
Finite Element Emulation-based Solver for
Electromagnetic Computations

M. Tarek Ibn Ziad∗, Mohamed Hossam∗, Mohamad A. Masoud∗, Mohamed Nagy∗, Hesham A. Adel∗,
Yousra Alkabani∗, M. Watheq El-Kharashi∗, Khaled Salah†, and Mohamed AbdelSalam†

Email: {mohamed.tarek,mohamed.hossam}@eng.asu.edu.eg
{mohamad.masoud93,eng.mohamednagyelewa,eng.hesham.eldeeb}@gmail.com

{yousra.alkabani,watheq.elkharashi}@eng.asu.edu.eg
{khaled mohamed,mohamed abdelsalam}@mentor.com

∗Computer and Systems Engineering Department, Ain Shams University, Cairo 11517, Egypt
†Mentor Graphics Egypt, Cairo 11361, Egypt

Abstract—Electromagnetic (EM) computations are the
cornerstone in the design process of several real-world
applications, such as radar systems, satellites, and cell-phones.
Unfortunately, these computations are mainly based on
numerical techniques that require solving millions of linear
equations simultaneously. Software-based solvers do not scale
well as the number of equations-to-solve increases. FPGA solver
implementations were used to speed up the process. However,
using emulation technology is more appealing as emulators
overcome the FPGA memory and area constraints. In this paper,
we present a scalable design to accelerate the finite element
solver of an EM simulator on a hardware emulation platform.
Experimental results show that our optimized solver achieves
101.05x speed-up over the same pure software implementation on
MATLAB and 35.29x over the best iterative software solver from
ALGLIB C++ package in case of solving 2,002,000 equations.

Keywords- electromagnetic computations, emulation, finite
element method, Jacobi iterative method

I. INTRODUCTION

Electromagnetic (EM) computations aim to model the in-
teraction of EM fields with physical objects and the surround-
ing environment. They are considered very useful tools for
the design and modeling of antenna, radar, satellite, and other
communication systems. They use computationally efficient
numerical approximations to Maxwell’s equations based on
the given boundary conditions and a set of initial conditions.
One of these numerical approximations techniques is the finite
element method (FEM) [1], which is widely used in modeling
EM problems with complex geometries. It has received con-
siderable attention from scientists and researchers around the
world after the latest technological advancements and com-
puter revolution in the twentieth century [2]. Unfortunately, it
results in large sparse systems of linear equations that consume
great part of the solution run-time in solving them. Thus, there
is a need to accelerate the solver part of the FEM.

As software-based solvers are often too slow, the usage of
ASICs arose as a suitable alternative. However, this approach
requires a long development period and is inflexible and costly.
FPGAs overcame this problem as they provide sufficient speed
and logic density to implement highly complex systems with
low cost and high reconfigurability. However, area constraints
still represent a major problem that faces FPGA-based designs.
So, we aim to use a physical hardware emulation platform
instead [3].

Generally, hardware emulation platforms allow large SoC
designs to be modeled in hardware. They could be described
as huge arrays of connected FPGAs, which allow the design
to run at clock rates of several KHz with advanced debug
visibility and run-time control [4]. So, they are often used in
system-level verification. In this work, we extend the emulator
usage by introducing it as an efficient hardware accelerator for
FEM solvers involved in EM computations.

The key contributions of this paper include: (1) propos-
ing an efficient emulation technique, based on a physical
hardware emulation platform, to accelerate the solver part of
an EM simulator using FEM, (2) introducing an optimized
hardware-based architecture, based on Jacobi iterative method,
to solve the sparse system of linear equations arising in FEM
formulations, (3) using a time-domain problem of solving
Maxwell’s equations in metamaterials using FEM as a case
study to show the efficiency of our solution, (4) showing the
logic utilization of implementing the proposed architecture and
comparing the obtained timing results with three software-
based implementations.

The rest of this paper is organized as follows. Sec-
tion II summarizes some of prior work related to FEM hard-
ware acceleration and solving systems of linear equations on
hardware-based devices. Section III provides a brief overview
of FEM and the Jacobi iterative method. Section IV details
the hardware-based implementation of our Jacobi iterative
solver. Experimental environment is described in Section V.
The obtained results and comparisons between software and
hardware solutions are introduced in Section VI. Section VII
concludes the work.

