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Abstract—Electronic voting (e-voting) systems have been in
use since the 1960s. E-voting offers many advantages compared
to other voting techniques. However, it also introduces many
security challenges. As it may contain malicious back-doors that
can affect system dependability. In this work, we present one of
e-voting challenges where the hardware Trojan tampers results
totally.

We implement an e-voting machine as a case study on Xilinx
FPGA board. Then, we inject a hardware Trojan to tamper voting
results. The attack depends mainly on the unused bits. We pro-
vide a protection technique and show its overhead. Furthermore,
we introduce other attacks and protection scenarios. We compare
between our selected protection techniques and others techniques.
Finally, we illustrate that our chosen protection technique incurs
negligible power overhead, whereas the average area and delay
overheads are 4% and 10%, respectively.

Index Terms—E-voting, hardware spyware, hardware Trojan,
security.

I. INTRODUCTION

Democracy depends on the election process to satisfy pop-

ulation needs. Elections give the advantages for the populace

to choose their representatives and express their preferences.

No one can deny that the integrity of the election process

is very important to the integrity of democracy itself. Also,

the election system must be sufficiently robust, transparent,

and comprehensible that voters and candidates must accept

the results of an election. On the other hand, a lot of election

examples had been manipulated in order to influence their

outcomes. The design of a good voting system must satisfy a

number of some competing criteria.

E-voting is an election methodology in which the votes

are checked or collected electronically. A computer system

whose main element is a software component that maps the

voting procedure electronically is called an e-voting system. E-

voting systems offer many advantages for both the voters and

election administrators as described in [1]. Moreover, voters

seem to prefer electronic voting systems due to their privacy

and accessibility.

E-voting security is one of the most important topics nowa-

days. The Caltech MIT Voting Technology Project [2] in their

report state: “security is as important as reliability in guaran-

teeing the integrity of the voting process and public confidence

in the system. People do not use things in which they have no

confidence.” In [3], Yumeng et al. reviewed the researches on

the electronic voting schemes toward trustworthy voting sys-

tem and discussed the issues about several important properties

and challenges. Kumar and Begum discussed an introduction

about Electronic Voting Machine (EVM) and its variation [4].

In [5], the authors presented a minimal implementation of

a cryptographically secure electronic voting system, built with

a low-cost Xilinx FPGA board. This system, called VoteBox

Nano, follows the same basic design principles as VoteBox

while restricting some network features so as to fit on a

cheap FPGA. It is a very simple design running without any

operating system. It only consists of an FPGA connected to

an interface screen (VGA) and a keypad to allow the voter to

choose his/her desired candidate and confirm his choice.

In this paper, we introduce a full e-voting system imple-

mentation. Then, we show a simple scenario for an untrusted

machine and how it would be used to affect the election results.

Furthermore, we introduce protection against the proposed

Trojan. The rest of the paper is organized as follows. Section II

presents the related work. Section III shows the original design

specifications. In Section IV, a scenario for a possible attack is

introduced. Methods of protection are presented in Section V.

Other attacks and countermeasures are introduced in Sec-

tion VI. Section VII discusses the experimental environment

details. Section VIII contains the final results. Section IX

concludes our work.

II. RELATED WORK

There is no doubt that designing an election system needs

special care. An electronic election should be more secure,

transparent and trustworthy, as common people have less faith

in computers due to hacking threats and system crashes. Kohno

el al. discussed some of e-voting system problems such as

incorrect use of cryptography, unauthorized privilege esca-

lation, vulnerabilities to network threats, and poor software

development processes [6].

In [7], Fauzia et al. describe an implementation of an

efficient and secured electronic voting system based on the

Fujioka- Okamoto-Ohta protocol. Their implementation con-

tains the automation of an online voting system providing

some features, which were not available in the previous im-

plementations. Another design of an electronic voting machine

was introduced by Alam et al. in [8]. Their main aim of the

project was not to design power-efficient perfect device, but

was to design a mother device that can be adopted to any

recent technologies. Their machine also used the voter’s ID to

identify a valid voter and restrict multiple vote casting.
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Oksuzoglu et al. in [5] built a simplified VoteBox-like

system, which they call VoteBox Nano, using a Xilinx Spartan-

3E 500 Starter Kit. Their implementation combined modules,

such as Xilinx’s MicroBlaze soft-CPU core, with custom

logic for fast cryptography and for generating truly random

numbers. The application of VoteBox Nano, itself, is written

in C and runs on the MicroBlaze processor.

