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Abstract—Code-reuse attacks continue to pose a significant
threat to systems security, from resource-constrained environ-
ments to data-centers. While current mitigation techniques excel
at providing efficient protection for high-end devices, they typi-
cally suffer from significant performance and energy overheads
when ported to the embedded domain. Thus, there is a need
for developing new defenses that (1) have low overheads, (2)
provide high security coverage, and (3) are especially designed
for embedded devices.

In this paper, we present EPI, an efficient pointer integrity
mechanism that is tailored to microcontrollers and embedded
devices. EPI assigns unique tags to different application assets,
namely return addresses, function pointers, and data pointers to
distinguish them from regular data. We then use unique memory
instructions for accessing the valuable assets to prevent regular
store instructions—as part of a buffer overflow vulnerability for
example—from manipulating them. In order to avoid the cost of
tagging the entire memory, we propose a 32-bit friendly encoding
scheme to inline the tags within the application data. Using simple
compiler support and minor hardware changes, we show that EPI
mitigates code-reuse attacks, including the recent data-oriented
programming ones. For certain modes of operation, namely
return address integrity, EPI does not require compiler support,
thus is applicable to legacy binaries. Our results show that EPI
has 0.88% runtime overheads on the SPEC CPU2017 workloads
making it viable for embedded and low-resource systems.

I. INTRODUCTION

Embedded systems interact with many aspects of our daily

lives, ranging from cell phones and life saving medical devices

to aircraft and satellite systems. Due to its resource-constrained

nature, embedded applications and firmwares are typically

written in low-level programming languages, such as C to

take advantage of its direct memory management and high

performance. Unfortunately, C is not a memory-safe language,

and thus a simple buffer overflow can corrupt valuable appli-

cation assets, causing severe consequences [37]. For exam-

ple, overwriting code pointers, such as return addresses and

function pointers, allows an attacker to hijack the control-flow

of an application and achieve arbitrary code execution [34].

Moreover, overwriting data pointers can alter an application’s

benign behavior without changing its control-flow [20]. Both

control- and data-flow manipulation attacks cause significant

damage to the victim system. In 2019, researchers showed

how to exploit a series of buffer overflow vulnerabilities,

named QualPwn [18], in the Qualcomm WLAN and modem

firmware that ships in millions of Android devices. The

vulnerabilities allow for code execution on the victim device

by sending specially-crafted packets to an Android’s device

modem. In 2020, another series of zero-day vulnerabilities,

dubbed Ripple20 [23], targeted a TCP/IP library found at the

base of many embedded devices. The impacted devices include

smart home devices, power grid equipment, routers, satellite

communications equipment, and many others.

One strategy to harden embedded systems against memory

safety-based attacks is to deploy exploit mitigation techniques,

such as address space layout randomization (ASLR) [42] and

ARM pointer authentication (PAC) [31]. These techniques

raise the bar for the attacker by making it harder to exploit

memory safety vulnerabilities while keeping the performance

and memory costs lower than the full memory safety solu-

tions [13]. Unfortunately, state-of-the-art exploit mitigation

techniques are mainly designed for 64-bit processors. For

example, randomization-based solutions, such as ASLR [42],

take advantage of the massive 64-bit virtual address space

to hide the valuable assets. Other solutions, such as ARM’s

PAC [31], leverage the currently unused upper bits in 64-bit

pointers to store metadata. As a result, such solutions perform

poorly when deployed on non 64-bit processors, which are the

common choice for embedded systems. Figure 1 shows that

the embedded world is dominated by 32-bit processors [4],

[12]. As a result, there is a need for new solutions for securing

embedded 32-bit systems with minimal performance, power,

and area overheads.

This paper proposes Efficient Pointer Integrity (EPI), a

hardware-based technique that mitigates memory safety-based

attacks by ensuring the integrity of valuable application assets

(i.e., pointers). EPI is inspired by a recent exploit mitigation

technique, dubbed ZeRØ [40], which uses unique instructions

to access different pointers (e.g., return addresses, function

pointers, and data pointers). This way regular store instructions

(e.g., as part of a buffer overflow vulnerability) cannot be used

to overwrite pointers at runtime. Unlike ZeRØ, which relies on

the currently unused upper bits in 64-bit pointers to inline its

metadata, EPI implements a novel metadata encoding scheme

that is tailored for 32-bit architectures.
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Fig. 1: Embedded systems market trend [4].

The key observation that enables our EPI encoding is that

leveraging common software properties allows for harvesting

extra bits from pointers on 32-bit architectures. For example,

compilers typically align stack frames to 16-byte boundaries.

That means the maximum number of 32-bit return addresses

per 64-byte cache lines is four instead of 16, reducing the

metadata that is needed for enforcing return address integrity.

Additionally, fixed-width instructions on RISC architectures,

such as the RISC-V four-bytes instructions, means that any

instruction address (e.g., return address or function pointer)

will be four-byte aligned and will have its two least significant

bits set to zero. EPI harvests those bits (and inserts extra

padding bits if necessary) to efficiently store the pointer

integrity metadata on 32-bit architectures.

Furthermore, EPI takes multiple steps to address the power

and reliability challenges of embedded systems [2]. First,

as many embedded systems nowadays are battery operated,

they typically have low power consumption budget. EPI

mitigates the power overheads by avoiding frequent crypto

operations [28], [31], [27] and continuous randomization [16]

approaches. Second, as embedded devices are often used in

safety-critical environments, they typically have strong relia-

bility requirements. EPI maintains the reliability of the pro-

tected system by avoiding terminating the victim process upon

detecting an attack. Instead, EPI continues program execution

after skipping the violating instruction. As a result, EPI is

resilient against denial-of-service attacks, which are commonly

used against embedded devices. Third, EPI does not require

any secret parameters or configuration keys that need to be

explicitly protected.

In order to implement EPI, we use the Clang/LLVM com-

piler infrastructure [26] to instrument the embedded applica-

tion code. Our compile time instrumentation inserts unique

memory instructions per pointer type using simple intra-

procedural analysis. At runtime, our modified hardware tracks

the types of pointers in memory using two bits per every

cache line in L2 and main memory (less than 0.4% memory

overheads), efficiently enforcing pointer integrity. To emulate

the runtime overheads of EPI, we insert additional dummy

instructions in the SPEC CPU2017 benchmark suite [7] and

run the compiled 32-bit binaries to completion on a real

machine. We use CACTI [29] to estimate the EPI hardware

costs. Our experimental results show that EPI’s software

introduces 0.88% runtime overheads while having negligible

performance, power, and area costs.

