
Securing Resource-Constrained Processors with
Name Confusion

Mohamed Tarek Ibn Ziad
Columbia University

mtarek@cs.columbia.edu

Miguel A. Arroyo
Columbia University

miguel@cs.columbia.edu

Evgeny Manzhosov
Columbia University

evgeny@cs.columbia.edu

Vasileios P. Kemerlis
Brown University

vpk@cs.brown.edu

Simha Sethumadhavan
Columbia University

simha@cs.columbia.edu

Abstract—We introduce a novel concept, called Name Confu-
sion, and demonstrate how it can be employed to enhance the
security of resource-constrained processors. By building upon
Name Confusion, we derive Phantom Name System (PNS): a
security protocol that provides multiple names (addresses) to
program instructions. Unlike the conventional model of virtual
memory with a one-to-one mapping between instructions and
virtual memory addresses, PNS creates N mappings for the same
instruction, and randomly switches between them at runtime.
PNS achieves fast randomization, at the granularity of basic
blocks, which mitigates certain classes of code-reuse attacks.

If an attacker uses a memory safety-related vulnerability to
cause any of the instruction addresses to be different from the
one chosen during a fetch, the exploited program will crash. We
quantitatively evaluate how PNS mitigates real-world code-reuse
attacks by reducing the success probability of typical exploits
to approximately 10−12. We implement PNS and validate it by
running the SPEC CPU2017 benchmark suite on Gem5. Our
evaluation results show that PNS has negligible performance
overhead, compared to commercially-available hardware-based
protections. Due to its simple design, PNS can have other use
cases beyond mitigating code-reuse attacks.

I. INTRODUCTION

Virtual memory addresses serve as references, or names,
to objects (i.e., instructions, data) during computation. For
instance, every instruction in a program is uniquely identified
(at run time) with a virtual memory address: the value in the
Program Counter (PC). Typically, the virtual memory address
assigned to an instruction is kept constant and unique for the
life time of the program. In this work, we show that having
multiple names for an instruction—at any given time instant—
improves the security of the system with minimal hardware
support without performance degradation.

How can having multiple names improve security? Given
multiple names for an instruction, we define a security protocol
that specifies a random sequence of names to be used during
execution. If the attacker does not follow the security protocol
by supplying an incorrect name, the exploited program will
crash. In other words, if there are N addresses (names) per
instruction, and if the attacker has to reuse P instruction
sequences to complete an attack, the probability of detecting
the attack is 1− (1/N)P, without any false positives. For
example, for N = 256 and P = 5, then the probability of an

attack succeeding is 1 in 1 trillion. This kind of protection
makes this technique suitable to be used as a standalone
solution, or in tandem with other, heavier-weight hardening
mechanisms. We refer to such classes of architectures as Name
Confusion Architectures.

Name confusion is fundamentally different from other
hardening paradigms. For example, in the information-hiding
paradigm [30], the program addresses (or parts of them) are
kept a secret, but there is only one name per instruction. Sim-
ilarly, Instruction Set Randomization (ISR) techniques [34],
[46], [53] randomize the encoding of instructions in memory,
while also maintaining a unique instruction name per program
execution. In the metadata-based paradigm, such as Control-
Flow Integrity (CFI) [1], [12], the set of targets (names) that
can result from the execution of certain instructions (i.e., in-
direct branches) are computed statically and checked during
execution. In moving target paradigms, such as Shuffler [65]
and Morpheus [27], the names of instructions change over
time; however, at any given time, there is only one valid
name/address for an instruction.

In this work, we explore an application of a name confusion-
based architecture, and show how it is used to mitigate a
class of attacks known as code-reuse (aka return oriented
programming, ROP [51], [11], [15]), including their just-in-
time variants [54]. The instance we consider, called Phantom
Name System (PNS), provides up to N different names, for
any instruction, at any given time, where N is a configurable
parameter (it is set to 256 in our design). The security protocol
for PNS is simply a truly random selection among the different
names. Specifically, PNS works as follows: during instruction
fetch, the address used to fetch the instruction is randomly
chosen from one of the N possible names for the instruction,
and the instruction is retrieved from that address. From that
point on, any PC-relative addresses used by the program relies
on the name obtained during fetch. If the attacker’s strategy
causes any of the PC-relative addresses to be different from the
one used during the fetch, then an invalid instruction will be
executed, leading to unexpected effects, such as an alignment,
or instruction-decoding, exception. These unexpected effects
lead to program crashes that can work as signals of bad
actions taking place especially in the case of repeated crashes.
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Orthogonal mechanisms that turn these signals into a defensive
advantage exist [41].

A naive implementation of PNS would require each in-
struction to be stored in N locations so they will have N
names. Consequently, the capacity of all PC-indexed mi-
croarchitectural structures would be divided by N, heavily
impacting performance. Further, this requires changes to the
compiler, linker, loader, etc. In this work, we use a simple
technique to avoid these problems: we intentionally alias the
different instruction names/addresses so they point to the same
instruction, allowing us to serve the N instructions from one
copy. This idea is similar to how multiple virtual addresses
can point to the same physical addresses (used to implement
copy-on-write [9]) with two key differences: first, in PNS
the N names correspond to the same virtual address, not a
physical address; and second, the PNS addresses do not need
to be page-aligned as required for data synonyms—i.e., PNS
virtual address names can be arbitrarily offset. The first
difference ensures that PNS can be handled at the application
level without requiring significant changes to the operating
system (OS), which manages the virtual-to-physical address
mappings, while the second is key to providing security.

With the above optimizations, we show that ROP attack
protection is provided at almost no performance overhead and
without any binary changes. Additionally, we propose potential
attacks against PNS and detail their constraints in order to
guide future research. We further show, that our scheme can be
combined with previously known techniques [18], [60], [43],
[39] that encrypt instruction addresses stored in the heap or the
global data section(s), viz., function pointers, to provide robust
security against even larger class of attacks, such as JOP [6],
COP [29], and COOP [50]. The combined protection scheme
has 6% performance overhead, making it better than state-of-
the-art commodity security solutions, like the ARM pointer
authentication code (PAC) [48] that is available in the latest
iPhone devices, and has the additional benefit of not requiring
a 64-bit architecture. Supporting non-64-bit architectures is
important as they make up the majority of the computing
devices that exist nowadays: in 2019, 11.74 million servers
shipped worldwide [56] vs. 25.57 billion 32-bit (or smaller)
microcontrollers [57].

II. NAME CONFUSION ARCHITECTURE

A name confusion architecture assigns different addresses,
or names, to any contiguous group of instructions randomly at
runtime. In this section, we introduce PNS, a security protocol
derived from the principles of name confusion architectures.

