
Why is memory safety still a concern?

PhD Candidacy Exam

Mohamed (Tarek Ibn Ziad) Hassan
mtarek@cs.columbia.edu

Department of Computer Science
Columbia University

April 9th, 2020
10:30 A.M.

Location: TBD

1 Candidate Research Area Statement

Languages like C and C++ are the gold standard for implementing a wide range of software systems such as
safety critical firmware, operating system kernels, and network protocol stacks for performance and flexibility
reasons. As those languages do not guarantee the validity of memory accesses (i.e., enforce memory safety),
seemingly benign program bugs can lead to silent memory corruption, difficult-to-diagnose crashes, and most
importantly; security exploitation. Attackers can compromise the security of the whole computing ecosystem
by exploiting a memory safety error with a suitably crafted input. Since the spread of Morris worm in 1988
and despite massive advances in memory safety error mitigations, memory safety errors have risen to be the
most exploited vulnerabilities.

As part of my research studies in Columbia, I have worked on designing and implementing hardware
primitives [1, 2] that provide fine-grained memory safety protection with low performance overheads com-
pared to existing work. My ongoing work in this research include extending the above primitives to system
level protection in addition to addressing their current limitations.

2 Faculty Committee Members

The candidate respectfully solicits the guidance and expertise of the following faculty members and welcomes
suggestions for other important papers and publications in the exam research area.

• Prof. Simha Sethumadhavan

• Prof. Steven M. Bellovin

• Prof. Suman Jana

1



Why is memory safety still a concern? PhD Candidacy Exam

3 Exam Syllabus

The papers have broad coverage in the space of memory safety vulnerabilities and mitigations, which are
needed to (1) make a fair assessment of current defensive and offensive techniques and (2) explore new threats
and defensive opportunities.

• I begin with a brief overview of memory safety [3–5] showing why it is still a concern.

• To motivate the need for complete memory safety solutions, I go over a timeline of prior exploitation
techniques and mitigations, as shown in Figure 1. I start with the earliest documented memory
corruption attack from 1972. Then, I describe various memory attacks ranging from code injection
(e.g., Morris Worm [6]) and code reuse [7–9] to data-oriented attacks [10]. I also cover immediate
mitigations, such as ASLR [11], CFI [12], DFI [13], Data Randomization [14, 15], and the recent ARM
pointer authentication (PAC) [16].

• Next, I provide an overview of defensive techniques that aim at enforcing spatial and temporal memory
safety. First, I group prior techniques, which offer spatial memory safety guarantees, into three main
categories (Whitelisting, Blacklisting, and Randomized Allocators). Each group is further divided by
the way it manages its own metadata, as shown in Table 1. Second, I explain the different approaches,
which are used to guarantee temporal memory safety in Table 2. My goal is to show the strengths and
limitations of each technique.

• Finally, I conclude by highlighting opportunities for future work, given the restrictions of current
solutions.

1988

Code 
Injection

The First 
doc. 

Overflow 
Attack

1972

1997

Non
Executable 

Stack

1998

Heap 
Overflows

2000

Format 
String

2002

Info. 
Leak

2004

Heap 
Spraying

2007

ROP

2013

JIT-ROP

1997

Ret2Libc

2016

DOP
1996

Smashing 
the stack

1998

Stack 
Canaries

2000

Heap 
Mitigations

2015

COOP

2001

Format 
Guard

NX-bit

2003

2001

ASLR

2003

Point 
Guard

2005

CFI

2007

Shadow 
Stack

Instruction 
Set 

Random.

2003

2007

Heap 
Feng Shui

2008

Code 
Divers.

Code 
Pointer 
Integrity

2015

XnR

Vtable 
Protection

Runtime 
Divers.: 
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM 
PAC2018

Heisenbyte

2015

2016

Non-Control 
Data Attacks 2008

2019

PAIRS

JOP2011 SROP2016 BOP2019

Timeline

Figure 1: Timeline for memory safety exploitation techniques (marked with demons) and mitigations (marked
with shields).

Mohamed (Tarek Ibn Ziad) Hassan 2



Why is memory safety still a concern? PhD Candidacy Exam

Table 1: Spatial memory protection techniques. Tools with no separate citations are covered in the System-
atization of Knowledge papers [3–5] and/or Background section of the PhD dissertations [17, 18].

