to make it secure



My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation

My research work turns existent program features

into security primitives to save on performance.
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My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation

Uses dead bytes in
program memory

Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]
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My solutions for C/C++ memory (un)safety
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Architectural Support for Low Overhead Memory Safety Checks. [ISCA 2021]
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My solutions for C/C++ memory (un)safety
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Mitigates all known exploits
with zero runtime overheads.

ZeRD: Zero-Overhead Resilient Operation Under Pointer Integrity Attacks. [ISCA 2021]
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CaLiForms Memory Blocklisting
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CaLiForms Memory Blocklisting
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CaLiForms Memory Blocklisting

Metadata

0.2% memory overhead!

2-14% runtime overhead!
CaliForms
1 bit per cache line

Program Memory "



CaLiForms Memory Blocklisting

{?) The key insight is to change how
data is stored in cache lines!
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Our Metadata: Encoded within unused data.
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CaLiForms Cache Line Formats

Our Metadata: Encoded within unused data.
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Hardware Modifications

Our measurements show no impact on the cache access latency.

Software Modifications

* We evaluate three different insertion policies using Clang/LLVM.
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struct struct A full {
A_opportunistic { char tripwire[2];
char c; char c;
char tripwire[3]; char tripwire[1];
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CalLiForms Insertion Polices

struct struct A_full { struct A_intelligent
A_opportunistic { char tripwire[2]; {
char c; char c; char c;
char tripwire[3]; char tripwire[1]; int i;
int i; int 1ij; char tripwire[3];
char buf[64]; char tripwire[3]; char buf[64];
void (*fp)(); char buf[64]; char tripwire[2];
} char tripwire[2]; void (*fp)();
void (*fp)(); char tripwire[3];
char tripwire[1]; }
}

(1) Opportunistic (2) Full (3) Intelligent
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CaLiForms Performance Overheads

Software Modifications

* We evaluate three different insertion policies using Clang/LLVM.
* We emulate the overheads of BLOC instructions that are used
during malloc/free to mark the blocklisted locations per cacheline.
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CaLiForms Performance Results (x86 64)
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CaLiForms Performance Overheads

struct struct A_full { struct A intelligent
A _opportunistic { char tripwire[2]; {

char c; char c; char c;

char tripwire[3]; int i;

int i; The intelligent pOliCY char tripwire[3];

char buf[64]; : char buf[64];

void (*fp)(); provides the best char trigwile[Z];
} performance-security void (*fp)();

char tripwire[3];

tradeoft.

(1) Opportunistic (2) Full (3) Intelligent



Memory Attacks Taxonomy

CaLiForms
4 Memory safety vulnerability (+1.5% runtime)
: (+0.2% memory)
[ Spatial ] [ Temporal ] *probabilistic
P e i i N = X, Detect
Roof catise I[ Non- ] [ Contiguous] { Use-after- ] [Ummtlahzed ]I violation
\contiguons ) L~ L fee ) )
Asset { Program } { Return } { Function } { Data } [ Non- } B
code address pointer pointer pointer data
exploitation

Code Control-flow Data-flow Data
Result : 1 1 :
corruption hijacking hijacking corruption
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Mohamed Tarek Ibn Ziad, Miguel A. Arroyo Evgeny Manzhosov, Ryan Piersma, and Simha
Sethumadhavan, Architectural Support for Low Overhead Memory Safety Checks. [ISCA 2021 ]
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h-‘ Current software trends can be used to
(RS enhance systems security

Increasing adoption of binning allocators

* Maintains memory locality.
* Implicit lookup of allocation information.

’
@) mi-malioc {7

Free BSD tcMalloc
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Binning Memory Allocators

40. int main() 1

a1. char* ptr = malloc(12); Memory is

» P ( ) ? requested by
e the allocator.
50.  }

Virtual Memory
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Binning Memory Allocators

40. 1int main() {

Memory is
» 41. char* ptr = malloc(12); divided into
42. bins.

50. )

Bins

C

Virtual Memory
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Binning Memory Allocators

40.

_ 38

42.
50.

int main() {
char* ptr = malloc(12);

Each bin is
associated with
a size.

Bins

A

C

Virtual Memory

Sizes

16B

24B

32B
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Binning Memory Allocators

Bins Sizes

40. 1nt mai

N
@ o char (- I A |

42.