PNS consists of N phantoms (domains). It requires every
instruction in the program to have N unique names. To assign
the names, we use a mapping function, namep = f (va, p),
which takes the instruction virtual address, va, and a phantom
index, p as inputs and returns the phantom name, namep. This
way any instruction is mapped by f to unique location in each
of the N phantoms. The function f does not have to be kept a
secret, as security is purely derived from the random selection
of p at fetch time. For mapping a phantom name to its original
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Fig. 1: Basic block mapping for PNS. BBLs are only dupli-
cated in the phantom space.

virtual address, we use the inverse function, va= f−1(namep).
To enable the inverse function we ensure that the phantom
name encodes the phantom index, p as part of the phantom
address.

A. PNS Framework

There are four main operations to realize PNS: Populate,
Randomize, Resolve, and Conceal.
Populate. PNS creates multiple phantoms of basic blocks, and
populates them in the phantom name space. The left-hand side
of Figure 1 shows a program with two Phantoms, such that
every basic block (BBL) has two different names (addresses)
in Phantom0 (aka the original domain) and Phantom1. PNS
separates the two Phantoms by a phantom offset, ∆, in the
phantom space. To add discrepancy between the Phantom
copies, we introduce a minor security shift, δ , so that they
are not perfectly overlapped after removing ∆. This is shown
by the shaded basic block in Figure 1 and is necessary for
security, as will be illustrated in Section IV-C. The inverse
mapping function f−1 maps all phantoms to a single name in
the virtual address space, which is then translated to a physical
address by the OS.
Randomize. We modify the hardware to randomize program
execution between the Phantoms at runtime. For example,
some basic blocks will be executed from Original (Phantom0)
while other basic blocks will be executed from any other Phan-
tom. Correctness is unaltered because all Phantoms provide the
same functionality by construction.
Resolve. Accessing different instruction names at runtime
incurs additional performance overheads as each name needs
to be translated to a virtual address and then a physical one
before usage. To mitigate this problem, PNS uses the inverse
mapping function f−1 to resolve the different Phantoms to
their archetype basic block. By doing so, the processor back-
end continues to operate as if there is only one copy of the
program in the phantom name space.
Conceal. Normal programs push return addresses to the ar-
chitectural stack to help return from non-leaf function calls.
The attacker may learn the domain of execution, the Phantom
index, by monitoring the stack contents at runtime using arbi-
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trary memory disclosure vulnerabilities [54]. Thus to preserve
name confusion, we need to conceal the execution domain of
the instructions.

B. PNS Construction

In this section, we discuss alternative design choices for the
different operations in the PNS framework.
Populate. Many approaches can be used to populate the
Phantoms. One approach is to use the most significant bits
(MSBs) to separate the program copies in the phantom space.
For example, a ∆ of 0x8000_0000_0000_0000 will create
two phantoms on 64-bit systems, where each phantom resides
in one half of the address space. This approach is acceptable
for 64-bit systems because VA allows for 64 bits, yet only 48
are used in practice, leaving the higher order bits available for
phantom addresses. However, this is costly for 32-bit systems
as it will reduce the effective range of addresses a program can
use by half. Instead, to store the phantom index we add n addi-
tional bits to the hardware program counter, while maintaining
the 32-bit virtual address space of the program. This allows
PNS to generate N = 2n phantoms. Specifically, f , sets the
additional n bits at control-flow transitions to randomize the
execution at runtime. For simplicity, we set the phantom offset
as ∆ = 1� 32 and the minor security shift of any phantom
to be a multiple of the phantom index (i.e., δ p = p×δ ). We
elaborate more on the PNS realization in Section III.
Randomize. PNS can randomize program addresses at any
level of granularity, ranging from individual instructions to
entire programs. In the rest of the paper, we use basic blocks as
our elements of interest. We do not evaluate finer granularities
here due to the lack of a strong security need. We define
the basic block as a single entry, single exit region of code.
Thus, any instruction that changes the PC register (referred
to by control-flow instructions, such as jmp, call, ret)
terminates a BBL and starts a new one.1

Conceal. We can prevent attackers from learning the execution
domain in a number of ways. One straightforward way is to
encrypt the return address with a secret key and only decrypt
it upon function return. Another key-less, and low overhead,
method that we implement is to split this information so
that the public part is what is common between the phantom
domains, and the private part that distinguishes the domains
is hidden away without architectural access.

We split the return addresses between the architectural stack
and a new hardware structure called the Secret Domain
Stack (SDS), which by construction is immutable to ex-
ternal writes. SDS achieves this goal by splitting the return
address (32+n) bits into two parts; the n-bits, which represent
the phantom index (p), and the lower 32 bits of the address,
which encodes the security shift (δ ). With each function call
instruction, the lower 32 bits of the return address are pushed
to the architectural (software) stack, whereas the phantom
index p is pushed onto the SDS. A ret instruction pops the

1Some compilers, such as LLVM, deviate from this definition and treat
call instructions as part of the BBL.
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Fig. 2: Processor pipeline with PNS hardware.

most recent p from the top of SDS and concatenates it with
the return address stored on the architectural stack in memory.
While under attack, the return address on the architectural
stack will be corrupted by the attacker. However, the attacker
cannot access SDS so they cannot reliably adjust the malicious
return address to correctly encode δ , leading to an incorrect
target address after PNS merges the malicious return address
with the phantom index p from SDS. Deployment issues with
the SDS such as sizing, overflows, multithreading, etc. are
described in Section VII.

III. HARDWARE DESIGN

Figure 2 summarizes our modifications to support PNS. The
changes are limited to structures that operate on PC.

A. Selector

With PNS, each PC is extended by (additional) n-bits,
dubbed the phantom index (p). So, a program counter from
phantom p will have the following format:

PCp[31+n : 0] = {p[n−1 : 0],PC[31 : 0]} (1)

The Selector (S) is responsible for adjusting the PC before
executing any new BBL so that the execution flow cannot be
predicted by the attacker. Specifically, the selector takes the
predicted target for a branch (PCnew) with control-flow signal s
as input: s is set to one if the Branch Predictor Unit (BPU) has
a predicted target for this instruction, or to zero otherwise. The
selector generates the nextPC as the output. If s equals one,
the selector generates an n-bit random phantom index pnext .

2

Based on pnext , the selector adjusts the nextPC according to
Equation 2.

nextPC[31+n : 0] ={pnext [n−1 : 0],
PCnew− (pnext − pnew)×δ}

(2)

Note that pnew is the phantom index of the predicted target
PCnew. For example, assuming n = 8-bits, we have 28 = 256
phantoms. If PCnew corresponds to the fifth phantom (i.e.,
pnew = 5) and the selector randomly chooses the eighth phan-
tom (i.e., pnext = 8), nextPC will equal {8,PCnew−3δ}. On
the other hand, if the selector randomly chooses the second
phantom (i.e., pnext = 2), nextPC will equal {2,PCnew+3δ}.
As the security shift δ is only used to break the overlapping

2This can be implemented using n metastable flip-flops [35].
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Fig. 3: Mapping the extended PC (i.e., the phantom name) to
the virtual address before indexing into the microarchitectural
structures.

between the names in different phantoms, it can be arbitrarily
set to a single byte on CISC architectures or multiples of the
instruction size on RISC architectures.
Performance Optimization #1. The aforementioned selector
adds one cycle latency to the nextPC calculations in the fetch
stage. To alleviate this, we move the selector to the commit
stage—placing the selector at the commit stage allows us to
mask latency overheads needed for target address adjustments
so that it does not affect performance.