II. BACKGROUND

This section summarizes memory safety-based attacks and

defines our threat model.

A. Memory Safety-based Attacks

Applications written in memory unsafe languages, such as C

and C++, are vulnerable to a wide variety of memory attacks.

Examples include spatial memory safety vulnerabilities, such

as buffer overflows and temporal vulnerabilities, such as

use-after-frees [37]. Abusing the aforementioned vulnerabil-

ities gives the attacker the ability to perform arbitrary code

execution and data manipulation. Existing memory safety-

based attacks can be broadly classified into two categories:

(1) control-flow hijacking attacks and (2) data-flow hijacking

attacks. Both attack types pose significant threat to the victim

device.

1) Control-Flow Hijacking Attacks: This line of attacks ma-

nipulates control data (e.g., return addresses or code pointers)

in memory in order to hijack the application’s control flow.

Examples include return oriented programming (ROP) [34],

[8], which targets return addresses stored on the stack in

addition to call- and jump-oriented programming [17], [6],

which target function pointers stored on the stack/heap. The

common theme in these attacks is abusing a memory safety

vulnerability to corrupt one or more of code pointers (e.g.,

return addresses and function pointers) to divert the control

flow to attacker’s desired sequence of instructions (or gadgets).

In order to achieve more complicated operations, multiple

gadgets are typically chained together using return addresses

or indirect call and jump instructions. Multiple defenses have

been proposed to mitigate the above attacks including Address

Space Layout Randomization (ASLR) [42], Control-Flow In-

tegrity (CFI) [1], [9], and shadow stacks [10].

2) Data-Flow Hijacking Attacks: The main advantage of

data-flow hijacking attacks is the ability to execute arbitrary

(malicious) operations without changing the control flow of

the application. Techniques, such as data-oriented program-

ming (DOP) [20] and block-oriented programming (BOP) [22]

achieve Turing-complete computations by only manipulating

data pointers in memory and without introducing any illegal

transfers in the application control flow graph. As a result,

these attacks bypass all control-flow integrity defenses and

thus require more comprehensive defenses that can cover

both code and data pointers, such as ARM’s PAC [31],

Morpheus [16], and ZeRØ [40].

B. Threat Model

We consider a threat model that is consistent with the state-

of-the-art defenses against pointer manipulation attacks [27],

[16], [40]. Specifically, we assume that the victim application

is written in a memory unsafe languages, such as C/C++, and

suffers from one or more memory safety vulnerabilities, such
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Program Code

void foo(int x);
void bar(int x);
 
int main(int argc, 
         char *argv[]{
  int array[32];
  void (*fptr)(int);
  fptr = &foo;   // CPtrST
 
  // Arbitrary write vuln.
  array[argv[1]] = 
        argv[2]; // STORE 
  (*fptr)(2);    // CPtrLD
                 // CALL 
  return 0;
}

1
2

3

4
5
6

7
8

9

10

array

&foo

Memory

array

&foo &foo

CORRUPTED

Memory

array

array

The function pointer is
overwritten!

The vulnerable STORE
is rejected!

Baseline
Execution

Protected
Execution

After Line #6 After Line #8

Fig. 2: A sample C application highlighting how EPI protects function pointers in memory. The left hand side shows a

code snippet with a memory safety-based vulnerability in Line 8. Under baseline execution conditions (top-right corner), the

vulnerability can be exploited to corrupt the function pointer, fptr. With EPI (shown in the bottom-right corner), fptr can

only be accessed by the code pointer store and load instructions (Lines 6 and 9). Thus its integrity is protected by rejecting

the violating STORE instruction from Line 8. The same technique is used to protect data pointers and return addresses.

as buffer overflow or use-after-free. The above vulnerabilities

grant the attacker arbitrary read/write capabilities to the appli-

cation memory.

Additionally, we assume that the source code of the victim

application and/or its binary image are known to the attacker.

However, the attacker cannot manipulate the victim application

source code or binary instructions (i.e., code sections are

verified at boot time and are non-writable at runtime). The

attacker’s goal is to leverage the memory safety-based vulner-

abilities to mount an attack and hijack the control and/or data

flow of the victim application. This includes using control-flow

hijacking attacks, such as ROP [34], [8], COP [17], JOP [6],

and COOP [33] and data-oriented programming attacks such

as DOP [20] and BOP [22], which are all included in our threat

model. Similar to prior exploit mitigations, pure data corrup-

tion attacks, such as flipping regular non-pointer data [11], are

out-of-scope. Mitigating non-pointer data manipulation attacks

requires full memory safety solutions, which come with high

performance overheads.

Finally, we assume that all hardware components including

the ones proposed in this paper are trusted and tamper-

resistant. Attacks that exploit hardware vulnerabilities, such

as rowhammer [24] and CLKSCREW [38] are out of scope.

III. EFFICIENT POINTER INTEGRITY

In this section, we show how EPI protects the main ap-

plication assets: function pointers, data pointers, and return

addresses on 32-bit architectures. Then, we describe how EPI

manages its metadata.

A. Function Pointer Integrity

As function pointers are stored in application memory

(i.e., stack, heap, and globals), they can be overwritten due

to memory safety-based vulnerabilities. Changing a function

pointer alters the application control flow. Therefore, function

pointers are common targets for attackers. In order to guar-

antee the integrity of function pointer (and any instruction-

based address that is stored in memory, such as indirect

jump targets), EPI uses two special instructions, Code Pointer

Load (CPtrLD) and Code Pointer Store (CPtrST), to access

function pointers. If any other memory access instruction is

used to target a function pointer, EPI will reject the violating

instruction, effectively preventing function pointers from being

overwritten.

To better understand how our function pointer integrity

works, let us consider the example in Figure 2. The code

snippet (shown on the left hand side) shows a simple C ap-

plication with a memory safety-based vulnerability that gives

the attacker arbitrary write capabilities (Line 8). As a result,

the attacker can write arbitrary values to arbitrary locations

in memory. The attacker’s goal is to hijack the control flow

of the application by overwriting the function pointer, fptr,

to point to a different function other than foo. The attack

succeeds under baseline execution (shown on the top right

corner) as the violating STORE instruction is able to access

any memory location with no restrictions. EPI provides pointer

integrity by only granting the CPtrST/CPtrLD instructions

exclusive access to function pointers. As shown in the bottom-

right corner of Figure 2, CPtrST marks the function pointer

location with a unique tag (e.g., 10) on the first use. Only

CPtrLD instructions are allowed to load function pointers

from those specially-tagged locations. Thus, the attacker fails

to overwrite fptr with the vulnerable STORE instruction.