50, }

B 24B

C 32B

Virtual Memory
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Binning Memory Allocators

40. 1int main() { ‘

41, char* ptr = malloc(12); N

50.  }

B 24B

C 32B

Virtual Memory
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Binning Memory Allocators

Bins Sizes
a0. 1int main() {
A
» a1. char* ptr = malloc(12); A, 16B
42. ————p>
50.  }
B 24B
Given any pointer, we can derive its C -
allocation size and base address.

Virtual Memory
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a0. int main() {

21.  char* ptr = malloc(12);
2. ptr[l] = ‘A’;

43.

-



How No-FAT Provides Memory Safety

40.
41.
42.
43,
50.

int main() A

char* ptr = malloc(12);

ptr[l] = ‘A’;

—

store ptr[1], ‘A’
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How No-FAT Provides Memory Safety

40. int main() {
41. char* ptr = malloc(12);,
42. ptr[l] = ‘A°; =) EJESdeIl-NoRdol NIV N PER e ted base

P —. =
s6.  } We add one extra operand for loads/stores.
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How No-FAT Provides Memory Safety

40.
41.
42.
43,
50.

int main() {
char* ptr = malloc(12); \

ptr[l] = ‘A’; S store ptrll], ‘A% ptri . cted pace

) The compiler propagates the allocation base address.
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How No-FAT Provides Memory Safety

40. int main() {
char* ptr = malloc(12);

41.
42.
43.
50.

ptrll] = “A%;

s_stor'e ptr\[l] ) ‘A’ ) ptr\tr-usted base
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How No-FAT Provides Memory Safety
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How No-FAT Provides Memory Safety
= X3 — N,
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How No-FAT Provides Memory Safety

ptr[1]
= getSize( ptr‘tr‘usted base )
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How No-FAT Provides Memory Safety

= [ — NS
m = getSize( ptrtrusted base )

Bounds .
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How No-FAT Provides Memory Safety

Il

 size
Bounds
Check

ptri1] Lol Ptrerycced bace

Il

gEtSize( ptrtrusted base )

Temporal

Check ptr‘[l] [63:48] ptr‘tr‘usted_base [63:48]
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How No-FAT Provides Memory Safety

The allocation size information is made available to
the hardware to verify memory accesses.

offset ¢ ?

ptr(1] = [N ?
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How No-FAT Provides Memory Safety

a0. int main() {

41. char* ptr = malloc(12);
2. ptr[l] = ‘A’;

43,

-



How No-FAT Provides Memory Safety

40. int main() {

41. char* ptr = malloc(12);
42. ptr[l] = ‘A’; s_store ptr[l], ‘A’,ptri.ycted base

Let’s pass the pointer to another context (e.g., f00).
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How No-FAT Provides Memory Safety

a0. int main() {

41. char* ptr = malloc(12);
2. ptr[l] = ‘A’;

43,

49, foo(ptr);

5.}

s1. void Foo (char*)xptr){

52.

53. xptr[7] = ‘B’;

54,

. ..



How No-FAT Provides Memory Safety

40. int main() {
char* ptr = malloc(12);

41.
42.
43,
49,
50.
51.
52.
53.
54.
60.

ptrll] = “A%;

;oo(ptr);
}

void Foo (char* xptr){

xptr[7] = ‘B’;

s_stor‘e Xptl"[7] ) ‘B’ prtr‘tr‘usted base
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How No-FAT Provides Memory Safety

40. int main() {

41. char* ptr = malloc(12);
42. ptr[l] = ‘A’; s_store ptr[l], ‘A’,ptri.ycted base

43,

49, foo(ptr);
50. }

s1. void Foo (char* xptr){
52.

54.
66. } How do we get this?

53. Xptl’[7] = ‘B,; s_stor'e Xptr[7] ) ‘B’ -{Xptr‘trusted_base )
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How No-FAT Provides Memory Safety

40. int main() {

41.
42.
43,
49,
50.
51.
52.
53.
54.
60.

char* ptr = malloc(12);
ptr[1] = ‘A’;

foo(ptr);

}

void Foo (char* xptr)
Xptr‘tr‘usted base é compBase(xptr‘[7])
xptr[7] = ‘B’;
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How No-FAT Provides Memory Safety
Xptrtrusted base < compBase(xptr‘[7])
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How No-FAT Provides Memory Safety

m = > log, (5)) where S is the size of the bins.
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How No-FAT Provides Memory Safety

where S is the size of the bins.