Whitelisting
Blacklisting

Randomized
AllocatorsPer-Object Per-Pointer

Disjoint
Metadata

Compatible C [19] Mondrian [18](Ch2) Purify

Diehard [20]
FreeGuard
Guarder [21]

Baggy Bounds [22] M-machine [18](Ch2) Valgrind
Softbound [17](Ch4) Dr. Memory
Hardbound [23] Electric Fence
Watchdog [17](Ch5) ASan [24]
CUP [25]
Intel MPX [26]

Inlined
Metadata

EffectiveSan [27] CHERI [18, 28] SafeMem [29]
Cyclone [30] REST [31]
CheckedC [32] Califorms [1]

Co-joined
Metadata

ARM Memory Tagging [33]
SPARC ADI [34]

No Metadata Lowfat S/W [35] Lowfat H/W [36]

Table 2: Temporal memory protection techniques. Tools with no separate citations are covered in the
Systematization of Knowledge papers [3–5] and/or Background section of the PhD dissertations [17, 18].

Solution Category Example

Garbage
Collection (GC)

Regular Hardware Accelerated GC [37]
Conservative MarkUs [38]

Memory Quarantining
Valgrind, ASan [24], REST [31],
CHERIvoke, and Califorms [1]

Lock & Key
Explicit Change Lock CETS [17](Ch4), CUP [25]

Implicit
Change Lock Electric Fence, Oscar [39]
Revoke key DangNull, DangSan, and BOGO [40]

References

[1] Hiroshi Sasaki, Miguel A. Arroyo, Mohamed Tarek Ibn Ziad, Koustubha Bhat, Kanad Sinha, and
Simha Sethumadhavan. Practical byte-granular memory blacklisting using Califorms. In Proceedings
of the 52Nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, pages
558–571, Columbus, OH, USA, 2019. URL http://doi.acm.org/10.1145/3352460.3358299.

[2] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, Vasileios P. Kemerlis, and Simha
Sethumadhavan. PAIRS: Control flow protection using phantom addressed instructions. arXiv.org,
2019. URL https://arxiv.org/abs/1911.02038v1.

[3] Victor van der Veen, Nitish dutt-Sharma, Lorenzo Cavallaro, and Herbert Bos. Memory errors: The
past, the present, and the future. In Proceedings of the 15th International Symposium on Research in
Attacks, Intrusions, and Defenses RAID, pages 86–106, Amsterdam, The Netherlands, September 2012.
Springer. URL https://doi.org/10.1007/978-3-642-33338-5_5.

[4] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in memory. In Proceedings
of the 2013 IEEE Symposium on Security and Privacy, S&P ’13, pages 48–62, May 2013. URL https:

//ieeexplore.ieee.org/document/6547101.

[5] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: Sanitizing for security. In Proceedings of the 2019 IEEE Symposium on Security and Privacy,
S&P ’19, May 2019. URL https://ieeexplore.ieee.org/document/8835294.

Mohamed (Tarek Ibn Ziad) Hassan 3

http://doi.acm.org/10.1145/3352460.3358299
https://arxiv.org/abs/1911.02038v1
https://doi.org/10.1007/978-3-642-33338-5_5
https://ieeexplore.ieee.org/document/6547101
https://ieeexplore.ieee.org/document/6547101
https://ieeexplore.ieee.org/document/8835294


Why is memory safety still a concern? PhD Candidacy Exam

[6] Peter J. Denning. The internet worm. RIACS Technical Report TR-89.3, Feb. 1989. URL https:

//ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900014594.pdf.

[7] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function calls
(on the x86). In Proceedings of the 14th ACM Conference on Computer and Communications Security,
CCS ’07, pages 552–561, Alexandria, Virginia, USA, 2007. URL https://dl.acm.org/citation.cfm?

id=1315313.

[8] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, and Ahmad-
Reza Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained address space layout random-
ization. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, S&P ’13, pages 574–588,
Berkeley, CA, USA, May 2013. URL https://ieeexplore.ieee.org/abstract/document/6547134.