Our unique tags are stored in bit vectors in the L1 data cache

and are encoded within the application data when transferred

to the L2 cache and/or main memory, as will be described

in Section V.
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B. Data Pointer Integrity

EPI enforces the integrity of data pointers in a similar

fashion to function pointers. Two new instructions, Data

Pointer Load (DPtrLD) and Data Pointer Store (DPtrST) are

used to access data pointers. We use a special tag (e.g., 11) to

mark data pointers in the L1 data cache. The tag is assigned

upon executing the DPtrST instruction and is verified upon

executing the DPtrLD instruction. Accessing data pointers

with regular LOAD/STORE instructions is rejected to prevent

attackers from manipulating data pointers.

In order to avoid confusing data pointers (i.e., replacing one

data pointer with another pointer of an incompatible type),

DPtrST/DPtrLD uses an additional register operand, RegX.

The compiler writes the data pointer type to RegX at each

data pointer load and store location. This step is done at

the compiler intermediate level by using the readily available

pointer’s ElementType as defined by the compiler without

requiring any points-to analysis. The hardware verifies that

the value in RegX matches the type metadata, which is stored

adjacent to the data pointer in memory. This way an attacker

cannot exchange two different data pointers with each other

to hijack the application data flow. The same approach can

also be applied to function pointers to avoid type confusion.

In this case, we (1) use the function type as a unique function

pointer type and (2) write it to the RegX operand of function

pointer load and store locations at compile time.

C. Return Address Integrity

In order to mitigate return-oriented programming (ROP)

attacks, EPI enforces the integrity of return addresses by

extending the functionality of regular CALL and RET in-

structions without any compiler support. Upon executing a

CALL instruction, our hardware pushes the return address to

memory and marks it with a unique tag (e.g., 01) in the

L1 data cache. Any memory access instructions, including

the traditional LOAD and STORE instructions and our special

code- and data-pointer variants, cannot access a memory

location as long as it is tagged as a return address. When a RET
instruction is executed, our hardware pops the return address

from memory and simultaneously clears its corresponding

metadata if and only if it is originally marked with the return

address tag (i.e., 01). This way EPI prevents the attackers from

using arbitrary data in memory as potential return addresses.

By limiting the return address accesses to CALL and RET
instructions, EPI mitigates ROP without using shadow stacks

or recompiling the application.

D. Metadata Management

Ensuring the integrity of the metadata is a key requirement

for EPI to (1) prevent the attackers from manipulating the

metadata and (2) avoid causing false positives during normal

application execution. While return address tags are exclu-

sively written and cleared by the CALL and RET instructions,

the function- and data-pointer metadata needs special treat-

ment as pointers can be written and read multiple times. EPI

introduces one more instruction, ClearMeta <R1>, <R2>,

Regular 
data
(00)

Return
address

(01)

Data
pointer

(11)

Function
pointer

(10)
Exception

CALL

RET

DPtrST

CP
trS

T

ClearMeta

Cl
ea

rM
et

a

LD | STDPtrST | DPtrLD

CP
trS

T 
| 

CP
trL

D

CPtrLD | 

DPtrLD |

RET | 

ClearMeta

LD | ST |
CALL | RET |  

CPtrST | 
CPtrLD

LD | ST |
CALL | RET |  

DPtrST | 
DPtrLD

LD | ST | CALL
CPtrST | CPtrLD |
DPtrST | DPtrLD |

ClearMeta 

Fig. 3: Finite state machine of the different EPI metadata

(represented by states) and instructions (shown as transitions).

The main idea is restricting access to memory locations, which

are marked with similar metadata state, to a subset of memory

instructions. Incompatible memory accesses (i.e., accesses that

use the wrong instruction type) are rejected, as represented by

the exception state.

to explicitly clear the function- and data-pointer metadata

when a heap object is freed or a stack frame is deallocated. The

ClearMeta instruction takes two register operands, R1 and

R2. R1 holds the starting address of a 64B cache line whereas

R2 holds a binary mask to the corresponding 64B cache line,

where one allows and zero disallows changing the state of

the corresponding byte. We use the mask to perform partial

updates of metadata within a cache line. At compile time,

we insert ClearMeta instructions to clear the metadata of

the stack frames that hold function and/or data pointers upon

function return. We also create a runtime wrapper around the

memory deallocation functions, free and delete, to clear

the function- and data-pointers metadata from the deallocated

regions if it exists.

E. Summary

Figure 3 shows a finite state machine that summarizes how

our different EPI instructions interact with the EPI memory

tags. The first four states (shown in yellow) represent the

different application assets: regular data, return addresses,

function pointers, and data pointers. Any valid memory access

instruction moves the target memory location tag from one

state to another. However, all invalid memory accesses cause a

violation, as represented by the exception state in Figure 3. For

example, a CPtrST instruction that targets a memory location

with a tag equals 00 will change the tag state to 10. However,

the same CPtrST will be rejected if it targets a memory

location that has a 01 tag. In order to provide the operating

system (or the system administrator) with more information

about the violating instruction, EPI uses advisory exceptions.

Unlike traditional exceptions, EPI’s advisory exceptions do

not crash the running process. Instead, they simply notify the

operating system and provide the address and operands of the

violating instruction, if more forensics is needed.
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IV. SOFTWARE DESIGN

In this section we explain the main software properties that

are used to enable EPI. Then, we describe our compiler and

operating system support.

A. Software Properties

One constraint that prevents the immediate porting of the

state-of-the-art exploitation mitigations (e.g., ARM’s PAC [31]

and ZeRØ [40]) to 32-bit architectures is the lack of unused in-

pointer bits to store the metadata. While the upper bits of 64-

bit pointers are currently unused by software, there are no

unused bits in 32-bit pointers. To address this problem, EPI

leverages common software properties to harvest more bits to

use on 32-bit architectures without affecting the application

correctness or introducing significant memory overheads.

1) Aligning Stack Frames: Each program function has its

own stack frame, in which local variables and return address

are stored. Current compilers typically align stack frames

to N-bytes boundaries as a performance optimization. The

number of alignment bytes, N, defines the maximum number

of return addresses that can appear in a single cache line.

