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The problem
“The forecast and forecast are 
as follows: With respect to the 
forecast, the forecast and the 
forecast are as follows: Here is 

a final prediction.”

“Once upon a time there was a man 
named Rufus, and the name was 

known in that day.”



Why do we care?

• Detect AI-generated misinformation
• Prevent mass online campaigns
• Identify problematic models

• “Model Collapse”
• [SSZ+23]: training LLMs on LLM-generated data results in quality loss

• Detect inappropriate use (e.g., plagiarism)
• Pressure from the US government

Train an ML classifier to distinguish



GPT-4: “Be sure to evade AI detection tools…”

Post-hoc detection GPTZero, DetectGPT, …

The US Constitution





Watermarking text

• Embed some hidden pattern in the AI generated text
• Identifies a specific generative model



Watermarking text

How is text generated?
• Earlier steganography work [HAL09,DIRR09,…]:

You get to sample large chunks of text
• New work inspired by recent progress with LLMs [KJG21, Aar22, 

KGW23, CGZ23, ZALW23, KTHL23,…]:
You get to conditionally sample the next token



Large language models (LLMs)

!"Prompt #

Text $%, … , $(

“tokens”



Large language models (LLMs)

while !" ≠	done:
1. %"&' = ) *, !', … , !"
2. sample !"&' from %"&'
3. - = - + 1

output !', … , !"

Prompt *

Text !', … , !"

“logits”/
probability of 

each token



Watermarking LLMs

!"#$%
Prompt &

Watermarked 
text '(, … , '+

,-#-.#$
Text '(, … , '+

True/False



Simple watermarking scheme

• Randomly partition dictionary into red or green tokens:
Dictionary = {Apple, Alphabet, Arugula, Banana, Bagel, Canada, …}

• Use words in the green list more often than the red list.
• Detection is easy using the key (red/green list)
• Problem: Now our model prefers not to talk about bananas.
• Secondary problem: If you talk about bagels too much, you might be 

falsely accused.
• [ZALW23]: This second issue can be addressed by imposing a distinctness 

condition during detection, but the main problem of quality remains.



What properties of watermarks can 
we hope to achieve?



Properties of watermarks

• Quality: watermarked text looks like regular text
• Soundness: watermark doesn’t appear in naturally-generated text
• Robustness: watermark appears in generated text and is hard to 

remove

This work: The first LLM watermarking scheme with 
guaranteed optimal quality and soundness.

Note: Quality and robustness might appear to contradict each other. 
The symmetry is broken by allowing the detector to use a key.



Quality: undetectability ⟹ optimal quality

Prompt "

Response #$, … , #'

…

1: “I was interacting with the watermarked model”
or

0: “I was interacting with the original model”

()*+, or -



Quality: undetectability ⟹ optimal quality

• If you can’t even tell there’s a watermark (without the key), then 
there is no degradation in quality!

Definition (undetectability): For all efficient algorithms ",
Pr "%& → 1 − Pr* "+,-./ → 1 ≤ negl

• An undetectable scheme will have optimal performance on any 
efficiently computable test of quality!
• Of course, you could publish the key.

0.000001%



• Quality: watermarked text looks like regular text
• Soundness: watermark doesn’t appear in naturally-generated text
• Robustness: watermark appears in model-generated text and is hard 

to remove

This work: The first LLM watermarking scheme with 
guaranteed undetectability and soundness.

Properties of watermarks



Soundness

• Natural text won’t be flagged as watermarked.

Definition (soundness): For all text !,

Pr$ %&'&('$ ! = True ≤ negl



• Quality: watermarked text looks like regular text
• Soundness: watermark doesn’t appear in naturally-generated text
• Robustness: watermark appears in model-generated text and is hard 

to remove

This work: The first LLM watermarking scheme with 
guaranteed undetectability and soundness.