At the commit stage, the target of the branch instruction is
known and sent back to the fetch stage to update (train)
the BPU buffers. At this point, the selector will adjust the
target address by using pnext , as explained above and update
the BPU buffers with nextPC. This ensures that the next
execution for this control-flow instruction will be random and
unpredicted. To bootstrap the first execution of a control-flow
instruction, we consider the two possible cases: correct and
incorrect prediction. If the first occurrence of the control-
flow instruction is correctly predicted to be PC + 4 (falling
through), then the selector will keep using the current domain
of execution (unknown to the attacker) for the next BBL. If the
first occurrence of the control-flow instruction is incorrectly
predicted, it would be detected later on in the commit stage
and the pipeline will be flushed. In this case, the selector will
adjust the resolved target address by using p (unknown to the
attacker) and update the BPU buffers with nextPC.

B. Branch Prediction Unit (BPU)

The branch prediction unit stores a record of previous target
addresses in the branch target buffer (BTB), and the recent
return addresses in the return address stack (RAS). For the cur-
rent PC value, the BPU checks if the corresponding entry ex-
ists in the BTB by indexing with the PC. If it exists, the found
target address becomes the nextPC. Otherwise, nextPC is
incremented to PC + 4 (or PC + Instruction size).
If the predicted target address turns out to be incorrect later in
the instruction pipeline, the processor re-fetches the instruction
with the correct target address (available usually at the execute
stage of the branch instruction) and nullifies the instructions
fetched with the predicted target address.
Performance Optimization #2. PNS assigns N different ad-
dresses for the same control-flow instruction. In this case, we
will have multiple entries in the prediction tables for the same
effective instruction; this reduces the capacity to 100

N %. To
handle this issue, we map the incoming phantom address to its

original name before indexing into the BPU tables, as shown
in Figure 3. We do so by modifying the hashing function of
the BPU tables to avoid adding any latency to the lookup
operation. This way we guarantee that all phantom addresses
(names) map to the same table entry. After indexing, we get
the desired values from the prediction tables. As explained
in Section III-A, the nextPC values stored in the BTB are
already chosen at random from the last successful commit
of this control-flow instruction (or any of its phantoms). The
branch direction prediction results (Taken vs. Not Taken) in
the branch direction buffer (BDB) remain the same.

C. Translation Look-aside Buffer (TLB)

Performance Optimization #3. Similar to the BPU buffers,
the fact that we have N variants of every BBL with different
virtual addresses may lead to multiple different virtual-to-
physical address entries in the TLB for the same translation,
reducing its capacity to 100

N %. To avoid potential perfor-
mance degradation, we map the incoming phantom address
to its original name before accessing the ITLB. For example,
the following two phantom addresses, {2, 0x00BB_FFF4}
and {0, 0x00BB_FFF8}, will point to the same virtual
address, 0x00BB_FFF8. This common virtual address has
a unique mapping to a physical address, 0x0011_DDFC,
that is stored in the ITLB. Thus, the translations related to
all Phantoms map to a single entry in the ITLB, while we
do not modify physical addresses so that the stored physical
address part of the translation remains unaffected.

D. Instruction Cache

Performance Optimization #4. Creating N variants of the
code sections for each program means that the L1-I$ capacity
would be effectively reduced to 100

N %. PNS maps the incoming
phantom address to its virtual address before accessing the
L1-I$ (in case of virtually-indexed caches) or performing the
tag comparison (in case of virtually-tagged caches).3 This
represents our simple inverse mapping function, f−1. The
latency of the adjustment operations (shifting and addition)
can be masked within the cache read operation. This incoming
address adjustment ensures that while executing a BBLPhantom
we fetch the correct instruction.

E. Execution Unit

Performance Optimization #5. If the target architecture
allows forwarding the PC register through the pipeline for
regular instructions, we make sure that the PC register is
always mapped to the virtual address before operating on
it. This mapping may introduce additional latency for the
execute stage as it should be done before/after it. To mask
such latencies, one solution is to always forward the two
versions, Phantomp and Original, of the PC register to the
desired execution units. Although such a solution completely
hides the adjustment latency, it may increase the execution
unit(s) area.

3No changes are needed for Physically-Indexed Physically-Tagged (PIPT)
caches.
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F. Secret Domain Stack

Performance Optimization #6. Unlike prior work, which
stores a complete version of the return addresses (e.g., 32-
bit on AARCH32) in what is called a shadow stack [14],
we only store n = 8 bits per return address. To minimize
silicon area within the processor and facilitate managing
the SDS, as discussed in Section II-B, we do not need to
store the full return address. This structure does not introduce
additional latency as it is accessed in parallel to the normal
architectural stack access. We evaluate the optimal size of SDS
in Section VI.

IV. CODE REUSE PROTECTION WITH PNS

Here, we summarize code-reuse attacks (CRAs) and de-
fenses, and discuss how PNS is used to mitigate such attacks.

A. Background

Attacks that chain together gadgets whose last instruction
is a ret are known as return oriented programming (ROP)
attacks [51], [11]. ROP attacks typically start by analyzing
the victim program to identify the code gadgets, which are
sequences of instructions that end with a return. Afterwards, a
memory corruption vulnerability is used to inject a sequence
of return addresses corresponding to a sequence of gadgets.
When the function returns, it returns to the location of the first
gadget. As that gadget terminates with a return, the control-
flow will transfer to the next gadget and so on. As ROP
executes legitimate instructions belonging to the program, it
is not prevented by WˆX [22]. Note that variants of ROP that
use indirect jmp or call instructions, instead of ret, to
chain the execution of small instruction sequences together
also exist, dubbed jump-oriented programming (JOP) [6] and
call-oriented programming (COP) [29], respectively.

B. Currently Deployed Mitigations

The standard mitigation technique against ROP attacks is
address space layout randomization (ASLR), which is cur-
rently a well-adopted defense, enabled on (pretty much) every
contemporary OS [63]. Essentially, ASLR forces the attacker
to first disclose the code layout (e.g., via a code pointer)
to determine the addresses of gadgets. Snow et al. [54] ob-
served that typical programs have multiple memory disclosure
vulnerabilities. They developed a just-in-time ROP (JIT-ROP)
compiler that explores the program’s memory, disassembling
any code it finds (in memory), as well as, searching for
API/system calls. Then, they construct a compatible code-
reuse payload on the fly. Note that, in principle, JIT-ROP
is not restricted to dynamically stitching together only ROP
payloads; it can also compile JOP, COP, or any other code-
reuse payload.