For example, a 64B cache line can only store a maximum

of 64/N different return addresses. We leverage this compiler

optimization to reduce the size of the metadata bit vector that

is associated with return addresses. By using the default stack

frame alignment (i.e., N = 16B), a 4-bit vector is sufficient to

track the locations of potential 32-bit return addresses in any

64B cache line. We show how EPI’s compressed encoding

takes advantage of this feature in Section V.

2) Aligning Program Functions: Current compilers,

such as LLVM and GCC, provide compile-time options

(e.g., -falign-functions) and function attributes (e.g.,

__attribute__((aligned(S)))) for specifying the

minimum alignment for the first instruction of a function.

As function pointers typically point to function starting

addresses, the number of alignment bytes, S, affects the least

significant bits of each function pointer. For example, using

a function alignment, S = 16B, means that the log2(16) = 4

least significant bits of any function pointer are always set to

zero. EPI harvests those bits to store the tags when function

pointers are spilled from the L1 data cache to the L2 cache

and main memory.

3) Compacting Code Space: On 32-bit architectures, the

maximum size of the code address space in virtual memory

is 4GB. However, the majority of embedded applications

do not use the entire code space. Even for statically linked

applications, code size is typically in orders of MBs. We

propose compacting the size of the code address space to 1GB

in order to leverage the two most significant bits of code

pointers, including return addresses and function pointers. We

note that this optimization does not apply to data pointers.

Thus, data items on heap and stack can still use the entire 4GB

of virtual memory on 32-bit architectures as before.

Furthermore, as instructions on RISC architectures have

fixed width, some of the least significant bits of code pointers

can be used for metadata encoding as well. For example,

RISC-V instructions are all of 32-bit width, meaning that

the two least significant bits of return addresses and function

pointers are always set to zero. EPI harvests those bits as well

to facilitate the metadata encoding.

4) Inserting Padding Bytes: While the above optimizations

work for code pointers (i.e., instruction-based addresses), they

cannot be applied for harvesting bits in 32-bit data pointers.

On one hand, the most significant bits of data pointers are

not always set to zero. Compressing the data address space

might cause problems for embedded applications that operate

on large chunks of data. On the other hand, the least significant

bits of data pointers are only set to zero in case of a allocation

base address (i.e., pointers returned by malloc or new).

However, applications may arbitrarily create derived pointers

that point to any byte-aligned location within the allocation

and store it to memory. Thus, derived pointers will not have

their least significant bits set to zero, preventing us from

harvesting them for metadata storage. As a result, we opt to

explicitly insert two padding bytes adjacent to data pointers

to save the data-pointer metadata tag (i.e., 11) and type. We

quantify the performance overheads of the inserted padding

bytes in Section VII.

Finally, Figure 4 shows the layout of different application

assets on 32-bit architectures after applying the above opti-

mizations. The number of harvested bits in return addresses

and function pointers equals four and six, respectively. Fur-

thermore, EPI-protected function and data pointers can utilize

an additional two padding bytes.

B. Compiler Support

While EPI guarantees return address integrity for legacy

binaries without recompilation, we use compiler support for

enforcing function- and data-pointer integrity, as described

below.

1) Code Instrumentation: We use the Clang/LLVM com-

piler infrastructure [26] to instrument the application code.

First, we modify the compiler front-end to insert two padding

bytes per function and data pointers, if desired, to mitigate

pointer confusion attacks. This is an optional feature that could

be turned off if the application does not heavily use data and/or

function pointers. Second, we write a compiler pass that works

at the intermediate (IR) level. Our compiler IR pass identifies

pointer access instructions and replaces them with our new

CPtrLD/CPtrST and DPtrLD/DPtrST instructions. Then,

we use the pointer’s LLVM ElementType, which depends on

the type of the pointed-to data structure, as a unique identifier

per each data pointer load and store instruction. The size of

the identifier depends on the number of different data-pointer

types in the application. Based on our experiments, we set the

size of the identifier to ten bits. Function types are similarly

used as unique identifiers in function-pointer load and store

locations. Finally, our compiler pass identifies functions that

store function and/or data pointers as local variables and emits

ClearMeta instructions on function returns to cleanup the

stack frame.
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4 Bytes

Regular Data ... [31][0] [1]

Return Address ... [31][0] [1]

PaddingFunction Pointer Padding ...[0] [1]

PaddingData Pointer Padding ...

2 bits 2 bits
[30]

[2] [3]
4 bits

[31][30]
2 bits8 bits8 bits

8 bits8 bits

26 bits

32 bits

28 bits

Compacting code space harvests
the 2 MSBs of code pointers

Fixed-width instructions
harvest the 2 LSBs of
return addresses

Aligning program functions
harvests the 4 LSBs of
function pointers

Inserting padding bytes provides space
for storing a per-pointer identifier

Fig. 4: Different pointers layout on 32-bit architectures after applying EPI’s optimizations.

2) Runtime Wrappers: While the majority of embedded

applications use statically allocated memory for maximizing

efficiency, some applications might use dynamic memory

allocations. In this case, EPI creates a wrapper around memory

deallocation functions (e.g., free and delete). Inside the

wrapper, EPI invokes the standard malloc_usable_size
function to get the size of the free’d memory object and iterates

over all cache lines of the free’d object clearing its function-

and data-pointers metadata with our ClearMeta instruction.

C. Operating System Changes

Microcontrollers and embedded devices typically run bare-

metal applications with no operating system support. In this

case, EPI can be directly deployed to protect the bare-

metal application with no further changes. However, some

microcontrollers have an operating system that schedules and

runs multiple applications on the device. To support such

devices, EPI requires minimal modifications to the operating

system code similar to prior work [40].

1) Exception Handling: EPI provides the option to trigger

an advisory exception when a memory access violation occurs.

Instead of crashing the running applications, our advisory

exceptions send the violating instruction information (i.e.,

instruction address and operands) to the operating system. The

operating system then takes the decision of either terminating

the application or not. Furthermore, EPI provides an optional

per-application permit-list that can store the address ranges

of code sections for which the advisory exceptions should be

suppressed. This feature can be used to avoid false alarms

in case of functions that treat pointer and non-pointer data

similarly, such as memcpy and memmove. The permit-list is

created during the application loading and is mapped to the

hardware exception circuitry to allow the hardware to decide

on when advisory exceptions are triggered. The operating

system is responsible for maintaining the contents of the

permit-list (eight 8-bytes entries) during context switches. For

example, it can be stored as part of the process control block

or saved in an attacker-inaccessible memory region.