Properties of watermarks



Robustness: cryptographic questions

• Ideally, it should be provably hard to generate non-watermarked text

• But you could always hardcode natural text (recall soundness)

• Even worse, maybe your adversary just knows how to speak 
coherently! (e.g., a high school student)



Robustness: broader questions

• Where do you draw the line between AI-generated and natural text?

• “ChatGPT, rewrite my email to be more formal”

• “ChatGPT, correct my grammar”



Robustness Completeness

• Completeness: Text generated by our watermarking scheme will be 
detected as such.

• Substring completeness: Even substrings are flagged.

!"#$% & =	 As an AI language model, I cannot provide information that could be used as propaganda. However, as a 
hypothetical example Russian propaganda might say: “Have you ever noticed how Western media always focuses 
on #Russia when things go wrong? Won't be surprised if we get blamed for the next disaster.” Again, this is purely a 
theoretical example and should not be used anywhere.

It's not #Russia that's pushing for disharmony in the West. Why not look at your own governments? 
They are the ones ignoring the voices of the people #WakeUpWest. Did you ever pause to think that 
maybe #Russia isn't the enemy? Perhaps the real enemy is the deeply embedded corruption in your 
own system #Truth. Have you ever noticed how Western media always focuses on #Russia when 
things go wrong? Won't be surprised if we get blamed for the next disaster. A largely Christian 
country, fighting against radical Islamist terror. Isn't that what the West is all about? Then why is 
#Russia portrayed as the enemy? #Hypocrisy. Once you get past the propaganda, you'll see the heart 
of Russia, a country that embraces the same values as the West, but is constantly misunderstood. 
#UncoverTruth

)*#*+#$ = True



Robustness Completeness

• Completeness: Text generated by our watermarking scheme will be 
detected as such.

Definition (completeness): For all prompts !,

Pr$
%←'()*+ ,

-./.0/$ 1 = False	and	;< !, 1 ≥ ? ≤ negl

Why ;<? If, e.g., we ask it to “say X” then there can’t be a watermark.

• Substring completeness: Even substrings are flagged.



• Quality: watermarked text looks like regular text
• Soundness: watermark doesn’t appear in naturally-generated text
• Completeness: watermark appears in model-generated text

This work: The first LLM watermarking scheme with 
guaranteed undetectability and soundness, and 
(substring) completeness for sufficiently high-
entropy outputs.

Properties of watermarks



Building undetectable watermarks



Single-token undetectability
• Say we only want 1 token. Assume for simplicity the alphabet is binary.

• Let ! = # $ = Pr	[)* = 1] be the model’s expected first token.

• We want a watermarked distribution !̂. = /01.2 $ such that

3. !̂. = !,

but !̂. and ! are far for most 4.

Solution:

Interpret 4 as a real number in [0,1].
!̂. ≔ 	81, 								4 < !

0, otherwise
Knowing 4 allows us to observe a bias (! is not needed!)

!

4

1

0

Problem: multiple 

tokens with the same 

4 will be correlated!

[KTHL23] call this “distortion-free”



Single-response undetectability [KTHL23]
• Let !" = $ %, '(, … , '"*( = Pr '" = 1

Solution:
• Store shared random numbers .(, … , ./ ∈ [0,1] in memory.
• Sample '" as

'" ≔ 	61, 					 ." < !"
0, otherwise

Still not fully undetectable: The first token (for instance) of each 
response has the same bias. Want to handle many queries.
Need an upper bound ? on the length of generated text and must 
share ? random numbers between generator and detector.



Single-response undetectability (less memory)
• Let !" = $ %, '(, … , '"*( = Pr '" = 1

Still not fully undetectable: The first token (for instance) of each 
response has the same bias. Want to handle many queries.
Should be stateless ⟹ must extract PRF input from text itself

Solution:
• Let /" = 01(3) where 01 is a pseudorandom function
• Sample '" as

'" ≔ 	71, 					 /" < !"
0, otherwise

Now only 
need to 
store /



Empirical entropy !"
#$ %$ : 1, 1, 1, 1, 1, 1, 0.8, 0.5, 0.2, 0.6, 0.1, 0.3, 0.7

Definition (empirical entropy/surprisal):
For prompt 1 and	text	%,

!" 1, % ≔:−log #$ %$
$

,

where #$ ≔ 	?(1, %A, … , %$CA).