Wollinger et al. [9] provide a summary of security issues

while doing cryptography on an FPGA, with a focus on

how to maintain cryptographic secrets within the FPGA in

the face of attacks like attempting to read out the FPGA’s

bitstream “readback attack”, its internal SRAM, and so on. If

the bitstream of the FPGA, itself, is a trade secret, then the

ability to read it out could be sufficient to reverse-engineer the

logic within it.

Xilinx and other FPGA manufacturers offer features aimed

at preventing these reverse-engineering attacks [10]. For pre-

venting “IP core theft,” FPGA chips allow the bitstreams that

define the FPGA configuration to be encrypted. When the

FPGA boots, it can access an internal key store and use this to

decrypt the bitstream. An invader reading the ciphertext would

learn nothing and no queries are available to allow an invader

to read the decryption key from the FPGA. Alternatively,

Alkabani and Koushanfar [11] showed how to leverage chip-

to-chip variations in their behavior to achieve active hardware
metering. The FPGA configuration is made unique to a given

chip; moving it to another chip would not yield a functioning

implementation.

These techniques are aimed at protecting the secrecy of

the FPGAs bitstream. For the VoteBox Nano, secrecy is not

the issue. They need to detect tampering, which is a different

problem. Drimer and Kuhn [12] described a protocol to enable

an FPGA to reject configuration updates that are undesirable.

Dutt and Li [13] proposed adding “parity groups” to the

logic blocks within the FPGAs, so changes to any one logic

block will cause parity failures without corresponding changes

elsewhere, which the randomization makes difficult to defeat.

In case of obtaining machine components from third parties,

design is exposed to further challenges that need to be faced.

That include hardware spywares and hidden back-doors. Reg-

ular testing methods are not suitable to detect the faults caused

by hardware Trojans because they are not expected to be acti-

vated during testing. This is because Trojan circuits are usually

designed to be activated using a rare trigger. Recently, different

methods have been specifically designed with Trojan detection

in mind. We can classify these hardware Trojan detection

methodologies into: (1) side-channel dependent methodologies

and (2) architectural methodologies [14].

Side channel dependent methodologies try to localize the

impact of the Trojan on the circuit without activating it. Jin and

Makris use path delay analysis to detect Trojans [15]. Wang

et. al use localized current analysis for Trojan detection. They

measure power from multiple ports to detect the impact of the

Trojan on power [16]. The impact of a Trojan on the power

supply transient current of an IC is studied using statistical

methods by Rad et al. [17]. Banga et al. introduced a test

vector generation method that can be used to differentiate

between the side-channel waveforms of a Trojan infected and

a non-infected circuit [18], [19].

Architectural methodologies try to increase the chances of

the activation of a hardware Trojan during testing. Banga and

Hsiao use voltage inversion at alternating levels of the circuit

to increase the power consumption of an infected circuit [20].

Salmani et. al increase the Trojan activity by inserting dummy

flip flops in the design [21]. They choose the locations of the

inserted flip flops based on a transition probability threshold.

The main problem of all these methods is that they require

the presence of a non-infected (golden) chip. Thus, they are

practical if the design does not contain third party IPs [22].

However, if the system designer inserts third party IPs in

his design, these methods become less practical. Zhang and

Tehranipoor try to provide an alternative to using a golden

design by using formal verification, code coverage analysis,

and ATPG methods to achieve high confidence in whether the

circuit is Trojan-inserted or Trojan-free [23]. Baumgarten et al.

introduced using reconfigurable logic barriers within a design

to prevent the activation and operation of Hardware Trojans

added during the manufacturing stage of an IC [24]. Waksman

and Sethumadhavan introduced a method that attempts to

prevent Trojan triggering [25]. Beaumont et al. ran replica of a

program on multiple processing elements to achieve protection

from hardware Trojans [26].

Al-Anwar et al. in [27] developed a novel method for the

protection against a hardware Spyware that depends basically

on decreasing the probability of seeking sensitive information.

They introduced multiplexing between multiple variants im-

plementation. Then they use cyclic redundancy check (CRC)

to detect the infected IP.