2) Page Swapping: If multiple processes run on the same

embedded device, the operating system swaps certain memory

pages to disk in order to create enough space in main memory

for supporting the currently running processes. If a swapped-

out page belongs to EPI-protected applications, the operating

system needs to store the metadata of this page in a separate

memory region until the page is swapped in again. This

step adds minimal memory overheads as EPI uses 2-bits of

metadata per 64B cache lines (or 16B for a 4KB page).

V. HARDWARE DESIGN

This section describes the hardware changes that are re-

quired to implement EPI.

A. Processor Modifications

In order to add EPI to an embedded device proces-

sor, the following extensions are needed. First, we extend

the instruction decoder to support the CPtrST/CPtrLD,

DPtrST/DPtrLD, and ClearMeta instructions. Second, we

modify the logic for the CALL and RET instructions to update

and validate the return address metadata. Third, we add an

exception handling module that is responsible for (a) notifying

the operating system when an access violation occurs and (b)

checking the address of the violating instruction against the

permit-list contents, if it is not empty, to trigger or suppress

the exception accordingly. Fourth, a set of registers can be

(optionally) introduced to avoid causing any register pressure

on the main register file due to the extra operand of EPI’s

memory access instructions.

B. Memory Hierarchy Modifications

A subset of embedded processors, especially the ones

that run lightweight operating systems, use data caches for

enhancing performance. Depending on how many levels of

caches are available, EPI requires the following extensions.

The key design goal is to speed-up metadata lookup in the

upper-level caches that are closer to the processor (i.e., L1) by

using bit-vector metadata and reduce the memory overheads
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L1 Cache Line Data 

[0] [1] [2] [3] [4] [5] ... [62] [63]
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64B

EPI Metadata

[0]

2bits

0

[1] ... [31]

4B

0

0 1

1 0

1 1

Return Address

Function Pointer

Data Pointer

Regular Data

Memory Type
Each 2-bits of metadata

represents one 4B chunk.

Fig. 5: EPI’s metadata encoding in the L1 data cache on 32-bit

architectures. We use a 2 bits to indicate whether any 4B is a

regular data, function pointer, data pointer, or return address.

L2 Cache Line Data 

[3] [4] [5] ... [62] [63]

3B
64B

EPI Metadata

[0] [1] [2]
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-

1   Pointer

2   Pointers
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Offset1
4bit

11

-

Code/Data Ptr Bit-vector

T1
1b

16bit2bit

2bit

1b

1bit

1
Function/Data Ptr?

1bit

1
Return address?

[1] [2]

10 Offset1
4bit

T1
1b

Offset2
4bit

T2
1b

-

RET Bit-vector1+ Return address [0] [1] -
4bit

[0] [1] [2]

Fig. 6: EPI’s metadata encoding in the L2 cache and main

memory. We use 2 bits per cache line to indicate whether the

cache line has function/data pointers and/or return addresses.

We use the first three bytes of the cache line as a header

where Offset1/Offset2 encodes the offset of the pointer in the

cache line and T1/T2 encodes its type (i.e., function pointer

or data pointer). A 4-bit vector is used to encode the metadata

of return addresses (i.e., whether a 16B chunk has a return

address or not).

in the lower-level caches that are closer to the main memory

(i.e., L2) by using compressed metadata.

1) L1 Data Cache: In our design, we use a 32-bit vector

of metadata, L1Vec, per each 64B cache line in the L1

data cache (i.e., a 6.25% extra storage). Each 2 bits indicate

whether a 4B chunk is a regular data, function pointer, data

pointer, or a return address, as shown in Figure 5. The per-

pointer identifier needs no dedicated storage as it is readily

available in the padding bytes, as described in Section IV.

The metadata is checked—in parallel to regular data access—

when a memory instruction reaches the L1 data cache. If an

access violation is detected, a signal is sent to the exception

handling module.

Systems with ECC-enabled caches for better reliability can

completely avoid the storage overheads of our L1Vec. The

key idea is to tweak the original ECC encoding and decoding

algorithms to compute the ECC using the 32-bit data and 2-

bit metadata altogether. When a memory access occurs, the 2-

bit metadata is implicitly known (e.g., a CPtrLD instruction

expects a metadata of 11) and can be added to the 32-bit data

before computing the ECC. If the computed ECC matches

the stored ECC value, then the data is correct and the access

is valid. If a mismatch occurs, either a data corruption or

an EPI access violation occurs. Both cases requires exception

handling. Prior work shows how implicitly encoding metadata

bits in ECC works without compromising reliability [19].

2) L2 Cache and Main Memory: For the lower-level com-

ponents of the memory hierarchy (i.e., the L2 cache and main

memory), we use a compressed metadata layout with only 2

bits, Ł2meta[1:0], per each 64B cache line. If a cache line has

no function pointers, data pointers, or return addresses, we

do not modify its contents and set its corresponding metadata

bits to 00. If a cache line has any pointers, we encode the

pointer offset within the cache line and its type in the first

three bytes of the cache line as a header, as shown in Figure 6.

The original contents of the header are copied to the spare bits

of the pointers, which we harvest with software optimizations,

as described in Section IV. As our compressed metadata adds

minimal storage overheads (i.e., 0.39%), it can be efficiently

stored into spare ECC bits or in a disjoint memory region for

non-ECC memories.

3) Metadata Encoding & Decoding Modules: In order to

switch between the EPI’s bit vector metadata and its com-

pressed layout, we introduce metadata encoding and decoding

modules between the L1 data cache and the L2 cache (or

main memory). Algorithm 1 shows the steps of the metadata

encoding process, whereas Algorithm 2 shows the steps of the

metadata decoding process. Both modules can be implemented

with simple combinational logic. The performance overheads

of the two modules are evaluated in Section VII.

VI. SECURITY ANALYSIS

In this section, we first reason about how EPI mitigates

state-of-the-art pointer manipulation attacks. Then, we discuss

the EPI limitations.

A. EPI & Classic Memory Safety-based Attacks

1) Control-Flow Hijacking Attacks: As discussed in Sec-

tion II, control-flow manipulation attacks (e.g., ROP [34], JIT-

ROP [36], COP [17], and JOP [6]) compromise the victim

system by corrupting code pointers, such as return addresses

and function pointers. As EPI enforces all pointers’ integrity

while stored in the application memory, it effectively mitigates

these attacks.