Recently, ARM introduced PAC in Armv8.3A, which
is implemented in the Apple’s iPhone XS SoC [48]. The
idea is based on a concept known as cryptographic control-
flow integrity (CCFI) [43]. For every code pointer, such
as return addresses and function pointers, CCFI stores a
cryptographically-secure authentication code in the pointer’s

unused most significant bits. Checking the authentication code
of a pointer before any indirect branches prevents control-
flow hijacking because the attacker cannot compute a valid
authentication code without access to keys. As we will show
in Section VI, to achieve low overheads with this scheme,
it is essential to have 64-bit architecture and to apply the
solution to only a subset of the pointers: full-application of
the idea on a 32-bit processor results in 91% overhead for
SPEC CPU2017. In contrast, we want to enable security for
16, 32- and 64-bit systems, as non-64-bit systems are widely
used in Internet-of-Things and Cyber Physical Systems. Thus,
there is a need for new low overhead deployable solutions.

C. PNS for CRA Protection

PNS mitigates ROP by ensuring that the addresses of the
ROP gadgets in the gadget chain change after the chain is
built. This will result in undefined behavior of the payload
(likely leading to a program crash). Consider the example in
Figure 1: PNS simultaneously populates multiple (apparent)
phantoms of the program code in the phantom name space; to
successfully thwart the ROP gadget chain, the location of the
ROP gadgets in all phantoms should be different [20].

Traditional in-place randomization techniques [47], [21]
can be used to generate Phantoms. However, using an ag-
gressive randomization approach will complicate the inverse
mapping function, f−1, which is responsible for recovering
the archetype basic block from the different Phantoms. This
will cause performance overheads with almost no additional
security (beyond changing the gadget addresses in the phantom
copies). PNS adopts a more efficient code layout randomiza-
tion technique by introducing a security shift, δ , between the
individual Phantoms, so that they are not perfectly overlapped
after removing the phantom offset, ∆. This simplifies f−1

computations (as shown in Figure 3 and maintains code
locality.

While the program is executing, PNS randomly de-
cides which copy of the program should be executed next.
Figure 4(a) shows the normal execution of a program,
where Inst 10 changes the control-flow of the program to
a different BBL (starting with Inst 71). After the called
BBL is executed, the control-flow is transmitted to the original
landing point (Inst 11 via a ret instruction). Figure 4(b)
shows a successful CRA via ROP, in which the attacker uses
a memory safety vulnerability to overwrite the return address
stored on the stack and divert the control flow to Inst 24
upon executing the ret instruction. Figure 4(c) shows the
diversified execution of a program with PNS. For simplicity,
we only show two phantoms and use a security shift, δ ,
sized to one instruction. Each control flow instruction can
arbitrary choose to change the execution domain or not. Here,
the Randomize operation decides to execute Inst 71 from
the Phantom domain. As the attacker cannot predict this
runtime decision in advance, they provide the wrong gadget
address on the stack (now shifted by δ ). Thus, they will end-
up executing a WRONG instruction, as shown in Figure 4(d).
This WRONG instruction may belong to a different BBL or
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Fig. 4: PNS effect on CRAs: (a) shows the regular program execution; (b) shows successful CRA via ROP; (c) shows regular
program execution with PNS; (d) shows ROP failure with PNS due to missing the desired gadget.

divert the execution to a new undesired BBL. In general, if
the attacker makes the wrong guess, they will execute one less
(or one more) instruction compared to the desired gadget. If δ

is smaller than the instruction size, the attacker will skip a
portion of the instruction resulting in an incorrect instruction
decoding.

V. SECURITY ANALYSIS

In this section, we define the threat model of PNS and
analyze its security guarantees against CRAs.

A. Threat Model

Adversarial Capabilities. We consider an adversary model
that is consistent with previous work on code-reuse attacks and
mitigations [43], [20], [27], [50]. We assume that the attacker
has access to the source code, or binary image, of the victim
program. Additionally, the victim program has one or more
memory safety-related vulnerabilities that allow the attacker
to read from, and write to, arbitrary memory addresses. The
attacker’s objective is to (ab)use memory corruption and dis-
closure bugs, mount a code-reuse attack, and achieve privilege
escalation.
Hardening Assumptions. We assume that the underlying OS
is trusted. If the OS is compromised and the attacker has
kernel privileges, the attacker can execute malicious code
without making ROP-style attacks; a simple mapping of the
data page as executable will suffice. We assume that ASLR
and WˆX protection are enabled—i.e., no code injection is
allowed (non-executable data), and all code sections are non-
writable (immutable code). Thus, attacks that modify pro-
gram code at runtime, such as rowhammer [36], are out of
scope. We also do not consider non-control data attacks [58],
such as Data-Oriented Programming [31] and Block-Oriented
Programming [33]. This class of attacks only tamper-with
memory load and store operations, without inducing any
unintended control flows in the program. This limitation also
applies to prior work as well [43], [20], [12], [27]. Lastly,
every other standard hardening feature (e.g., stack-smashing

protection [17], CFI [12]) is orthogonal to PNS; our proposed
scheme does not require nor preclude any such feature.

B. Security Discussion
Just-In-Time Return-Oriented Programming. Although
JIT-ROP [54] permits the attacker to construct a compatible
code-reuse payload on the fly, they cannot modify the gadget
chain after the control flow has been hijacked. As a result, the
attacker needs to guess the domain of execution of the entire
JIT-ROP gadget-chain in advance. So, PNS mitigates JIT-ROP
similarly to how it mitigates (static) ROP: i.e., by removing the
attacker’s ability to put together (either in advance or on the
fly) a valid code-reuse payload. The above security guarantees
are achieved by the regular PNS proposal (as explained in
Section IV) with no extensions or program recompilation,
making it suitable for legacy binaries and shared third party
libraries.
Blind Return-Oriented Programming. BROP attacks can
remotely find ROP gadgets, in network-facing applications,
without prior knowledge of the target binary [5]. The idea
is to find enough gadgets to invoke the write system call
through trial and error; then, the target binary can be copied
from memory to the network to find more gadgets. As a proof
of concept, the authors showed an example with 5-gadgets that
invokes write. With PNS, the success probability of invoking
write would be

( 1
256

)5
= 9.09×10−13. Note that completing

an end-to-end attack requires harvesting, and using, even more
gadgets, after dumping the target binary, which makes the
attack unfeasible on a PNS-hardened system. Additionally,
BROP requires services that restart after a crash, while failed
attempts will be noticeable to a system admin.
Pointer Corruption Attacks. Besides ROP, CRA variants also
extensively rely on pointer corruption (e.g, JOP/COOP [6],
[50]) to subvert a program’s intended control flow. There
also exist many software-based mitigations for JOP/COOP-
like attacks [40], [66], [8], [13]. In this paper, we use a
hardware-based technique for hardening PNS against them.
Since the attacker needs to overwrite legitimate pointers used
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by indirect branches to launch the attack, we encrypt the
contents of the pointer upon creation and only decrypt it upon
usage (at a call site). Consequently, attackers cannot correctly
overwrite it.