II. RELATED WORK

There are many work that targeted accelerating the numer-
ical techniques used in the EM computations. For example,
Durbano and Ortiz accelerated the finite difference time-
domain (FDTD) method [5] by using custom-designed accel-
erator board, which supports up to 16 GB of DDR SDRAM,
36 MB of DDR SRAM, with Xilinx Virtex-II 8000 FPGA.
El-Kurdi et al. developed a deeply pipelined FPGA design for
efficient sparse matrix-vector multiplication (SMVM) [6] as
this operation represents the kernel of many iterative numerical
methods to solve sparse linear systems, resulting from using
the FEM. We overcame this point by implementing a simpler
algorithm based on the Jacobi iterative method and splitting
the main SMVM into small independent ones.

978-1-4799-8391-9/15/$31.00 ©2015 IEEE 1434

Mohamed Tarek
Author’s Preprint: For Educational Use Only�



On the other hand, many authors focused solely on imple-
menting efficient solutions for solving systems of linear equa-
tions on FPGAs. For iterative solvers, Morris and Prasanna
implemented a double precision Conjugate Gradient (CG) and
a Jacobi iterative solver for sparse matrices on FPGA [7]. For
the Jacobi iterative solver, the whole algorithm was imple-
mented on the FPGA. For the CG solver, only the matrix-
vector multiplication was implemented on the FPGA while the
remainder of the algorithm was executed in software from the
SPARSKIT library [8], which has routines for sparse matrix
computation. Due to the limited on-chip memory, the matrix
size is limited to 2,048 for the Jacobi iterative solver and 4,096
for the CG solver. Moreover, Morris and Abed implemented a
sparse matrix Jacobi iterative solver that targeted a contempo-
rary high-performance heterogeneous computer (HPHC) [9].
Instead of utilizing hardware description language (HDL)
for their FPGA-based kernel designs, they used a high-level
language (HLL)-based design. However, their solver could
handle matrices up to order n = 8K only.

For direct solvers, Zhuo and Prasanna implemented a direct
solver using LU factorization method [10]. They utilized a
circular linear array of processing elements (PEs) in double
precision to perform the calculations on a Xilinx Virtex-
II Pro XC2VP100. Johnson et al. presented the design and
prototype implementation of sparse direct LU decomposition
on FPGA [11]. They compared their performance to a general
purpose processor based platform. In [12], Greisen et al. in-
vestigated several solver techniques, discussed hardware trade-
offs, and introduced FPGA architectures of Cholesky direct
solver and BiCGSTAB iterative solver. Although the authors
outperformed software implementations, their iterative solver
design was memory-bandwidth limited because vectors of the
full problem size need to be accessed in each iteration. We
handled this issue in our design as we divided the main matrix
into independent clusters, as shown in Section IV.

Finally, we conclude that as the computation complexity
order of direct solvers is higher than iterative solvers for the
same matrix, the performance of direct solvers was limited
by computation and not by memory bandwidth. So, iterative
solvers were considered more suitable for solving sparse
matrices like the ones resulting from the FEM. Thus, the main
focus of the current work is to develop a scalable hardware
architecture that can solve large systems of linear equations
of any size, up to the massive capacity of the emulator
resources as previous work failed to deal with very large sparse
systems containing millions of equations that result from FEM
discretization.

III. BACKGROUND

In this section, we present a very brief overview of the
FEM. Then, we describe the mathematical background of the
Jacobi iterative method.

A. Finite Element Method (FEM)

FEM is a numerical method, that is used to solve boundary-
value problems defined by a partial differential equation (PDE)
and a set of boundary conditions [2]. The first step of us-
ing FEM to solve a PDE is discretizing the computational
domain into finite elements. Then, the PDE is rewritten in
a weak formulation. After that, proper finite element spaces

are chosen and the finite element scheme is formed from the
weak formulation. The next step is calculating those element
matrices on each element and assembling the element matrices
to form a global linear system. Then, the boundary conditions
are applied, the sparse linear system is solved, and finally,
post-processing of the numerical solution is done.