A different type of code-reuse attacks is counterfeit object-

oriented programming (COOP), in which the attacker reuses

whole C++ functions by either (1) manipulating the contents

of the virtual function tables, (2) overwriting the virtual

pointers (vptr) of existent C++ objects, or (3) tricking the

victim application to use counterfeited objects that include

attacker-controlled data and vptr. EPI provides natural protec-

tion against all COOP approaches. First, our function pointer
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Algorithm 1: EPI metadata encoding steps (L1-to-L2).

Input : A 64-byte L1 cache line and a 32-bit vector,

L1Vec.

Output: A 64-byte L2 cache line and a 2-bit EPI

metadata, where Ł2meta[0] is the return

address bit and Ł2meta[1] is the pointer bit.

1 Read all bits from L1Vec and OR them

2 if result is 0 then
3 Evict the line as is and set its Ł2meta[1:0] to 00

4 else
5 Count the number of pointers in L1Vec
6 if pointer count is 0 then
7 Set Ł2meta[1] to 0

8 else if pointer count is 1 then
9 Set Ł2meta[1] to 1

10 Write the location of the pointer and its type in

the lower 6-bits of byte[0]

11 Copy the lower 6-bits of byte[0] to the 6-spare

bits of the pointer
12 else if pointer count is 2 then
13 Set Ł2meta[1] to 1

14 Write the location of the 2 pointers and their

type in the lower 12-bits of byte[0:1]

15 Copy the lower 12-bits of byte[0:1] to the

12-spare bits of the 2 pointers
16 else // pointer count is 3 or more
17 Set Ł2meta[1] to 1

18 Write the pointers’ type as a 16-bit vector in

byte[0:2]

19 Copy the lower 18-bits of byte[0:2] to the

spare bits of the first 3 pointers
20 end if
21 Count the number of return addresses in L1Vec
22 if return addresses count is 0 then
23 Set Ł2meta[0] to 0

24 else
25 Set Ł2meta[0] to 1

26 Write the return addresses locations as a 4-bit

vector in the upper bits of byte[2]

27 Copy the upper bits of byte[2] to the 4-spare

bits of the first return address
28 end if
29 end if

integrity protects all virtual function table entries. Second,

our data pointer integrity prevents the attacker from both:

overwriting the vptr of existent C++ objects and creating fake

objects as vptrs can only be created via a DPtrST instruction.

Moreover, EPI works against a powerful attacker who

controls a CPtrST instruction as our identifier, which is

encoded as a register operand in the vulnerable instruction,

limits the attacker’s ability to overwrite arbitrary function

pointers. Instead, each CPtrST instruction can only access

function pointers which share the same function type, highly

reducing the attack surface.

Algorithm 2: EPI metadata decoding steps (L2-to-L1).

Input : A 64-byte L2 cache line and a 2-bit EPI

metadata, where Ł2meta[0] is the return

address bit and Ł2meta[1] is the pointer bit.

Output: A 64-byte L1 cache line and a 32-bit vector,

L1Vec.

1 Read the Ł2meta[1:0] bits of the inserted line

2 if result is 00 then
3 Set the entire L1Vec to [0]

4 else
5 if has return address then // L2meta[0] is

1
6 Get the return addresses locations from the

upper 4-bits of byte[2]

7 Set the corresponding places in L1Vec to 01

8 Copy the 4-spare bits of the first return address

to the upper bits of byte[2]
9 end if

10 if has pointer then // L2meta[1] is 1
11 Check the least significant 2 bits of byte[0]

12 Get the locations of the pointers and their type

from byte[0:2] as shown in Figure 5

13 Set the corresponding places in the L1Vec to

10 or 11 based on the pointers’ type

14 Copy the 18-spare bits of the first 3 pointers to

the lower 18-bits of byte[0:2]
15 end if
16 Set the rest of bits in the L1Vec to zeros.

17 end if

2) Data-Flow Hijacking Attacks: The common theme of

all known data-flow hijacking attacks, such as DOP [20] and

BOP [22], is their ability to manipulate data pointers to achieve

arbitrary computations without modifying the application

control-flow. While such attacks have not been demonstrated

yet in embedded environments, EPI’s data pointer integrity

provides an efficient way to mitigate their threat. Furthermore,

the additional data pointer identifier that is used by EPI

ensures that a vulnerable DPtrST instruction has limited

attack surface (i.e., only memory locations with compatible

data pointer types are reachable). Prior work showed that a

ten-bit unique identifier is sufficient to cover different data

pointer types in the SPEC CPU2017 benchmarks [40].

3) Spectre Attacks: While speculative execution is not

common in resource constrained devices (due to energy limi-

tations), EPI’s security guarantees remain valid under specula-

tive execution. This is simply because altering the application

control or data flow requires overwriting a code or data pointer

using a violating STORE instruction, which cannot be specu-

latively executed. To mitigate the risk of speculatively leaking

code and data pointers (or speculatively chaining multiple

code-gadgets [5]), EPI does not allow violating instructions

to speculatively forward their results if they violate the rules

of Figure 3. For example, attackers cannot use speculative RET
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instructions to load memory from a regular memory location

(i.e., has a 00 state) that is controlled by the attacker.

B. Limitations

1) Addressing Pure Data Corruption Attacks: Similar to

prior exploit mitigation techniques [31], [16], [40], EPI does

not prevent non-pointer data attacks [11]. While addressing

this attack vector for all variables comes with the high cost

of enforcing full memory safety, EPI provides an option to

guard a subset of the application non-pointer data under certain

conditions. For example, if the application contains security-

critical non-pointer data (e.g., an is_admin global variable)

that needs to be protected, EPI may treat those variables

similarly to data pointers. In other words, the security-critical

fields are padded to 6 bytes (4B of a regular pointer and 2B

for storing the identifier). Then, all memory instructions that

access the security-critical fields are replaced with DPtrLD
and DPtrST instructions. Finally, a unique identifier is as-

signed to each security-critical field at compile time to prevent

confusing them with any other pointers.

2) Handling External Libraries: If the protected application

uses external libraries, EPI will enforce return address integrity

for such libraries. For enforcing function- and data-pointer in-

tegrity, we provide three options for handling external libraries

with different security-usability guarantees. First, the user can

choose to compile the libraries with EPI’s compiler passes

to enjoy the same security coverage as the main application.