To achieve the above goal our Lightweight Pointer Encryp-
tion (PtrEncLite) extension adds two new instructions: ENCP
and DECP. The two instructions can either be emitted by the
compiler (if re-compiling the program is possible) or inserted
by a binary rewriter.

• Encrypt Pointer (ENCP RegX). The mnemonic ENCP
indicates an encryption instruction. RegX is the register
containing the pointer, e.g., virtual function pointers. The
register that holds the encryption key is hardware-based
and never appears in the program binary.

• Decrypt Pointer (DECP RegX). The mnemonic DECP
indicates a decryption instruction. RegX is the register
containing the pointer. The register that holds the decryp-
tion key is hardware-based and does not appear in the
program binary. As a result, the attacker cannot directly
leak the key’s value.

The attacker cannot simply use the above instructions as
signing gadgets to encrypt/decrypt arbitrary pointers as they
will have to hijack the control flow of the program first. Unlike
prior pointer encryption solutions, which use weak XOR-
based encryption [18], [60], PNS relies on strong cryptography
(The QARMA Block Cipher Family [2]). In contrast to full
CCFI solutions [43], [48], which use pointer authentication
to protect all code pointers including return addresses, our
approach only guards pointer usages (loads and stores). Return
addresses are handled by PNS randomization, reducing the
overall performance overheads, as will be shown in Section VI.
Side-channel Attacks. PNS takes multiple steps to be resilient
to side channel attacks. Firstly, PNS purposefully avoids
timing variances introduced due to hardware modifications, in
order to limit timing-based side channel attacks. Additionally,
the attacker cannot leak the random phantom index, p, which
are generated by the selector as it is unreadable from both
user and kernel mode—it exists within the processor only.
Similarly, the execution domain cannot be leaked to the
attacker through the architectural stack, as PNS keeps it within
the hardware in the SDS.

C. Limitations

Whole-function Reuse. Unlike ROP attacks, which (re)use
short instruction sequences, entire functions are invoked, in
this case, to manipulate the control-flow of the program. This
type of attack includes counterfeit object-oriented program-
ming (COOP) attacks, in which whole C++ functions are
invoked through code pointers in read-only memory, such as
vtables [50]. PNS relies on the PtrEncLite extension to
prevent the attacker from manipulating pointers (vptr) that
point to vtables—a necessary step for mounting a COOP
attack.
Ret2libc is another example for whole function reuse

attacks, in which the attacker tries to execute entire libc

functions [55], [45].4 With PNS, the attacker will have to guess
the address of the first basic block of the function in order to
lunch the attack, reducing the success probability to

( 1
256

)
=

0.0039.
Our analysis of real-world exploits shows that executing

a ret2libc attack incurs multiple steps in order for the
attacker to (1) prepare the function arguments based on the
calling convention, (2) jump to the desired function entry,
(3) silence any side-effects that occur due to executing the
whole function, and (4) reliably continue (or gracefully termi-
nate) the victim program without noticeable crashes. (1) and
(3) generally requires code-reuse (ROP) gadgets, as demon-
strated by the following publicly-available exploits: (a) ROP
+ ret2libc-based exploit against mcrypt [24], (b) ROP
+ ret2libc-based exploit against Nginx [26], (c) ROP +
ret2libc + shellcode-based exploit for Apache + PHP [23]
and (d) ROP + ret2libc-based exploit against Netperf [25].
Thus, if the ROP part of the exploit requires G gadgets,
the probability for successfully exploiting the program would
exponentially decrease to psuccess ≤

( 1
256

)G
. That is because

the attacker will have to guess the domain of execution (out
of 28 = 256 phantoms) of every gadget.
Repeated Observation Attacks. A potential JIT-like attack
against PNS itself is what we refer to by repeated observation
attack. An attacker, who can repeatedly read the architectural
stack (e.g., by using a memory safety vulnerability), may
record the phantomized return addresses and compare them
to plaintext return addresses (i.e., return addresses that are
obtained by running the same binary on a non-protected
system). In this case, the attacker can recover the security
shift, δ of a particular return address as the mapping function f
is linear and non-secret. The attacker can then apply the
observed security shift to their own malicious return address
before using another memory safety vulnerability to write it
to the architectural stack. While we acknowledge this hypo-
thetical attack, it does have its own limitations that affect its
practicality. For example, in addition to the above procedures,
the total length of the attacker’s gadget chain will be limited
to the call depth at the starting point of the attack (i.e., the
current depth of the SDS) as using more gadgets will cause
an exception due to removing elements from an empty SDS.

VI. EVALUATION

In this section, we first describe our experimental setup
for evaluating PNS and its PtrEncLite extension. Then, we
compare the performance of PNS against prior solutions.
Finally, we quantify the security guarantees of PNS and its
hardware overheads.

As we focus on resource-constrained devices, we use ARM
ISA to demonstrate PNS as it dominates the embedded and
mobile markets with its 32-bit ARMv5-8 instruction set archi-
tecture (ISA). However, the concept of PNS can be applied to
any other ISA (e.g., RISC-V).

4In general, any function, of any other shared library, or even the main
binary itself, can be used instead.
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Fig. 5: PNS performance evaluation for the SPEC CPU2017 C/C++ benchmarks.6

Core ARMv7a OoO core at 1.8 GHz
BPred: BiModeBP, 4096-entry BTB, 48-entry RAS
Fetch: 3 wide, 48-entry IQ
Issue: 8 wide, 60-entry ROB
Writeback: 8 wide, 16-entry LQ, 16-entry SQ

L1 I-cache 32KB, 2-way, 2 cycles, 64B blocks, LRU replacement,
2 MSHRs, no prefetch

L1 D-cache 32KB, 2-way, 2 cycles, 64B blocks, LRU replacement,
16-entry write buffer, 6 MSHRs, no prefetch

L2 cache 2MB, 16-way, 15 cycles, 64B blocks, LRU replacement,
8-entry write buffer, 16 MSHRs, stride prefetch

DRAM LPDDR3, 1600 MHz, 1GB, 15ns CAS latency and row
precharge, 42ns RAS latency

TABLE I: Simulation parameters.