[9] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and
Thorsten Holz. Counterfeit object-oriented programming: On the difficulty of preventing code reuse
attacks in C++ applications. In Proceedings of the 2015 IEEE Symposium on Security and Privacy,
S&P ’15, pages 745–762, Oakland, CA, USA, 2015. URL https://ieeexplore.ieee.org/document/

7163058.

[10] Long Cheng, Hans Liljestrand, Md Salman Ahmed, Thomas Nyman, Trent Jaeger, N. Asokan, and
Danfeng Yao. Exploitation techniques and defenses for data-oriented attacks. In Proceedings of the
2019 IEEE Cybersecurity Development (SecDev), pages 114–128, Tysons Corner, VA, USA, Sep. 2019.
URL https://ieeexplore.ieee.org/abstract/document/8901549.

[11] PaX-Team. PaX address space layout randomization. 2003. URL http://pax.grsecurity.net/docs/

aslr.txt.

[12] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, and Mathias
Payer. Control-flow integrity: Precision, security, and performance. ACM Computing Surveys (CSUR),
50(1):16, 2017. URL https://dl.acm.org/citation.cfm?id=3054924.

[13] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing data-flow integrity. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06, pages
147–160, Seattle, Washington, USA, 2006. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1298455.1298470.

[14] Sandeep Bhatkar and R. Sekar. Data space randomization. In Proceedings of the 5th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA ’08, pages
1–22, Paris, France, 2008. Springer-Verlag. URL https://link.springer.com/chapter/10.1007/

978-3-540-70542-0_1.

[15] Jonghwan Kim, Daehee Jang, Yunjong Jeong, and Brent Byunghoon Kang. POLaR: Per-allocation
object layout randomization. In Proceedings of the 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 505–516, June 2019. URL https://ieeexplore.

ieee.org/document/8809488.

[16] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik Ekberg, and N. Asokan.
PAC it up: Towards pointer integrity using ARM pointer authentication. In Proceedings of the 28th
USENIX Security Symposium, (USENIX Security 19), pages 177–194, Santa Clara, CA, USA, August
2019. URL https://www.usenix.org/system/files/sec19fall_liljestrand_prepub.pdf.

[17] Santosh Ganapati Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety for C Pro-
grams. PhD thesis, University of Pennsylvania, 2012. URL https://www.cs.rutgers.edu/~santosh.

nagarakatte/santosh-nagarakatte-dissertation.pdf.

[18] Alexandre Jean-Michel Procopi Joannou. High-performance memory safety Optimizing the CHERI
capability machine. PhD thesis, University of Cambridge, 2019. URL https://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-936.pdf.

Mohamed (Tarek Ibn Ziad) Hassan 4

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900014594.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900014594.pdf
https://dl.acm.org/citation.cfm?id=1315313
https://dl.acm.org/citation.cfm?id=1315313
https://ieeexplore.ieee.org/abstract/document/6547134
https://ieeexplore.ieee.org/document/7163058
https://ieeexplore.ieee.org/document/7163058
https://ieeexplore.ieee.org/abstract/document/8901549
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://dl.acm.org/citation.cfm?id=3054924
http://dl.acm.org/citation.cfm?id=1298455.1298470
http://dl.acm.org/citation.cfm?id=1298455.1298470
https://link.springer.com/chapter/10.1007/978-3-540-70542-0_1
https://link.springer.com/chapter/10.1007/978-3-540-70542-0_1
https://ieeexplore.ieee.org/document/8809488
https://ieeexplore.ieee.org/document/8809488
https://www.usenix.org/system/files/sec19fall_liljestrand_prepub.pdf
https://www.cs.rutgers.edu/~santosh.nagarakatte/santosh-nagarakatte-dissertation.pdf
https://www.cs.rutgers.edu/~santosh.nagarakatte/santosh-nagarakatte-dissertation.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-936.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-936.pdf


Why is memory safety still a concern? PhD Candidacy Exam

[19] Richard WM Jones and Paul HJ Kelly. Backwards-compatible bounds checking for arrays and pointers
in C programs. In Proceedings of the 3rd International Workshop on Automatic Debugging (ADEBUG-
97), pages 13–26. Linköping University Electronic Press, 1997. URL https://www.doc.ic.ac.uk/

~phjk/Publications/BoundsCheckingForC.pdf.