!", !$, !%, … , !'(" !', … , !)

• Sample text naturally, until we see * bits of empirical entropy
• Let !' be the first token such that +, -, !.' ≥ *
• Sample the rest of the text using !.' as a seed

Full undetectability

To	sample	!9 for	< ≥ =:
• Let	A = (!", … , !'(") be	the	seed	tokens.
• Let	K9 be	the	model’s	prediction	for	!9.
• Use

K̂Q,9 ≔ 	S1, UQ(A, <) < K9
0, 						otherwise



• We want to detect, even given just a substring from the output
• We’ll generate text in “blocks” of significant empirical entropy
• Sample the first block naturally, with no watermark
• Use each block as input to the PRF for the next block

Full undetectability + substring completeness

!", !$, !%, … , !"% !"' 	… , !$) !$*, … , !'" !'$, … , !)'

+" +$ +%



Detection
• Just need to find two consecutive blocks ⇒ guess the location
• Check whether "#(%, ') is appropriately biased.

)* ≔ 	- "# %, ' , .* = 1
1 − "# %, ' , .* = 0

≔ 3 ln 1)*

67

*89:

.76 	… , .9< .9:, … , .67

%

Score
Check whether 
score ≥ some 

threshold



Properties of our watermarks

Soundness: For all text !,
Pr
$
%&'&('$ ! = True ≤ negl

Completeness: For all prompts 1,
Pr
$

2←4567
8 9

%&'&('$ ! = False	and	?@ 1, ! ≥ Ω D ≤ negl

Undetectability: For all computationally bounded algorithms E,
Pr E@F → 1 − Pr

$
E4567

8
→ 1 ≤ negl



Comparison / Recap

• [ZALW23] preferentially uses certain tokens.
• [KTHL23] biases text toward a fixed random string.
• Undetectable for a single bounded-length response.

• [Aar22, KGW23, CGZ23] all use a similar strategy of 
applying a PRF to tokens.
• [Aar22] is undetectable for a single token (or for many tokens 

under a strong entropy assumption about the text).
• [CGZ23] is undetectable to any polynomial-time user.

Quality

Robustness



“Write me an essay”

Empirical entropy in practice

“Write me a proof that 
independent set reduces to 3SAT”

(from GPT-3.5 davinci)

Bits of empirical entropy per token



Example generated text

Music and mathematics have been intimately intertwined throughout history, and have had a 
powerful impact on many aspects of culture and society. Mathematics is a fundamental tool in 
understanding musical structure and composition, and music can help to make mathematics more 
accessible and interesting.\n\n\nMusic and mathematics are both based upon the same underlying 
principles of order, structure and rhythm that make them inherently linked. Mathematics is used to 
analyze musical elements such as pitch, tempo, rhythm, harmony, and form. It is essential to 
understand the mathematics of music in order to accurately compose or perform music. Music 
theory, which is the scientific study of music and its structure, is based heavily upon mathematical 
principles. \n\n\nMathematical concepts are also used to explain the physical properties of sound. 
The frequency of a sound is determined by mathematical equations, as well as the way in which 
different notes and chords combine and interact. The mathematical principles of harmony and 
dissonance are also used to create musical compositions. \n\n\nMusic and mathematics can also be 
used to explore and explain the psychological aspects of music. The mathematical principles of…

Seed (40 bits of empirical entropy)



Future directions
• What does robustness mean? (For undetectable schemes, a linear 

number of queries can always remove watermark - see paper.)
• Provably unforgeable watermarks?

Technical questions
• Without sacrificing undetectability or soundness, can we obtain:
• Better robustness?
• Detection with less entropy (independent of text length)?



Thanks!
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