A. Experimental Setup

We implement PNS in the out-of-order (OoO) CPU model
of Gem5 [4] for the ARM architecture. We execute ARM32
binaries from the SPEC CPU2017 [10] C/C++ benchmark
suite on the modified simulator in syscall emulation mode with
the ex5_big configuration (see Table I), which is based on
the ARM Cortex-A15 32-bit processor.

To compile the benchmarks, we build a complete toolchain
based on a modified Clang/LLVM v7.0.0 compiler including
musl [44], compiler-rt, libunwind, libcxxabi, and
libcxx. Using a full toolchain allows us to instrument all
binary code including shared libraries and remove them from
the trusted code base (TCB). In order to evaluate PNS, we use
our modified toolchain to generate the following variants.
Baseline. This is the case of an unmodified unprotected
machine. Specifically, we compile and run the SPEC CPU2017
benchmarks using an unmodified version of the toolchain and
Gem5 simulator. In all of our experiments, we use the total
number of cycles (numCycles) to complete the program, as re-
ported by Gem5, to report performance. The numCycles values
of the defenses are normalized to this baseline implementation
without defenses; thus, a normalized value greater than one
indicates higher performance overheads.
PNS. In this scenario, we run unmodified binaries on our
modified Gem5 implementation with all optimizations, as
described in Section III.
PNS-PtrEncLite. To evaluate the performance of PNS with
PtrEncLite, we first write an LLVM IR pass to instrument
the code (including shared libraries) and insert the relevant

instructions as described in CCFI [43]. Specifically, we emit
instructions whenever (1) a new object is created (to encrypt
the contents of the vptr), (2) a virtual function call is made
(to decrypt the vptr), or (3) any operation on code pointers
in C programs. Then, we appropriate the encodings for ARM’s
ldc and stc instructions respectively, which are themselves
unimplemented in Gem5, to behave as ENCP and DECP
instructions. We add a dedicated functional unit in Gem5
to handle these instruction’s latency in order to avoid any
contention on the regular functional units. We also assume
equal cycle counts of 8 for both instructions to emulate the
effect of the actual encryption/decryption similarly to prior
work [2].
PtrEncFull. In this approach, we instrument code pointer
load/store operations in addition to function entry/exit points to
protect return addresses for non-leaf functions. Conceptually,
this solution is similar to ARM PAC [39]. However, due
to the absence of PAC support in Gem5 (and for 32-bit
ARM architectures in general), we only perform behavioral
simulation for comparison purposes, without keeping track of
the actual pointer metadata.
Naive Name Confusion (NNC). For the sake of completeness
and fair comparison, we also implement a static version where
there are two copies of the code, i.e., a version without
the phantom aspect of the naming scheme. In this model,
we have two virtual addresses for each instruction but these
addresses are physically stored in memory, essentially halving
the capacity of the microarchitectural structures.5 We create
the two copies by introducing a shift of TRAP instruction
size in one of them. At a high-level our implementation
works as follows: (1) clone functions using an LLVM IR
pass, (2) LLVM backend pass to insert TRAPs for cloned
functions, (3) instruct the LLVM backend to globalize BBL
labels, (4) emit a diversifier BBL for every BBL, and (5)
rewrite branch instruction targets to point to the diversifier.

Of the 16 C/C++ benchmarks, 14 compile with all different
toolchain modifications. parest has compatibility issues
with musl due to exception handling usages, while povray
failed to run on Gem5. For NNC, gcc, xalancbmk, and
x264 present compilation and/or linking issues.

5This model is similar to the Isomeron solution proposed by Davi et al. [20],
with the modification that it is used at the BBL granularity as opposed to the
original work, which uses a dynamic binary rewriting framework with function
granularity.
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Fig. 6: PNS performance evaluation with additional one-cycle
access latency for fetch stage, L1-I$, and both.

B. Performance Evaluation

We run all benchmarks to completion with the test input
set on our augmented Gem5. We verified the correctness of
the outputs against the reference output. Figure 5 shows the
performance overhead of the different design approaches (all
normalized to Baseline). As expected, PNS has identical per-
formance to Baseline. Adding support for PtrEncLite increases
the performance overheads of PNS-PtrEncLite to 0%– 61%
(avg. 6%). The perlbench benchmark suffers from a rela-
tively high overhead due to its extensive use of function point-
ers and indirect branches. On the other hand, fully protecting
the binaries with a deterministic defense such as PtrEncFull
encounters a 91% overhead on average (geometric mean
of 62%). Our static implementation of software NNC intro-
duces an arithmetic average overhead of 31% (geometric mean
of 26%)6. In contrast to software Isomeron [20] which relies
on dynamic binary instrumentation (DBI), the overheads for
our implementation are primarily attributed to the indirection
every BBL branch must make to the diversifier.

As illustrated in Section III, the required PNS modifications
do not add additional cycle latency to the processor pipeline.
However, we performed an additional set of experiments with
a more conservative assumption of having one additional cycle
latency for all instructions in fetch stage, or one more cycle
for accessing L1 instruction cache, or both. We show results
compared to an unmodified baseline in Figure 6. We notice
an average performance overhead of 1% for stalling the fetch
stage. However, stalling the instruction cache for one cycle
(hit latency is originally two cycles) is more harmful to the
performance. Thus, the I$ optimizations are mandatory, as
described in Section III.

Finally, the call depths listed in Table II show that SPEC
programs do not exceed a depth of 244 (leela), indicating
that a 256-entry hardware Secret Domain Stack is suf-
ficient to handle the common execution cases.

C. Security Evaluation

ROP-Gadget Chain Evaluation. To evaluate PNS against
real-world ROP attacks we use Ropper [49], a tool that
can find gadgets and build ROP chains for a given binary.
A common ROP attack is to target the execve function

6Our NNC implementation does not instrument external libraries (only the
main application code) due to compilation issues. This leads to overheads that
are less than intuitively expected.

Bench. Call Bench. Call Bench. Call
Name Depth Name Depth Name Depth

perlbench 24 x264 15 lbm 10
gcc 28 deepsjeng 48 blender 23
mcf 28 leela 244 imagick 22
omnetpp 196 xz 16 nab 16
xalancbmk 77 namd 12 povray -

TABLE II: Maximum call depth for the SPEC CPU2017
C/C++ benchmarks.

Bench. PNS PNS Bench. PNS PNS Bench. PNS PNS
Name Chains Chains Name Chains Chains Name Chains Chains

perlbench 17 0 x264 23 0 lbm 23 0
gcc 23 0 deepsjeng 11 0 blender 23 0
mcf 11 0 leela 15 0 imagick 23 0
omnetpp 23 0 xz 11 0 nab 23 0
xalancbmk 15 0 namd 23 0 povray 23 0

TABLE III: ROP gadget-chain reduction for SPEC2017 C/C++
benchmarks. PNS and PNS correspond to the number of valid
ROP chains before and after PNS.

with /bin/sh as an input to launch a shell. As the chain-
creation functionality in Ropper is only available for x86 [49],
we analyze SPEC CPU2017 x86 binaries for this particular
exploit and report the number of available gadget chains
(PNS).

