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1 Candidate Research Area Statement

Languages like C and C++ are the gold standard for implementing a wide range of software systems such as
safety critical firmware, operating system kernels, and network protocol stacks for performance and flexibility
reasons. As those languages do not guarantee the validity of memory accesses (i.e., enforce memory safety),
seemingly benign program bugs can lead to silent memory corruption, difficult-to-diagnose crashes, and most
importantly; security exploitation. Attackers can compromise the security of the whole computing ecosystem
by exploiting a memory safety error with a suitably crafted input. Since the spread of Morris worm in 1988
and despite massive advances in memory safety error mitigations, memory safety errors have risen to be the
most exploited vulnerabilities.

As part of my research studies in Columbia, I have worked on designing and implementing hardware
primitives [1, 2] that provide fine-grained memory safety protection with low performance overheads com-
pared to existing work. My ongoing work in this research include extending the above primitives to system
level protection in addition to addressing their current limitations.

2 Faculty Committee Members

The candidate respectfully solicits the guidance and expertise of the following faculty members and welcomes
suggestions for other important papers and publications in the exam research area.

• Prof. Simha Sethumadhavan

• Prof. Steven M. Bellovin

• Prof. Suman Jana
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3 Exam Syllabus

The papers have broad coverage in the space of memory safety vulnerabilities and mitigations, which are
needed to (1) make a fair assessment of current defensive and offensive techniques and (2) explore new threats
and defensive opportunities.

• I begin with a brief overview of memory safety [3–5] showing why it is still a concern.

• To motivate the need for complete memory safety solutions, I go over a timeline of prior exploitation
techniques and mitigations, as shown in Figure 1. I start with the earliest documented memory
corruption attack from 1972. Then, I describe various memory attacks ranging from code injection
(e.g., Morris Worm [6]) and code reuse [7–9] to data-oriented attacks [10]. I also cover immediate
mitigations, such as ASLR [11], CFI [12], DFI [13], Data Randomization [14, 15], and the recent ARM
pointer authentication (PAC) [16].

• Next, I provide an overview of defensive techniques that aim at enforcing spatial and temporal memory
safety. First, I group prior techniques, which offer spatial memory safety guarantees, into three main
categories (Whitelisting, Blacklisting, and Randomized Allocators). Each group is further divided by
the way it manages its own metadata, as shown in Table 1. Second, I explain the different approaches,
which are used to guarantee temporal memory safety in Table 2. My goal is to show the strengths and
limitations of each technique.

• Finally, I conclude by highlighting opportunities for future work, given the restrictions of current
solutions.

1988

Code 
Injection

The First 
doc. 

Overflow 
Attack

1972

1997

Non
Executable 

Stack

1998

Heap 
Overflows

2000

Format 
String

2002

Info. 
Leak

2004

Heap 
Spraying

2007

ROP

2013

JIT-ROP

1997

Ret2Libc

2016

DOP
1996

Smashing 
the stack

1998

Stack 
Canaries

2000

Heap 
Mitigations

2015

COOP

2001

Format 
Guard

NX-bit

2003

2001

ASLR

2003

Point 
Guard

2005

CFI

2007

Shadow 
Stack

Instruction 
Set 

Random.

2003

2007

Heap 
Feng Shui

2008

Code 
Divers.

Code 
Pointer 
Integrity

2015

XnR

Vtable 
Protection

Runtime 
Divers.: 
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM 
PAC2018

Heisenbyte

2015

2016

Non-Control 
Data Attacks 2008

2019

PAIRS

JOP2011 SROP2016 BOP2019

Timeline

Figure 1: Timeline for memory safety exploitation techniques (marked with demons) and mitigations (marked
with shields).
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Table 1: Spatial memory protection techniques. Tools with no separate citations are covered in the System-
atization of Knowledge papers [3–5] and/or Background section of the PhD dissertations [17, 18].

Whitelisting
Blacklisting

Randomized
AllocatorsPer-Object Per-Pointer

Disjoint
Metadata

Compatible C [19] Mondrian [18](Ch2) Purify

Diehard [20]
FreeGuard
Guarder [21]

Baggy Bounds [22] M-machine [18](Ch2) Valgrind
Softbound [17](Ch4) Dr. Memory
Hardbound [23] Electric Fence
Watchdog [17](Ch5) ASan [24]
CUP [25]
Intel MPX [26]

Inlined
Metadata

EffectiveSan [27] CHERI [18, 28] SafeMem [29]
Cyclone [30] REST [31]
CheckedC [32] Califorms [1]

Co-joined
Metadata

ARM Memory Tagging [33]
SPARC ADI [34]

No Metadata Lowfat S/W [35] Lowfat H/W [36]

Table 2: Temporal memory protection techniques. Tools with no separate citations are covered in the
Systematization of Knowledge papers [3–5] and/or Background section of the PhD dissertations [17, 18].

Solution Category Example

Garbage
Collection (GC)

Regular Hardware Accelerated GC [37]
Conservative MarkUs [38]

Memory Quarantining
Valgrind, ASan [24], REST [31],
CHERIvoke, and Califorms [1]

Lock & Key
Explicit Change Lock CETS [17](Ch4), CUP [25]

Implicit
Change Lock Electric Fence, Oscar [39]
Revoke key DangNull, DangSan, and BOGO [40]
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