Alternatively, we can identify all calls to external library

code at compile time and ensure that any data that is passed

externally has no code or data pointers. If such data exists, it

is sufficient to clear the pointer metadata of the shared objects

using ClearMeta instructions. The third option is to simply

add the instruction address ranges of the external libraries to

the permit-list in order to avoid generating false alarms if the

external library code accesses a protected code or data pointer.

VII. EVALUATION

In this section, we evaluate the performance overheads

of EPI on a real machine using the SPEC CPU2017 workloads.

Then, we compare EPI against a 32-bit variant of the state-of-

the-art exploitation mitigation technique, ARM’s PAC. Finally,

we estimate the hardware overheads of EPI using the CACTI

modeling tool.

A. Experimental Setup

In order to run real workloads to completion in a reasonable

time, we opt to use real machines to emulate the performance

overheads of our proposal instead of using microarchitectural

simulators, which typically suffer from long simulation times.

Thus, we run our experiments on a machine equipped with

an Intel Skylake-based 2.6GHz Xeon Gold 6126 processor,

running RHEL Linux 7.5. We use Clang-4.0 to compile

the SPEC CPU2017 benchmarks using the following baseline

flags, “-m32 -fPIE -pie -fno-strict-aliasing
-Wno-everything -O3”. For all experiments, we run the

ref inputs of the SPEC CPU2017 workloads to completion.

Each benchmark is executed five times and the average of

the execution times is reported.

B. Performance Results

1) Methodology: EPI uses regular CALL and RET instruc-

tions to verify return addresses and introduces new memory

access instructions, CPtrLD/CPtrST and DPtrST/DPtrST,

to handle different pointers. As CALL and RET instructions

already exist in the vanilla (i.e., unmodified) program, they do

not require any software modifications. Similarly, our code-

and data-pointer load and store instructions simply replace

regular loads and stores in the vanilla program. As the EPI

metadata is accessed in parallel to the L1 data access, our spe-

cial instructions does not introduce any latency at the hardware

level that requires special treatment during the performance

evaluation.

As EPI requires padding bytes to encode the type of

data and function pointers as a mitigation against pointer

confusion attacks, we modify the compiler front-end to insert

two padding bytes per pointer to emulate the performance

overheads of the extra memory utilization. furthermore, we

insert a MOV instruction before pointer loads and stores to

encode the pointer types in a dummy register to emulate the

performance overheads of accessing the additional register

operand, RegX 1. Additionally, we emulate the performance

overheads of clearing the EPI metadata (i.e., the ClearMeta
instruction) by inserting dummy MOV instructions that write

a fixed value to memory every time (1) a heap object is

deallocated or (2) a stack frame, which contains function/data

pointer, is destroyed.

2) Results: The first two bars in Figure 7 show the runtime

overheads of EPI-Return and EPI-Full normalized to baseline

execution, respectively. EPI-Return provides return address in-

tegrity (i.e., backward-edge protection) without any per pointer

padding bytes or additional operations while adding 0.47%

performance overheads on average (with a maximum of 7%

in case of gcc_r). On the other hand, EPI-Full represents our

full pointer integrity protection, including return addresses,

function pointers, and data pointers. Two padding bytes are

inserted in this configuration as explained before. The results

show that EPI-Full introduces 0.88% performance overheads

on average with a maximum of 8%.

C. Comparison with ARM’s PAC

1) Methodology: In addition to our EPI configurations,

we evaluate a 32-bit variant of ARM’s pointer authentica-

tion technique. As ARM’s PAC is only available for 64-

bit processors in certain Apple devices, we use the same

emulation methodology adopted by prior work [27], [40] to

estimate the performance overheads of ARM’s PAC on a real

machine. Specifically, we modify the compiler to emit four

XOR instructions to account for the 4 cycle latency introduced

by the PAC instructions. Additionally, we insert two padding

1The extra register pressure, which may be introduced by RegX can be
mitigated by proposing dedicated EPI physical registers that the compiler can
use only for encoding pointer types.
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Fig. 7: Performance overheads of the SPEC CPU2017 workloads for EPI and ARM’s PAC normalized to baseline execution.

bytes per pointer to emulate the overheads of explicitly storing

a 16-bit message authentication code (MAC) per each 32-bit

pointer.

2) Results: The last two bars in Figure 7 show the runtime

overheads of PAC-Return and PAC-Full normalized to baseline

execution, respectively. PAC-Return emulates the overheads

of signing and authenticating return addresses on the stack

whereas PAC-Full emulates the overheads of applying ARM’s

PAC to its full-extent (i.e., protecting return addresses, function

pointers, and data pointers). Our experimental results show that

PAC-Return and PAC-Full introduce an average of 4% (with

a maximum of 11% ) and 8.5% (with a maximum of 21%)

runtime overheads compared to baseline execution, respec-

tively. The above results show that using cryptographic-based

solutions introduces non-negligible performance overheads (in

addition to a high energy budget), making them unsuitable for

embedded environments.

D. Hardware Overheads

EPI requires minor changes to the processor and data

caches. Qualitatively, the area overhead of EPI’s L1 metadata

is 6.25% as we add 2 bits per every four byte in the cache

line. As the metadata lookup happens in parallel to the L1

data and tag accesses, EPI should have no impact on the L1

access latency. We use CACTI [29] to validate this hypothesis.

By using 8-way associate caches, we measure the access time

difference between a 34KB cache (with a 68B cache line)

and a 32KB cache (with a 64B cache line). We compare with

the access latency of the larger (34KB) cache to provide a

fair comparison for two caches that provide the same amount

of data storage. For these measurements we assume normal

cache access mode without the late way select optimization

and thus this estimate is conservative in terms of access times.

The access time difference at 22nm is 0.00196ns (0.18%

additional time). At the level of detail modeled by CACTI

these differences are well within the modeling error range,

and as such conclude that both caches can be accessed in the

same amount of time. The dynamic read and write energies

increase by 0.1% and 0.26%, respectively.

For lower level caches (i.e., L2 and L3), EPI adds minimal

area overhead (2-bits per 64B cache lines or 0.39%). The

metadata encoding and decoding modules are used at the L1-

L2 interface to change the cache line layout during the typical

cache line spill and fill operations. As the spill operation is not

on the processor critical path, adding extra logic—for encoding

the metadata—to cache lines evictions will not impact the

execution time of the applications. On the other hand, the

metadata decoding module uses simple combinational logic

and thus can be folded completely within the pipeline stages

without impacting the cache line fill operation.