B. Jacobi Iterative Method

For a sparse linear system represented by Ax = b, where
A is the coefficients matrix, x is the unknowns vector, and
b is the right-hand-side (RHS) vector, the ith equation can
be represented as

∑n
j=1 ai,jxj = bi, where i and j are row

and column numbers, respectively. In order to solve for xi

iteratively, the previous equation can be rearranged to have
a relation between xi

(t+1) and xi
(t), where t is the iteration

number.

xi
(t+1) =

bi −
∑n

j=1
j 6=i

ai,jxj
(t)

ai,i
(1)

Briefly, the Jacobi method starts with an initial guess of
vector x and solves each unknown x using (1). The obtained
xi

(t+1) is then used as the current solution and the process
iterates many times until convergence, which is guaranteed
with the Jacobi method if the coefficient matrix is symmetric,
positive definite, and diagonally dominant. These conditions
are satisfied in case of FEM [13]. So, from (1), each xi can be
solved independently and thus the Jacobi method has inherent
parallelism.

IV. HARDWARE IMPLEMENTATION

In this section, we introduce the hardware implementation
of our optimized architecture, which models the Jacobi itera-
tive method.

Fig. 1 represents the block diagram of our proposed Jacobi
hardware design. It consists of a control unit, main memory,
diagonal memory, RHS memory, non-diagonal memory, and
main ALU unit which consists of the result convergence check
module and multiple ALUs. The design splits the coefficient
matrix into clusters, where each cluster contains a number of
rows. Each cluster is independent of the others, so all of them
can be operated on in parallel.

The main memory contains the required solutions. Initially,
it is loaded with an assumption of the result, which is cho-
sen to be zero. Each memory row contains a whole cluster

Fig. 1. Block diagram of the proposed Jacobi hardware design.

1435



of data, not just one row of the matrix. This compensates
memory constraints and allows memories to serve more ALUs
simultaneously. During each iteration, the main memory loads
one row of data to the ALUs, then stores the results of the
calculation at the end of iteration. This stored data is then
operated on during the next iteration until convergence is
reached. Diagonal memory, RHS memory, and non-diagonal
memory are all read-only memories. The first two memories
contain the diagonal ai,i and RHS bi, and the non-diagonal
elements of each independent cluster of the coefficient matrix,
respectively. Since the coefficient is sparse, only the non-zero
elements of each row are stored in these memories. Memory
depth of all memories equals the matrix dimension divided by
the number of rows in each cluster.

Each ALU performs the arithmetic operations shown in (1),
except that the final division operation is turned into a mul-
tiplication operation with the inverse of the diagonal element
in order to minimize the critical path due to the considerable
difference in latency and required hardware resources between
multiplication and division floating-point modules. So, each
ALU contains three 32-bit floating-point multipliers, one 32-bit
floating-point adder, and one 32-bit floating-point subtractor.
The result convergence check module is used to determine the
termination criterion. It stops working on data based on a pre-
defined value representing the error tolerance. Whenever the
current error between any two consecutive iterations is below
that pre-defined tolerance value, this module generates a halt
signal indicating end of operations.

The control unit is responsible for synchronizing all mem-
ories with each ALU, controlling the result convergence check
module, and deciding when each iteration has been finished.
It contains counters to indicate which row to read from the
different memories and which row to write into the main
memory at the end of iteration. It also has a counter that
represents the current iteration.

This design has many advantages. It is a fully pipelined
design. During every clock cycle new data is fetched from
memories and is operated on by one of the ALU operations
that represents the pipeline stages. Furthermore, it could be
configured with a pre-defined tolerance to control the accuracy
of the final solution. Moreover, it is a very flexible multi-core
system that can be configured for a broad range of matrix sizes
with a broad range of ALU cores for increased productivity.
Thus, it makes full use of the huge capacity of emulator logic
resources and memory.

V. EXPERIMENTAL SETUP

Our architecture was modeled using Verilog. Xilinx ISE
Design suite 14.6 was used to check its functional correct-
ness. The design was then compiled and run on a physical
hardware emulation platform with 8 advanced verification
boards (AVBs) [3]. That platform provides a total capacity
of 128 crystal chips with 4GB of memory. Crystal chips
are equivalent to FPGAs, but use different technology. Each
crystal chip has around 500K of logic gates. That clearly
solves the area and memory constraints of FPGAs as even the
largest available FPGA cannot provide this massive capacity.
Nowadays, emulation technology allows designs to use up to
64 AVBs, which means an equivalent logic resources of 1024
connected FPGAs.