III. E-VOTING SYSTEM OVERVIEW

The implemented e-voting system is similar to VoteBox

Nano design [5]. Fig. 1 shows an overview of the full e-voting

system. Voter logins to any of the e-voting boxes which are

distributed over the country. Then, e-voting box encrypts the

vote using El-Gamal encryption algorithm. Encrypted votes

are sent to the main secured server via a network connecting

the whole country holding the elections. The main server

will receive the encrypted votes, decrypt them and collect

the results together. The decryption methodology follows the

same concept of El-Gamal Algorithm used in encrypting votes.

Finally, voting results can be ready on even the same day

without human interference.

Fig. 2 shows an abstraction of the implemented e-voting

box. The true random number generator (TRNG) core block

is responsible for generating keys, which are required for

votes encrypting. TRNG depends mainly on post-processing of

digitized noise. Every encrypted value in the system requires

a distinct random number. We should highlight that choosing

a TRNG algorithm is critical as numbers prediction may

allow the attacker to decrypt the ciphertexts. Clearly, a voter’s

privacy relies on the unpredictability of the random numbers.

We should also note that El-Gamal algorithm is an asymmetric
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key encryption algorithm for public-key cryptography, which

is based on the Diffie-Hellman key exchange [28]. Input

keypad and VGA screen cores represent the input and output

modules, respectively. The machine screen will display the

names of the candidates with their numbers arranged from 1 to

n. The voter will use the keypad buttons to select his candidate

and confirm his choice. He/She can also control some other

features, such as determining the screen brightness.

Fig. 1. The e-voting process.

Fig. 2. Abstract view of the implemented e-voting machine.

Xilinx MicroBlaze is the main block in the design. It is

a virtual microprocessor that is built by combining blocks

of code called cores inside a Xilinx FPGA. The MicroBlaze

processor is a 32-bit Harvard RISC architecture optimized

for implementation on Xilinx FPGAs with separate 32 bit

instruction and data buses running at full speed. That supports

executing programs and access data from both on-chip and

external memory at the same time. MicroBlaze is connected

to other cores using the Fast Simplex Link (FSL). FSL is a

uni-directional point-to-point communication channel bus that

perform fast communication between any two design elements

on the FPGA when implementing an interface to the FSL bus.

IV. SCENARIO FOR A POSSIBLE ATTACK

An untrusted FPGA-based voting machine may be used to

tamper the legal votes of users. Attacking vendor may inject

cores connected to the MicroBlaze via fast simplex link (FSL).

These cores are responsible for dealing with inputs from the

keypad and interfacing with the output screen. He may add a

hidden core that replaces the user’s vote with another one, if it

receives a special external trigger. In our case study, we assume

that the voting system contains a secret core connected to the

MicroBlaze core and takes its input from the FSL coming from

the input keypad core, as shown in Fig. 3.
In our experimental attack scenario, the thief could use the

input keypad as follows. He/She will press the push button that

control screen brightness with a secret sequence depending

on the position of the wanted candidate. That secret sequence

would be translated into data sent to the MicroBlaze via the

FSL in the unused bits beside the regular data. As a result of

triggering the MicroBlaze back-door, all the coming sent votes

will support the wanted candidate whatever the voter chooses.

Repeating that several times on several machines will affect

the whole election results, significantly.

Fig. 3. Block diagram of a secret core for an untrusted e-voting machine.

V. PROTECTION AGAINST PROPOSED ATTACK

There are several ways to protect our system from untrusted

third party IPs. We suggest to use the Simple Blockage (SB)
method introduced in [29] with a simple improvement. The

authors suggest obfuscating the output of the suspected IP

before sending out data, then undo that obfuscation at the

input of the receiver in order to protect data from leaking and

avoid injected triggering. They introduced using either RC4

or simple obfuscating function. We choose to protect using

the simple function which is mainly based on data Xoring.

Obfuscation will take place between keypad and MicroBlaze.

Processing will be done, as shown in Fig. 5 and Fig. 6.
In our case, the data transmitted via the FSL is 32-bit. We

enhance the SB method by resetting any unused bits to zero be-

fore receiving them at MicroBlaze. We will allow the trusted-

known used bits only to go. Obfuscating the unused bits cost

is wasted and will be omitted. Furthermore, an attacker may

depend on the unused bits to discover our simple obfuscating

function. We did not use the partial reconfiguration feature to

change obfuscating function periodically as proposed in [29],

as the partial reconfiguration feature doubles FPGA and e-

voting box cost. Section VIII shows function overheads in
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details. Our technique would prevent the trigger that would

turn the secret core on.