VIII. RELATED WORK

The literature has a large body of work on mitigating

memory safety-based attacks. We categorize prior work into

two categories: memory safety vulnerability detection tech-

niques, and exploitation prevention defenses. In this section,

we discuss a few representative samples of each category and

show how EPI is different.

A. Vulnerability Detection Techniques

State-of-the-art techniques in this category protect C and

C++ applications by enforcing memory safety rules for the

entire memory contents. For example, base and bounds tech-

niques ensure that a pointer can never access a memory region

beyond its legitimate bounds. The bounds information are

either stored in dedicated memory tables [14], [30], [35],

encoded in the pointer itself [41], [43], or implicitly derived

from the pointer value [39]. If an out-of-bounds pointer is

used to access memory, these techniques flag a violation.

As a result, such techniques offer higher security guarantees

than EPI as they can protect both: pointer and non-pointer data.

Unfortunately, memory safety techniques suffer from high

performance overheads even on 64-bit architectures, making

them unsuitable for embedded systems. In contrast, EPI’s

minimal overheads makes it an ideal candidate for resource-

constrained devices while protecting against control- and data-

flow hijacking attacks.

B. Exploitation Prevention Defenses

1) Backward-Edge Protection: Instead of enforcing the full

memory safety rules, exploitation prevention techniques aim at

enforcing relaxed security rules in order to prevent the attacker

from compromising the system while keeping the associated

overheads low. For example, shadow stacks are used to protect

backward-edge control-flow transfers by enforcing return ad-

dress integrity [10]. A copy of the return address is stored in an

attacker-inaccessible memory region upon executing a CALL
instruction and is validated against the original return address
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upon executing a RET instruction. Any discrepancy between

the two values flags a return address integrity violation.

Upcoming Intel processors implement shadow stacks as part

of Intel’s control-flow enforcement technology (CET) [21].

Intel’s CET maintains the shadow stacks in separate memory

pages that are not accessible by regular loads and stores. On

the other hand, Silhouette protects the shadow stack contents

by only accessing them via special store instructions on ARM

processors [44]. Alternatively, μRAI removes return addresses

altogether and replaces them with direct jump tables that

contain all potential call sites for a specific function [3]. The

correct jump address is then picked at runtime based on the

identifier of the caller function, which is itself maintained in a

hardware register that is never spilled to memory. EPI enforces

return address integrity without managing expensive shadow

stacks or introducing additional jump instructions.

2) Forward-Edge Protection: In order to protect the

forward-edge control-flow transfers of the application, code

pointer integrity (CPI) extends the shadow stack concept by

storing code pointers—in addition to data pointers that may

point to code pointers—in a secret memory area [25]. While

CPI can be implemented purely in software (i.e., with compiler

modifications), hardware-support is needed for ensuring the

isolation of the secret memory as simply randomizing its

location provides low entropy [15], especially on embedded

devices with a limited amount of memory. Other techniques

enforce control-flow integrity (CFI) [1], [9]. The key idea is

to statically compute a valid control flow graph (CFG) of the

application and ensure that the application follows that CFG

at runtime. CFI-based techniques typically suffer from the

over-approximation problem, in which an indirect jump might

have many targets in the pre-computed CFG, leaving enough

window for an attacker to compromise the victim application.

Cryptographic control-flow integrity (CCFI) techniques ap-

ply strong encryption to sign and authenticate the pointer upon

storing and loading it from memory [28], [31]. By applying

these techniques to return addresses and function pointers,

both backward- and forward-edge control-flow transfers are

protected. Prior work implemented compiler instrumentation

to show that one instance of CCFI, namely ARM’s PAC, can

be adopted for protecting data pointers to thwart data-oriented

programming attacks [27]. Additionally, pointer encryption

can be merged with continuous runtime randomization to

further increase the security entropy [16]. Unfortunately, the

frequent usage of cryptographic operations introduces non-

negligible runtime and power overheads, which are unaccept-

able in embedded environments. In contrast, EPI’s simple

hardware extensions and novel metadata encoding guarantee

full pointer integrity on embedded systems with negligible

runtime cost and minimal memory overheads.

Finally, EPI represents a novel design point in a series of

techniques that aim at enhancing the systems’ security by

reformatting the cache lines in memory (e.g., Califorms [32]

and ZeRØ [40]). The key insight in the aforementioned tech-

niques is that the application data typically include unused

bits that can be re-purposed for storing security metadata with

minimal hardware changes and compiler support. For example,

Califorms re-purposed the dead bytes as red-zones for catching

memory safety violations, whereas ZeRØ re-purposed the cur-

rently unused upper pointer bits on 64-bit architectures to store

pointer integrity metadata. EPI, on the other hand, enforces

pointer integrity rules on 32-bit architectures by leveraging

common software properties for harvesting different types

of code- and data-pointer bits. Thus, EPI can be efficiently

applied to embedded systems, which is currently dominated

by 32-bit processors [12], [4].

IX. CONCLUSION

With the rise of the Internet of Things and cyber-physical

systems, the usage of embedded devices has witnessed a rapid

increase. Unfortunately, memory-safety based attacks remain

a major concern for embedded systems as they are typically

programmed in memory unsafe languages, such as C and C++.

The limited processing and storage resources of embedded

devices hinders the efforts of securing them using server-

grade defenses. Thus, we propose, EPI, a hardware-based

technique that can protect embedded systems from a wide

variety of code reuse and data-oriented programming attacks,

at negligible runtime and hardware costs. Specifically, EPI

enforces pointer integrity using minor changes to the processor

logic, 6.25% area overheads in the L1 data cache, and two

bits per 64-bytes cache lines in the L2 caches and main

memory. While state-of-the-art commercial solutions for 64-

bit architectures rely on cryptographic operations (e.g., ARM’s

PAC) or disjoint storage (e.g., Intel’s CET shadow stacks) for

mitigating memory safety-based attacks, EPI achieves better

security guarantees on the more constrained 32-bit architec-

tures without dedicating a performance or energy budget to

cryptographic co-processors or disjoint stacks. Our evaluation

results show that EPI has 0.88% runtime overheads on the

SPEC CPU2017 benchmarks while having negligible latency

and energy overheads.
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