[20] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory safety for unsafe lan-
guages. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’06, pages 158–168, Ottawa, Ontario, Canada, 2006. URL https:

//dl.acm.org/citation.cfm?id=1134000.

[21] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu. Guarder: A tunable secure allo-
cator. In Proceedings of the 27th USENIX Security Symposium, Security ’18, pages 117–133, Baltimore,
MD, USA, 2018. USENIX Association. URL https://www.usenix.org/system/files/conference/

usenixsecurity18/sec18-silvestro.pdf.

[22] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In Proceedings of the 18th Conference
on USENIX Security Symposium, SSYM ’09, pages 51–66, Berkeley, CA, USA, 2009. USENIX Associ-
ation. URL https://www.usenix.org/legacy/events/sec09/tech/full_papers/akritidis.pdf.

[23] Joe Devietti, Colin Blundell, Milo M K Martin, and Steve Zdancewic. HardBound: architectural support
for spatial safety of the C programming language. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIII, 2008. URL
https://dl.acm.org/citation.cfm?id=1346295.

[24] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. AddressSanitizer:
a fast address sanity checker. In Proceedings of the 2012 USENIX Annual Technical Conference, USENIX
ATC ’12, 2012. URL https://www.usenix.org/system/files/conference/atc12/atc12-final39.

pdf.

[25] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer. CUP: Comprehensive user-
space protection for C/C++. In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, ASIACCS 18, pages 381–392, Incheon, Republic of Korea, 2018. URL
https://doi.org/10.1145/3196494.3196540.

[26] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. In-
tel MPX explained: A cross-layer analysis of the intel MPX system stack. Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 2(2):28:1–28:30, June 2018. URL http:

//doi.acm.org/10.1145/3224423.

[27] Gregory J Duck and Roland H C Yap. EffectiveSan: type and memory error detection using dynamically
typed C/C++. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’18, 2018. URL https://dl.acm.org/citation.cfm?id=3192388.

[28] Brooks Davis, Khilan Gudka, Alexandre Joannou, Ben Laurie, A Theodore Markettos, J Edward Maste,
Alfredo Mazzinghi, Edward Tomasz Napierala, Robert M Norton, Michael Roe, Peter Sewell, Robert
N M Watson, Stacey Son, Jonathan Woodruff, Alexander Richardson, Peter G Neumann, Simon W
Moore, John Baldwin, David Chisnall, James Clarke, and Nathaniel Wesley Filardo. CheriABI: enforcing
valid pointer provenance and minimizing pointer privilege in the POSIX C run-time environment. In
Proceedings of the 24th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’19, 2019. URL https://dl.acm.org/citation.cfm?id=3304042&

dl=ACM&coll=DL.

[29] Feng Qin, Shan Lu, and Yuanyuan Zhou. SafeMem: exploiting ECC-memory for detecting memory
leaks and memory corruption during production runs. In Proceedings of the IEEE 11th International
Symposium on High Performance Computer Architecture, HPCA ’05, 2005. URL https://ieeexplore.

ieee.org/document/1385952.

Mohamed (Tarek Ibn Ziad) Hassan 5

https://www.doc.ic.ac.uk/~phjk/Publications/BoundsCheckingForC.pdf
https://www.doc.ic.ac.uk/~phjk/Publications/BoundsCheckingForC.pdf
https://dl.acm.org/citation.cfm?id=1134000
https://dl.acm.org/citation.cfm?id=1134000
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-silvestro.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-silvestro.pdf
https://www.usenix.org/legacy/events/sec09/tech/full_papers/akritidis.pdf
https://dl.acm.org/citation.cfm?id=1346295
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://doi.org/10.1145/3196494.3196540
http://doi.acm.org/10.1145/3224423
http://doi.acm.org/10.1145/3224423
https://dl.acm.org/citation.cfm?id=3192388
https://dl.acm.org/citation.cfm?id=3304042&dl=ACM&coll=DL
https://dl.acm.org/citation.cfm?id=3304042&dl=ACM&coll=DL
https://ieeexplore.ieee.org/document/1385952
https://ieeexplore.ieee.org/document/1385952


Why is memory safety still a concern? PhD Candidacy Exam

[30] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of C. In Proceedings of the General Track of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’02, pages 275–288, Berkeley, CA, USA, 2002. USENIX Associa-
tion. URL http://trevorjim.com/papers/usenix2002.pdf.