To emulate the effect of PNS, we modified the Ropper code
to extend each gadget length by one byte, decode the gadget,
and check if the new gadget is semantically equivalent to the
old one or not. This emulates the effect of an attacker targeting
a particular address, but instead executing the one before due
to the PNS security shift, δ . As shown in Table III, PNS foils
all the gadget-chains found by our modified Ropper. Extending
the Ropper chain-creation functionality to the ARM ISA is part
of our future work. Intuitively, the results would be even worse
for the attacker in ARM as the state-space is more constrained
due to instruction alignment requirements.
Control-flow Hijacking Evaluation. We further evaluate se-
curity by using RIPE [64], an open source intrusion prevention
benchmark suite. We port RIPE to ARM and run it on our
modified Gem5, with n= 8 bits, as described in Section VI. We
mainly focus on return-address manipulation as a target code
pointer and ret2libc/ROP as attack payloads. Shellcode
attacks are not considered as we expect WˆX.

Our ported RIPE benchmark contains 54 (relevant) attack
combinations. On an unprotected Gem5 system, 50 attacks
succeed and 4 attacks fail. After deploying PNS, all of the 54
attacks fail including the single-gadget ret2libc attacks.
That is mainly due to our high number of phantoms present
at runtime, 28 = 256.

That said, real-world exploits typically involve payloads
with several gadgets. According to Cheng et al. [16] the
shortest gadget chain consists of thirteen gadgets. Hence,
the probability for successful execution of a gadget chain
is psuccess ≤

( 1
256

)13
= 4.93×10−32. Snow et al. [54] success-

fully exploited a vulnerability with a ROP payload consisting
of only six gadgets, which would equate to a better, but still
low, success probability of psuccess =

( 1
256

)6
= 3.55×10−15.
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D. FPGA Prototyping

For the sake of completeness, we have developed an FPGA
prototype of PNS using the Bluespec hardware description
language (HDL). Specifically, we added PNS hardware mod-
ifications to the front-end of the 32-bit Flute RISC-V
processor, a 5-stage in-order pipelined processor typically used
for low-end applications that need MMUs [7]. We prototyped
the processor on the the Xilinx Zynq (ZCU106) Evaluation
Kit.

Our evaluation results shows that we can reliably run with a
clock period of 7.5 ns (maximum frequency of 133 MHz) for
both the baseline core and the modified one. The area increase
due to PNS is negligible (0.83% extra Flip-Flops with 2.02%
additional LUTs). We verified the correctness of our FPGA
implementation by running simple bare-metal applications.

VII. PNS SYSTEM LEVEL SUPPORT

For completeness, we outline design changes required to
deploy a PNS general-purpose system.
Sizing. Although SDS only stores eight bits per return address
in hardware, it still has a limited size that cannot be dynami-
cally increased as the architectural stack. This means programs
with deeply nested function calls may result in a SDS overflow.
To handle this issue, we add two new hardware exception sig-
nals: hardware-stack-overflow and hardware-stack-underflow.
The former is raised when the SDS overflows. In this case, the
OS (or another trusted entity), encrypts and copies the contents
of the SDS to the kernel memory. This kernel memory location
will be a stack of stacks and every time a stack is full it will
be appended to the previous full stack. The second exception
will be raised when the SDS is empty to decrypt and page-in
the last saved full-stack from kernel memory.
Stack Unwinding. Since addresses are split across the archi-
tectural (software) stack and the SDS it is vital to keep them
in sync for correct operation. Earlier, we described how nor-
mal LIFO call/rets are handled. In some cases, however,
the stack can be reset arbitrarily by setjmp/longjmp or
C++ exception handling. To ensure the stack cannot be dis-
closed/manipulated maliciously during non-LIFO operations,
we change the runtime to encrypt the jmp_buffer before
storing it to memory. Additionally, we also store the current
index of the SDS. When a longjmp is executed, we decrypt
the contents of the jmp_buffer and use the decrypted SDS
index to re-synchronize it with the architectural stack. The
same approach can be applied to the C++ exception handling
mechanism by instrumenting the appropriate APIs.
Context Switches. The SDS of the current process is stored in
the Process Control Block before a context switch. In terms of
cost, the typical size of the SDS is 256-bytes (256 entries, each
has 8-bits). Moving this number of bytes between the SDS
and memory during context switch requires just a few load
and store instructions, which consume a few cycles. This
overhead is negligible with respect to the overhead of the rest
of the context switch (which happens infrequently; every tens
of milliseconds).

Multithreading. To support multithreading, the SDS has to
be extended with a multithreading context identifier, which
increases the size of stack linearly with number of thread
contexts that can be supported per hardware core.
Dynamic Linking. Dynamically-linked shared libraries are
essential to modern software as they reduce program size
and improve locality. Although most embedded system soft-
ware (the primary target in this work) in MCUs is typically
statically-linked, we note that PNS is compatible with shared
libraries as it can be fully realized in hardware. Thus, it does
not differentiate between BBLs related to the main program
and the ones corresponding to shared libraries. On the other
hand, dynamic linking has been a challenge for many CFI
solutions, as control flow graph edges that span modules may
be unavailable statically. CCFI [43] suffers from the same
limitation as the dynamically shared library code needs to be
instrumented before execution; otherwise, the respective pages
will be vulnerable to code pointer manipulation attacks.

VIII. RELATED WORK

As explained in Section I, the idea of having multiple names
for the same instruction is fundamentally different compared
to other security paradigms. Further, in Section VI we showed
that PNS has lower overheads compared to the state-of-
the-art commercial solution, ARM PAC. In this section, we
explore prior CRA mitigations and discuss their benefits and
differences (summarized in Table IV).
N-Variant eXecution Systems. The general idea of N-variant
execution (NVX) systems is to run N different copies/variants
of the same code, alongside each other, while checking their
runtime behavior [3], [19]. If the variants produce a different
response to a single common input (due to an internal failure
or external attack payload), the checker detects such diver-
gences in execution and raises an alert. Since 2006, many
NVX systems have been proposed to achieve reliability and
security goals [61], [62], [37], [38], [28], [42]. While NVX
systems can offer additional benefits over PNS, such as precise
failure detection, they suffer from considerable performance
(at least 100%) and memory overheads, and therefore are not
suitable for resource constrained systems.
Live Randomization. Recent work has pioneered the use of
hardware moving target defenses to protect against CRAs [27].
Gallagher et al. proposed Morpheus, an architecture that
(1) randomizes code and data pointers using relocation and
strong encryption and (2) periodically repeats the first step
using a different displacement and key. The main conceptual
difference between Morpheus and PNS is that in PNS, at
any given instant there are multiple names (addresses) for
an instruction while there is only one name (address) for
an instruction in Morpheus. This distinction is also true of
PNS and software moving target systems [65] used to protect
against CRAs.