Fig. 4. E-voting protection against proposed attack.

Fig. 5. Simple confusion function depending on data xoring.

Fig. 6. Inverse of confusion function to retrieve data.

VI. OTHER ATTACKS AND COUNTERMEASURES

In this section, we discuss some other possible attacks and

propose countermeasures.

• Sequence code attack. In Section IV, we assumed that

the secret core trigger will be sent to the MicroBlaze core in

the unused bits in one data packet. That is called single-shot
cheat code as described in [25].

Another possible attack may be based on sending a large

cheat code in multiple pieces. That is called sequence cheat
code. This type of cheat code arrives in small pieces over

multiple cycles or multiple inputs. Just like the single-shot

codes, these cheat codes can be supplied through the FSL

data bus connecting the input keypad core and the MicroB-

laze. In [25], Waksman and Sethumadhavan proposed two

different ways to solve cheat code issues. One for the single-

shot cheat code using data obfuscation (encrypt input values

to untrusted units to prevent receiving special codes, thus

preventing recognizing database triggers). Another way is to

use sequence-breaking against sequence cheat code. The se-

quence breaking method suggests pseudo-randomly scramble

the order of events entering untrusted units to prevent them

from recognizing sequences of events that can serve as data-

based triggers.

However, our proposed method in Section V is capable of

protecting the design from that external trigger either if it is

single-shot cheat code or even sequence cheat code. So, we do

not have a need for extra hardware for sequence cheat code,

and that is an advantage over Waksman methodology.

• Used bits attack. Now, let’s introduce another attack

where we suggest that keypad core is infected and no extra

hidden cores. So, the trigger will be sent in the used bits. In

all previous attacks, we assumed that the special trigger is

sent in the unused bits of the data packet. The main risk is

that the MicroBlaze sees that confidential data (user’s vote)

in unencrypted form and thus can manipulate it. Additionally,

this core-and many other on-chip functional cores-are often

procured as third party IP. In this case, using our technique to

secure data transfer would not prevent triggering the hidden

back-door because the trigger will be obfuscated at the output

of the untrusted IP (input keypad core), transfer via the FSL

and then return back to its original form at the input of the

MicroBlaze core.

We should mention that Waksman [25] presented a solution

for this attack by using data obfuscation for computational

units. They suggested using the third party computational

IP without giving it the advantage of recognizing the data.

They depend mainly on homomorphic encryption schemes, as

shown in ( 1). But, the main problem of this solution will be

the overhead cost of all e-voting boxes.

Gamal(xy) = Gamal(x)Gamal(y) (1)

If we want to encrypt a data value x, where x represents

the vote in our case, using El-Gamal Algorithm on a special

purpose encryption core, we can perform the following steps.

1) Use hardware to generate a random value y and calculate

its encryption result Gamal(y)
2) Compute the product z = xy using a regular, trusted

ALU, where x is the value to be encrypted (user’s vote).

3) Ship z off to the encryption core. That core returns

Gamal(z) = Gamal(xy) = Gamal(x)Gamal(y),
which will be sent to the main server.

4) At the server side, add the received encrypted votes

Gamal(z).
5) Decrypt the summation result and use a trusted ALU on

the server side to divide the result by y.

We have used the untrusted cryptographic unit in the e-

voting box to encrypt the vote x without allowing this un-

trusted unit to know the actual value of x. This will protect

from the triggering code injected in the real data.

VII. EXPERIMENTAL SETUP

During this case study, the total experiment was done by

using Spartan 3e starter kit (XC3S500E-Device family, FG
320 package and -4 speed grade). The interface between

cores is done by using Xilinx Platform Studio. The total ap-

plication is developed by designing required logic in Verilog.
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Fig. 7 illustrates the experiment setup. Our FPGA board is

connected to a VGA screen via a VGA cable. The input keypad

is connected to the FPGA using a PS2 interface.

Fig. 7. Experimental setup to protect e-voting.