[31] Kanad Sinha and Simha Sethumadhavan. Practical memory safety with REST. In Proceedings of the
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture, ISCA ’18, pages
600–611, June 2018. URL https://dl.acm.org/citation.cfm?id=3276598.

[32] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. Checked C: Making C safe
by extension. In Proceedings of the 2018 IEEE Cybersecurity Development, SecDev’18, pages 53–60,
Cambridge, MA, USA, Sep 2018. URL https://ieeexplore.ieee.org/document/8543387.

[33] Joe Bialek, Ken Johnson, Matt Miller, and Tony Chen. Security analysis of memory tag-
ging. Technical report, Microsoft Security Response Center (MSRC), March 2020. URL
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%

20analysis%20of%20memory%20tagging.pdf.

[34] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich, and Dmitry Vyukov.
Memory tagging and how it improves C/C++ memory safety. arXiv.org, February 2018. URL https:

//arxiv.org/pdf/1802.09517.pdf.

[35] Gregory J. Duck and Roland H. C. Yap. Heap bounds protection with low fat pointers. In Proceedings of
the 25th International Conference on Compiler Construction, CC ’16, pages 132–142, Barcelona, Spain,
2016. URL http://doi.acm.org/10.1145/2892208.2892212.

[36] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, Jr., and Andre DeHon. Low-fat
pointers: Compact encoding and efficient gate-level implementation of fat pointers for spatial safety
and capability-based security. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 721–732, Berlin, Germany, 2013. URL http://doi.acm.

org/10.1145/2508859.2516713.

[37] Martin Maas, Krste Asanoviundefined, and John Kubiatowicz. A hardware accelerator for trac-
ing garbage collection. In Proceedings of the 45th Annual International Symposium on Computer
Architecture, ISCA 18, pages 138–151, Los Angeles, CA, USA, 2018. IEEE Press. URL https:

//doi.org/10.1109/ISCA.2018.00022.

[38] Sam Ainsworth and Timothy M Jones. Markus: Drop-in use-after-free prevention for low-level lan-
guages. In Proceedings of the 2020 IEEE Symposium on Security and Privacy, S&P ’20, Oakland, CA,
USA, 2020. URL https://www.cl.cam.ac.uk/~tmj32/papers/docs/ainsworth20-sp.pdf.

[39] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar: A practical page-permissions-based
scheme for thwarting dangling pointers. In 26th USENIX Security Symposium (USENIX Security 17),
pages 815–832, Vancouver, BC, August 2017. USENIX Association. URL https://www.usenix.org/

conference/usenixsecurity17/technical-sessions/presentation/dang.

[40] Tong Zhang, Dongyoon Lee, and Changhee Jung. BOGO: buy spatial memory safety, get temporal
memory safety (almost) free. In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, 2019. URL https://dl.

acm.org/citation.cfm?id=3304017.

Mohamed (Tarek Ibn Ziad) Hassan 6

http://trevorjim.com/papers/usenix2002.pdf
https://dl.acm.org/citation.cfm?id=3276598
https://ieeexplore.ieee.org/document/8543387
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://arxiv.org/pdf/1802.09517.pdf
https://arxiv.org/pdf/1802.09517.pdf
http://doi.acm.org/10.1145/2892208.2892212
http://doi.acm.org/10.1145/2508859.2516713
http://doi.acm.org/10.1145/2508859.2516713
https://doi.org/10.1109/ISCA.2018.00022
https://doi.org/10.1109/ISCA.2018.00022
https://www.cl.cam.ac.uk/~tmj32/papers/docs/ainsworth20-sp.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://dl.acm.org/citation.cfm?id=3304017
https://dl.acm.org/citation.cfm?id=3304017

	Candidate Research Area Statement
	Faculty Committee Members
	Exam Syllabus