The main procedures in the emulation design process are
analyzing Verilog input files and performing syntax checking.
Then, register transfer level compilation (RTLC) generates
structural Verilog netlist of emulator primitives; LUT, flip-
flop, latch, and memory. After that, the synthesizer performs
partitioning and ASIC netlists for each crystal chip, which
represents the programmable logic for emulation. The chip
compiler step does placement and routing. Finally, the global
scheduler performs final timing analysis and generates timing
information for resources access, memories, emulator events,
and clocks [4].

VI. EXPERIMENTAL RESULTS

This section evaluates the performance of our Jacobi de-
sign, described in Section IV, in terms of resource utilization
and speed-up over three software solutions. All test cases used
are generated from the pre-processing part of the EM solver
discussed below.

A. Electromagnetic Solver

To demonstrate the efficiency of our proposed solution,
we implement a two-dimensional (2D) edge element code for
solving Maxwell’s equations for metamaterials using FEM.
The code consists of three parts; pre-processing, solver, and
post-processing. Pre-processing and post-processing calcula-
tions were performed on MATLAB [14]. Code inputs are the
x and y co-ordinates of the lower and higher edges in the 2D
element, number of meshes to define the needed resolution,
and material properties. The outputs are the numerical Electric
and Magnetic field graphs. Increasing the number of meshes
increases the total number of equations-to-solve, and as a
result, better accuracy is obtained. The solver part, which
consumes most of time, is accelerated using the hardware
emulation platform described in Section V. More information
about the programming process including mesh generation,
FEM calculations, and post-processing of numerical solutions
is introduced in [15].

B. Resource Utilization

Table I shows the logic utilization, memory capacity, and
operating frequency of our Jacobi design using single floating-
point precision for different test cases. Number of ALUs
represents the number of equations per clusters in the design,
which is determined by the number of meshes in the x and
y directions of the 2D element. The number of iterations
needed until reaching the termination condition is also given.
As illustrated before, termination happens based on a pre-
defined tolerance, which is set to 10−6 in our test cases.

TABLE I. HARDWARE RESOURCE UTILIZATION FOR OUR SINGLE
FLOATING-POINT JACOBI DESIGN USING DIFFERENT TEST CASES.

Our Jacobi design test cases

Number of equations 420 11,100 44,700 179,400 2,002,000
Number of ALUs 14 74 149 299 1,000
Frequency (KHz) 1666.7 1754.4 1587.3 1754.4 1333.3
Number of iterations 21 22 22 22 22

Number of flip-flops 18,752 85,490 168,896 335,702 1,115,220
Number of LUTs 106,401 535,566 1,071,976 2,144,796 7,158,357
Memory bytes 8,704 376,832 1,521,664 6,115,328 40,943,616
Number of FPGAs 2 8 15 29 98

1436



The obtained results show that the used frequency is almost
stable and equals the maximum possible frequency for the used
emulator. This guarantees linear run-time, as it will depend
only on the number of clock cycles. The main source that
increases the hardware resources consumption is the number
of parallel ALUs.

C. Speed-up

The speed-up of our Jacobi design is evaluated against
three different software-based solvers on a 2.00 GHz Core i7-
2630QM CPU. The first solver is a standard Jacobi iterative
implementation on MATLAB [16]. The second is mldivide (\),
the MATLAB special operator for solving systems of linear
equations that employs the best suitable solver after examining
the coefficient matrix. Finally, the third solver is an iterative
solver from ALGLIB [17], an open-source numerical analysis
library that supports several programming languages, including
C++. It was chosen as a software benchmark due to its ease
of implementation and ability to be compiled across multiple
platforms.

Table II gives the obtained results from comparing
our emulator-based implementation against software solvers.
Speed-ups were computed by dividing the software run-time by
our proposed Jacobi design run-time. Fig. 2 gives a graphical
representation of the speed-up results in Table II to highlight
our performance improvement. As the speed-up increases
with the number of equations-to-solve, more speed-up can be
obtained at larger numbers of equations.

TABLE II. TIMING COMPARISONS BETWEEN OUR SINGLE
FLOATING-POINT JACOBI DESIGN AND VARIOUS SOFTWARE SOLVERS.