VIII. EXPERIMENTAL RESULTS

In this section, we study the effect of using the protec-

tion technique described in Section V on device resources,

power and time delays. Each time we make a comparison

between results coming from the protected design and the

original untrusted design. We use Xilinx Spartan 3e starter

kit(XC3S500E-Device family, FG 320 package and -4 speed

grade) to implement our designs. Furthermore, we analyze the

overhead of resetting only the used bits in the first experiment.

Then, we examine using the simple obfuscation function.

a) In case of resetting unused bits
Table I presents device utilization summary for the untrusted

system and the protected one. The first column represents

logic utilization. The second and third columns represent the

original system data and the protected one, respectively. The

last column shows the protection overhead.

TABLE I
DEVICE UTILIZATION OVERHEAD WITH AND WITHOUT RESETTING

UNUSED BITS.

Without resetting With resetting Overhead

unused bits unused bits (%)

No. of used slice
Flip Flops

3,401 3,428 0.79

No. of used 4 input
LUTs

4,266 4,396 3.05

Total no. of used 4
input LUTs

4,391 4,521 2.96

Also, power is calculated using Xilinx Xpower Analyzer

with 50 MHz clock. Table II shows the power analysis for

the untrusted system and the protected one. It was found that

dynamic power decreased after inserting the protection method

while the leakage power remains constant.

TABLE II
POWER CONSUMPTION (W) WITH AND WITHOUT RESETTING UNUSED

BITS.

Without resetting With resetting

unused bits unused bits

Logic 0.009 0.009

Signals 0.007 0.008

BRAMs 0.006 0.006

MULTs 0.001 0.001

DCMs 0.041 0.043

IOs 0.340 0.340

Leakage 0.094 0.094

Total 0.498 0.501

From the timing prospective, we use the Post-PAR Static

timing report generated from Xilinx Platform Studio v14.6 to

get the design statistics. For the untrusted design, the minimum

period is 16.757 ns (max frequency: 59.677 MHz). Moreover,

the maximum net delay is 2.059 ns. However, the minimum

period is 15.846 ns (max frequency: 63.107 MHz) for the

protected design. The maximum net delay is 2.265 ns. So,

delay overhead is 0.206 ns.

b) In case of using enhanced SB method
We are using the enhanced simple obfuscation method

which is described in Section V. Table III presents device

utilization summary for the untrusted system and the protected

one. The first column represents logic utilization. The second

and third columns represent the original system data and

the protected one, respectively. The last column shows the

protection overhead.

TABLE III
DEVICE UTILIZATION OVERHEAD WITH AND WITHOUT ENHANCED SB.

Without With Overhead

enhanced SB enhanced SB (%)

No. of used slice
Flip Flops

3,401 3,436 1.03

No. of used 4 input
LUTs

4,266 4,437 4.00

Total no. of used 4
input LUTs

4,391 4,562 3.89

The power is calculated using Xilinx Xpower Analyzer with

50 MHz clock. Table IV shows the power analysis for the

untrusted system and the protected one. It was found that total

power decreased after inserting the protection method while

the leakage power remains constant.

From the timing prospective, the untrusted design has a min-

imum period 16.757 ns (max frequency: 59.677 MHz), and

a maximum net delay 2.059 ns. However, For the protected
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TABLE IV
POWER CONSUMPTION (W) WITH AND WITHOUT ENHANCED SB.

Without With

enhanced SB enhanced SB

Logic 0.009 0.009

Signals 0.007 0.007

BRAMs 0.006 0.006

MULTs 0.001 0.001

DCMs 0.041 0.043

IOs 0.340 0.340

Leakage 0.094 0.094

Total 0.498 0.500

design, the minimum period is 19.737 ns (max frequency:

50.666 MHz). And, The maximum net delay is 2.264 ns. So,

the delay overhead is 0.205 ns.

IX. CONCLUSION

In this work, we highlighted e-voting challenges. We imple-

mented an e-voting machine as a case study on Xilinx FPGA

board. Then, we injected a hardware Trojan in our e-voting

machine to tamper voting results. The attack depends mainly

on using the unused bits of the data sent from the input keypad

core and the MicroBlaze main core. Moreover, we provided

a protection technique to solve this issue and showed that it

adds low delay and power overheads. The power overhead

was negligible while the delay overhead did not exceed 10%.

Device resources overheads did not exceed 4%.
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