Size Il cetsize( Bin ).
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How No-FAT Provides Memory Safety

where S is the size of the bins.

RN = B =« (/) * EED
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How No-FAT Provides Memory Safety
Xptrtrusted base < compBase(xptr‘[7])

where S is the size of the bins.

Base pointer is implicitly derived!
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How No-FAT Provides Memory Safety

a0. int main() {

21.  char* ptr = malloc(12);
2. ptr[l] = ‘A’;

43.

29. foo(ptr);

5.}



How No-FAT Provides Memory Safety

40.
41.
42.
43,
44.
49.
50.

int main() A

¥

char* ptr = malloc(12);

Pptrli] = A%

S s_store ptr[l], ‘A’,ptri.ycted base

jptr = ptr + 100;,

foo(ptr);

Pointer arithmetic can push the pointer

out-of-bounds before calling foo!
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How No-FAT Provides Memory Safety

40.
41.
42.
43,
S i Bounds ptrpire i ]
45,
49,
50.

int main() A

char* ptr = malloc(12);
f

ptr[l] =

’ ’ s_stor‘e ptr\[l] ) ‘A’ ) ptrtrusted base

prf_; EFP + 100;

¥

foo(ptr);

Verity the bounds of all pointers that

escape to memory (or another function).
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No-FAT Microarchitectural Overview

Core | | L1-D A ' 12 DRAM




No-FAT Microarchitectural Overview

NO changes to the memory subsystems!

L1-D

L2

130



No-FAT Microarchitectural Overview

Core | L1-D 4 ' 12 DRAM




No-FAT Microarchitectural Overview

1-KiB Memory Allocation
Sizes Table (MAST)

Core 4 : L1-D

L2

DRAM
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No-FAT Microarchitectural Overview

Bounds Checker

Core ) ' L1-D | ' L2
\\ J

DRAM
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No-FAT Microarchitectural Overview

(

Core

~

Dedicated Register File

L1-D

L2

DRAM
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No-FAT Performance Results (x86 64)
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No-FAT Performance Results (x86 64)
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No-FAT Performance Results (x86 64)

Most of No-FAT’s overheads are attributed to:
* The binning memory allocator, and
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No-FAT Performance Results (x86 64)

4%

8%
* The back-to-back MULs during base

address computation

Most of No-FAT’s overheads are attributed to:
* The binning memory allocator, and
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No-FAT Performance Results (x86 64)

Most of No-FAT’s overheads are eliminated with:
* A performant binning memory allocator

4%

8%

(e.g., MiMalloc), and
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No-FAT Performance Results (x86 64)

R N

I 2.50 \I

i 200 ! Most of No-FAT’s overheads are eliminated with:
L s <1% i * A performant binning memory allocator

i 100 ! (e.g., MiMalloc), and

Lo I | * A base address cache for derived pointers.
1 0.00 1

\ gMean /I
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Memory Attacks Taxonomy

No-FAT
(<1% runtime)

(+0% memory)
*deterministic

Root cause

Asset {

1

Result { . } {
corruption

Memory safety Vulnerability
[ Spatial ] Temporal ]
/ {_/\
Non- Conti Use- after- Un1n1t1ahzed
contiguous on 1guous free read
Program Return Function Data Non-
code address pointer pointer pointer data
Code Control-flow Data- ﬂow Data
hijacking hijacking corruption

o

Detect
violation

Prevent
exploitation
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My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N

[MICRO 2019] [ISCA 2021]

142


https://www.cs.columbia.edu/~mtarek/publication/califorms/
https://www.cs.columbia.edu/~mtarek/publication/nofat/

Comparison with prior work



Comparison with prior work

Metadata Concerns

: : : : Spatial & temporal safety
Memory Tagging N bits per pointer & allocation e [y v il
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Comparison with prior work

Metadata Concerns

Spatial & temporal safety

N bits per pointer & allocation limited by tag width

Memory Tagging

Tripwires

Susceptible to non-adjacent

N bits per allocation
overflows
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Comparison with prior work