Equations Our Jacobi MATLAB Jacobi MATLAB mldivide C++ ALGLIB

Time Time Speed-up Time Speed-up Time Speed-up
(Sec) (Sec) (Sec) (Sec)

0,000,420 0.0003 0.0009 03.00 0.0002 00.66 0.0004 01.33
0,001,200 0.0007 0.0018 02.57 0.0005 00.71 0.0010 01.43
0,004,900 0.0011 0.0054 04.90 0.0017 01.55 0.0020 01.82
0,011,100 0.0017 0.0113 06.65 0.0041 02.41 0.0030 01.76
0,044,700 0.0038 0.0440 11.58 0.0253 06.66 0.0120 03.16
0,179,400 0.0062 0.2157 34.79 0.1608 25.94 0.0570 09.19
2,002,000 0.0240 2.4252 101.05 1.9138 79.74 0.8470 35.29

Fig. 2. Speed-up of our single floating-point Jacobi design over various
software solvers.

VII. CONCLUSION

Our optimized single floating-point Jacobi design has
achieved a remarkable improvement in matrix calculations run-
time over the software-based solvers for a simple EM problem
of solving Maxwell’s equations in a 2D metamaterial edge
element using FEM. The execution time of our design on the
physical emulator with total capacity of 8 AVBs and 4GB
of memory achieved a speed-up of 101.05x over a standard
Jacobi MATLAB implementation executed on a 2.00 GHz
Core i7-2630QM CPU for solving 2,002,000 equations. The
same hardware configuration achieved a speed-up of 79.74x
over the MATLAB special operator for solving linear equations
and a speed-up of 35.29x over ALGLIB, a numerical analysis
and data processing library that uses iterative solvers. Higher
speed-up could be obtained upon using more emulator area as
the design is fully parallelized.

REFERENCES

[1] G. Strang and G. Fix. An Analysis of the Finite Element Method:
Englewood Cliffs. Prentice Hall, New Jersey, USA, 1973.

[2] A. C. Polycarpou. Introduction to the Finite Element Method in
Electromagnetics. Morgan & Claypool, 2006.

[3] Mentor Graphics Corporation. Veloce Emulation Platform.
http://www.mentor.com/products/fv/emulation-systems/.

[4] Mentor Graphics Corporation. Veloce User’s Guide Software Version
2.1, 2012.

[5] J. P. Durbano and F. E. Ortiz. FPGA-based Acceleration of the 3D
Finite-difference Time-domain Method. In 12th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, FCCM,
pages 156–163, April 2004.

[6] Y. El-Kurdi, D. Giannacopoulos, and W. J. Gross. Hardware Accel-
eration for Finite-Element Electromagnetics: Efficient Sparse Matrix
Floating-Point Computations With FPGAs. IEEE Transactions on
Magnetics, 43(4):1525–1528, April 2007.

[7] G. R. Morris and V. K. Prasanna. Sparse Matrix Computations on
Reconfigurable Hardware. Computer, 40(3), March, 2007.

[8] Y. Saad. SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations
- Version 2, 1994.

[9] G. R. Morris and K. H. Abed. Mapping a Jacobi Iterative Solver onto
a High-Performance Heterogeneous Computer. IEEE Transactions on
Parallel and Distributed Systems, 24(1):85–91, January 2013.

[10] L. Zhuo and V. K. Prasanna. High-Performance and Parameterized
Matrix Factorization on FPGAs. In International Conference on Field
Programmable Logic and Applications, FPL ’06, Madrid, August 2006.

[11] J. Johnson, T. Chagnon, P. Vachranukunkiet, P. Nagvajara, and
C. Nwankpa. Sparse LU Decomposition Using FPGA. In Proc. Int.
Workshop State-of-the-Art Scientific Parallel Comput. (PARA), 2008.

[12] P. Greisen, M. Runo, P. Guillet, S. Heinzle, A Smolic, H. Kaeslin,
and M. Gross. Evaluation and FPGA Implementation of Sparse Linear
Solvers for Video Processing Applications. IEEE Transactions on
Circuits and Systems for Video Technology, 23(8):1402–1407, August
2013.

[13] M. N. O. Sadiku. Numerical Techniques in Electromagnetics. Taylor
& Francis, Second edition, 2000.

[14] MATLAB. version 7.12.0.635 (R2011a). The MathWorks Inc., Natick,
Massachusetts, 2011.

[15] J. Li and Y. Huang. Time-Domain Finite Element Methods for Maxwell’s
Equations in Metamaterials. Springer Series in Computational Mathe-
matics, 2013.

[16] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, Philadelphia, PA, 1994.

[17] S. Bochkanov. ALGLIB: A Cross-platform Numerical Analysis and
Data Processing Library. http://www.alglib.net.

1437