PNS can also provide an illusion of a faster churn rate. The
churn time can be thought of as the time an attacker has to
deploy a countermeasure. PNS, forces the attacker to have a
counter strategy every basic block which normally completes
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Proposal Hardware Software Randomization Main Sources of Overheads Cost of Portability to 32-bit systems Energy
Support Modifications Interval Overheads

NVX [3], [42] No Recompile No Running N program copies simultaneously Increase overheads by a factor of N High
Isomeron [20] No DBI 1 ms (Func. time) Maintaining two program copies (high TLB and I$ misses) None High

Shuffler [65] No DBI 50 ms Offloading computations to another core/thread Double overheads on single-core systems High
Morpheus [27] Yes Recompile 50 ms Adding 2-bit tags per 64-bit words (pointer size) Double memory tags overhead Low

Intel CET [32] Yes Recompile No Maintaining full shadow stack None Low

CCFI [43] No Recompile No Using complete pointer authentication Extra Load/Store per pointer Moderate
ARM PAC [48] Yes Recompile No Using complete pointer authentication (negligible on h/w) Extra Load/Store per pointer Moderate

ZeRØ [59] Yes Recompile No Encoding pointer metadata (negligible on h/w) Extra Load/Store per pointer Low

PNS Yes None 10 ns (BBL time) None None Low
PNS-PtrEncLite Yes Recompile No Using Lightweight Pointer Encryption None Low

TABLE IV: Comparison with prior work.

execution in the order of nanoseconds. While Morpheus’
churn rate (milliseconds for PNS level of performance) is
sufficient to protect against remote network adversaries, the
(apparently) faster churn provided by PNS is meaningful
in offering protection against local attackers especially with
side channel capabilities, and thus is again complementary to
Morpheus. The BBL-by-BBL apparent churn offered by PNS
also comes at much lower energy cost compared to Morpheus
as it does not require memory scanning to identify pointers.
Finally from a deployment perspective, a unique benefit of
PNS is that it works for non-64-bit systems while Morpheus
and software moving target systems, rely on the availability
of a 64-bit address space for security.

Hardware-based CRA Mitigations. Intel architectures offer a
hardware-based CFI technology named Control-flow Enforce-
ment Technology (CET) that is to be available in future x86
processors [32], [52]. CET requires program recompilation in
order to insert a new ENDBRANCH instruction at the beginning
of each BBL that can be invoked via an indirect branch.
At runtime, the destination of all indirect branch instructions
should be an ENDBRANCH, otherwise an attack is assumed.
CET provides only coarse-grained protection where any of
the possible indirect targets are allowed at every indirect
control-flow transfer. Thus, an attacker can still reuse the
whole BBL and store the address of the ENDBRANCH of the
desired BBL in the stack as before. The above attack will fail
against PNS with high probability as every instruction (and
basic block) can have up to N different addresses forcing the
attacker to gamble on which one to use. Additionally, CET
protects call-return instructions using a full shadow stack
(i.e., 32 or 64 bits per entry), that resides in virtual memory.
Unlike a shadow stack which compares return address on
every ret instruction, our SDS only concatenates the domain
bits to the return address with no wasteful comparisons.
Furthermore, PNS uses a smaller hardware structure (the SDS)
that consumes 8 bits per entry and that cannot be leaked by
an attacker who can illegally tamper main memory.

On the other hand, ARM introduced the Pointer Authentica-
tion Code (PAC) feature in Armv8.3A as a hardware primitive
to mitigate CRAs [48]. Hans et al. showed how to harden
ARM PAC against reply attacks by using unique tweaks (along
with the authentication key) for different pointer types [39]. As
discussed in Section IV-B, ARM PAC relies on the currently

unused upper bits of the 64-bit pointers. Mapping the same
technique to non 64-bit systems results in high performance
overheads, as evaluated in Section VI.

While our PNS-PtrEncLite extension relies on cryptographic
algorithms similar to ARM PAC [48], PNS-PtrEncLite has
two main advantages. First, PNS-PtrEncLite uses encryption
instead of authentication to avoid storing additional metadata
(authentication code) per pointer on 32-bit systems. Second,
ARM PAC is applied for all code pointers including return
addresses and function pointers. This is represented by PtrEnc-
Full in our evaluation. On the other hand, PNS-PtrEncLite is
only applied for function pointers (and C++ virtual pointers)
as the return addresses are protect by PNS’s fine-grained ran-
domization. The reduction in the cryptographically-protected
locations highly reduced the performance overheads, as shown
in Section VI.

Recently, Ziad et al. proposed ZeRØ, a hardware prim-
itive for resilient operation under pointer manipulation at-
tacks [59]. ZeRØ uses unique instructions for accessing dif-
ferent categories of program pointers (i.e., return addresses,
code pointers, and data pointers). At runtime, the hardware
uses the unique instructions to tag program pointers and
then prevents non-pointer memory accesses from manipulating
them. ZeRØ’s tags are currently stored in the upper bits
of the 64-bit pointers using a special encoding to minimize
the memory overheads. While ZeRØ provides strong security
guarantees by protecting both code and data pointers, PNS
neither requires 64-bit systems nor introduces any changes
to the memory subsystem. Similar to PNS, ZeRØ does not
require program recompilation for hardening return addresses.
Compiler support is needed for code and data pointer integrity.

IX. CONCLUSION

In this paper, we proposed PNS, a name confusion de-
sign that allows for multiple addresses/names for individual
instructions. We explored one potential application for PNS,
which is mitigating code-reuse attacks. The key idea is to
force the attacker to carry out the difficult task of guessing
which randomly-chosen name will be used, by the hardware,
to carry out a successful attack. PNS requires minor mod-
ifications to the processor front-end: specifically, it requires
changes to indexing functions, 8 metastable flip-flops, and 256
bytes of state. Experimental results showed that PNS incurs
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negligible performance impact compared to commercially-
available hardware-based solutions. Our security evaluation
showed that PNS mitigates both real-world ROP exploits and
synthetic benchmarks. We further illustrated how the security
guarantees of PNS can be boosted when integrated with other
solutions by evaluating the PNS-PtrEncLite extension. We
have also discussed potential attacks against PNS and detailed
their limitations.

The increased proliferation of resource-constrained systems
that cannot deal with the performance overheads of server-
grade defenses calls for more efficient security solutions.
As PNS does not depend on “free” bits or the vastness of the
64-bit address space to work, it is a reasonable security op-
tion for 16- and 32-bit microcontrollers and microprocessors.
Finally, PNS’s simple hardware modifications, native perfor-
mance, and support for legacy binaries hold more promise for
other use cases beyond mitigating code-reuse attacks.

REFERENCES
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