Metadata Concerns

Spatial & temporal safety

Memory Tagging N bits per pointer & allocation limited by tag width

Susceptible to non-adjacent
overflows

P . .1. o
1 bit per cache line rovides probabilistic
guarantees

Tripwires N bits per allocation

CaLiForms
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Comparison with prior work

Metadata Concerns

Spatial & temporal safety
limited by tag width

- . . Susceptible to non-adjacent
Tripwires N bits per allocation P J
overflows

Memory Tagging N bits per pointer & allocation

Breaks compatibility with the rest of

NRISpeapoitcoRaiocation the system (eg. unprotected libraries).

Explicit Base & Bounds
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Comparison with prior work

Metadata Concerns

Spatial & temporal safety

Memory Tagging N bits per pointer & allocation limited by tag width

Susceptible to non-adjacent
overflows

Tripwires N bits per allocation

CaLiForms

1 bit per cache line Provides probabilistic
guarantees

Breaks compatibility with the rest of
the system (eg. unprotected libraries).

Fixed (1K) bits per process Requires binning allocator

Explicit Base & Bounds N bits per pointer or allocation

No-FAT
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My solutions for C/C++ memory (un)safety

Memory Memory Exploit
Blocklisting Permitlisting Mitigation
S
No
FAT
N

[MICRO 2019] [ISCA 2021] [ISCA 2021]
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ZeRO

.EI
E&r

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, and Simha Sethumadhavan, I-E"
ZeRQ: Zero-Overhead Resilient Operation Under Pointer Integrity Attacks. [ISCA 2021] Ei’ T



https://www.cs.columbia.edu/~mtarek/publication/zero/

Return Address Protection with ZeR@

CALL <Foo>

STORE

RET

Program Memory



Return Address Protection with ZeR@

CALL <Foo> A

STORE Return Address

RET

Program Memory



Return Address Protection with ZeR@

CALL <Foo>

STORE Return Address

RET

Program Memory



Return Address Protection with ZeR@

CALL <Foo> |

Return Address

Program Memory



Return Address Protection with ZeR@

CALL <Foo>

STORE Return Address

RET

Program Memory



Return Address Protection with ZeR@

Return Address

Program Memory



Return Address Protection with ZeR@

RO

CALL <Foo> : e
- CPD 9 0 AVO0l1d %
Q S Return Address . e

Program Memory
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Code Pointer Integrity with ZeR@

CPtrST A

Function Pointer

CPtrLD

Program Memory



Code Pointer Integrity with ZeR@

CPtrST

Function Pointer

CPtrLD

Program Memory



Code Pointer Integrity with ZeR@

CPtrST

vy

Function Pointer

CPtrLD

Program Memory



Data Pointer Integrity with ZeR@

Works in the same way as DPtrST

Code Pointer Integrity but
for data pointers!

Data Pointer

DPtrLD

Program Memory
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How can we keep
track of ZeR@ bits?




Efficiently Tracking Metadata

In ZeRO, we encode metadata

within unused pointer bits.

63 48 47 0

Unused Bits Address Bits

64-bit Pointer
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Efficiently Tracking Metadata

‘ We use a novel variant of

e CaLiForms
Pointers
Normal POE?;,S? Encoded
A B C D | E Y AIB|C|D]|E

Has
Normal Pointere? Normal

0|1, 2|3/4|5|6]|7 > INPI|O[1]|2/3]4 |5 6|7
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ZeR@ Performance Overheads

Hardware Modifications

Our measurements show no impact on the cache access latency.



ZeR@ Performance Overheads

Hardware Modifications

Our measurements show no impact on the cache access latency.

Software Modifications
* Our special load/stores do not change the binary size.



ZeR@ Performance Overheads

Hardware Modifications

Our measurements show no impact on the cache access latency.

Software Modifications
* Our special load/stores do not change the binary size.
* The ClearMeta instructions are only called on memory deletion.



ZeR@ Performance Results (x86 64)
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ZeR@ Performance Results (x86 64)

—-------------------

" 1.05 3% ‘I
: u: 1.00 |
1 9 -
I 0-4 0.95 :
: é 0.90 |
1 O -
| 4 o8 :
: 0.80 I
\ /
B PAC-FPtr H ZeRO
1.8
. 16
“‘8 1.4
12
D'f 1.0
E 0.8
5 06
0.4
Z 0,
0.0
> c,,/ ‘g/ b,/ \/ b p; > ) V,/ &/ b > ), (\)/ I >
*O@Q\Q @*qg $* 6"& Q’@ o&rﬁ %%0& oé&s 606& ‘Q"o @0& é\é&/ @%& \.@Q}% uf\‘%o é\dy > ’ Q§\ @
Qe}\ ° > S %\Q& %\g o Qo& X 47 pr'o\ ARG U °
O ' ¥ N
o i & S ° 169



ZeR@ Performance Results (x86 64)
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ZeR@ Performance Results (x86 64)

—-------------------

' 1.20 0) \\
{ . LIs 4 A) 1
I = 10 I
| éj 1.05 :
I 1 1.00 1
: é 0.95 :
o

I 0.90

| /. 0.85 :
: 0.80 :
“ gMean J

~-------------------’

m PAC-FPtr m PAC-RET mPAC-Full mZeRO

2.0
1.8

1
L 14
A 12
;10
é 0.8
o 06
0.4
0.0
> &
/ g/ ‘g/ b,/ X/ / / / / V,/ (,/ / rb./ ‘0 «\)/ i &
@Q\Q 0% S & S° S n*& » & '\“&/ %& & AT N %\Q“
@@o > W QOO'Q o Q,o <’>\’°) 0@0 \%QO 05\?)' Go\e @‘Z‘Q’% > g %b}' >
S 9 e 4 I o Q) %\P &
9

<,;1» 9 171



ZeR@ Performance Results (x86 64)

1.20
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80

Norm. Perf.

PAC’s overheads are attributed to the extra QARMA
encryption invocations upon pointer:

* Joads/stores
* usages
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ZeR@ Performance Results (x86 64)

1.20

. LIS
T 10
d‘j 1.05
I 1.00
é 0.95
2 0.90
0.85
0.80

ZeRO reduces the average runtime overheads of
pointer integrity from 14% to 0%!
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An efficient pointer integrity mechanism

- An ideal candidate for end-user deployment.

Easy to Implement

No Runtime Overheads
Z eR ﬂ Provides Strong Security




My solutions for C/C++ memory (un)safety
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Memory Attacks Taxonomy

CaLiForms
4 Memory safety vulnerability (+1.5% runtime)
: (+0.2% memory)
[ Spatial ] [ Temporal ] *probabilistic
P e i i N = X, Detect
Roof catise I[ Non- ] [ Contiguous] { Use-after- ] [Ummtlahzed ]I violation
R fee )
Asset { Program } { Return } { Function } { Data } [ Non- } B
code address pointer pointer pointer data
exploitation

Code Control-flow Data-flow Data
Result : 1 1 :
corruption hijacking hijacking corruption
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Memory Attacks Taxonomy

CaLiForms

Memory safety vulnerability (+1.5% runtime)

(+0.2% memory)
*probabilistic

No-FAT
(<1% runtime)

(+0% memory) [ Spatial ] [ Temporal ]
*deterministic P——

e = N— == == === Detect
Root cause [ Non- ] [C nti ] [ Use-after- ] olati
contiguous ontiguous free violaiion
Asset Program Return Function Data Non- p "
code address pointer pointer pointer data reven
— exploitation
Code Control-flow Data- ﬂow Data
Result : 1. :
corruption hijacking hijacking corruption
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Memory Attacks Taxonomy

CaLiForms

Memory safety vulnerability (+1.5% runtime)
(+0.2% memory)
[ Temporal ] *probabilistic

No-FAT
(<1% runtime)

(+0% memory) [ Spatial ]
*deterministic P——

=l L N o = e = Detect
Root cause [ Non- ] [C ati ] [ Use-after- olati
contiguous ontiguous free violaiion

-l l

Asset Program Return Function Data Non- P /
code address pointer pointer pointer data reven
— exploitation

ZeRO
Result Code‘ Cor.l.troljﬂow a S )
corruption hijacking hijack (+0.2% memory) |

*deterministic
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My solutions for C/C++ memory (un)safety

Memory Memory Exploit
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Thank You!
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