
Undetectable Watermarks
for Language Models

Miranda Christ*, Sam Gunn*, Or Zamir*

*alphabetical ordering
Thanks to Sam for the slides!

The problem
“The forecast and forecast are
as follows: With respect to the
forecast, the forecast and the
forecast are as follows: Here is

a final prediction.”

“Once upon a time there was a man
named Rufus, and the name was

known in that day.”

Why do we care?

• Detect AI-generated misinformation
• Prevent mass online campaigns
• Identify problematic models

• “Model Collapse”
• [SSZ+23]: training LLMs on LLM-generated data results in quality loss

• Detect inappropriate use (e.g., plagiarism)
• Pressure from the US government

Train an ML classifier to distinguish

GPT-4: “Be sure to evade AI detection tools…”

Post-hoc detection GPTZero, DetectGPT, …

The US Constitution

Watermarking text

• Embed some hidden pattern in the AI generated text
• Identifies a specific generative model

Watermarking text

How is text generated?
• Earlier steganography work [HAL09,DIRR09,…]:

You get to sample large chunks of text
• New work inspired by recent progress with LLMs [KJG21, Aar22,

KGW23, CGZ23, ZALW23, KTHL23,…]:
You get to conditionally sample the next token

Large language models (LLMs)

!"Prompt #

Text $%, … , $(

“tokens”

Large language models (LLMs)

while !" ≠	done:
1. %"&' =) *, !', … , !"
2. sample !"&' from %"&'
3. - = - + 1

output !', … , !"

Prompt *

Text !', … , !"

“logits”/
probability of

each token

Watermarking LLMs

!"#$%
Prompt &

Watermarked
text '(, … , '+

,-#-.#$
Text '(, … , '+

True/False

Simple watermarking scheme

• Randomly partition dictionary into red or green tokens:
Dictionary = {Apple, Alphabet, Arugula, Banana, Bagel, Canada, …}

• Use words in the green list more often than the red list.
• Detection is easy using the key (red/green list)
• Problem: Now our model prefers not to talk about bananas.
• Secondary problem: If you talk about bagels too much, you might be

falsely accused.
• [ZALW23]: This second issue can be addressed by imposing a distinctness

condition during detection, but the main problem of quality remains.

What properties of watermarks can
we hope to achieve?

Properties of watermarks

• Quality: watermarked text looks like regular text
• Soundness: watermark doesn’t appear in naturally-generated text
• Robustness: watermark appears in generated text and is hard to

remove

This work: The first LLM watermarking scheme with
guaranteed optimal quality and soundness.

Note: Quality and robustness might appear to contradict each other.
The symmetry is broken by allowing the detector to use a key.

Quality: undetectability ⟹ optimal quality

Prompt "

Response #$, … , #'

…

1: “I was interacting with the watermarked model”
or

0: “I was interacting with the original model”

()*+, or -

Quality: undetectability ⟹ optimal quality

• If you can’t even tell there’s a watermark (without the key), then
there is no degradation in quality!

Definition (undetectability): For all efficient algorithms ",
Pr "%& → 1 − Pr* "+,-./ → 1 ≤ negl

• An undetectable scheme will have optimal performance on any
efficiently computable test of quality!
• Of course, you could publish the key.

0.000001%

• Quality: watermarked text looks like regular text
• Soundness: watermark doesn’t appear in naturally-generated text
• Robustness: watermark appears in model-generated text and is hard

to remove

This work: The first LLM watermarking scheme with
guaranteed undetectability and soundness.

Properties of watermarks

Soundness

• Natural text won’t be flagged as watermarked.

Definition (soundness): For all text !,

Pr$ %&'&('$! = True ≤ negl

• Quality: watermarked text looks like regular text
• Soundness: watermark doesn’t appear in naturally-generated text
• Robustness: watermark appears in model-generated text and is hard

to remove

This work: The first LLM watermarking scheme with
guaranteed undetectability and soundness.

Properties of watermarks

Robustness: cryptographic questions

• Ideally, it should be provably hard to generate non-watermarked text

• But you could always hardcode natural text (recall soundness)

• Even worse, maybe your adversary just knows how to speak
coherently! (e.g., a high school student)

Robustness: broader questions

• Where do you draw the line between AI-generated and natural text?

• “ChatGPT, rewrite my email to be more formal”

• “ChatGPT, correct my grammar”

Robustness Completeness

• Completeness: Text generated by our watermarking scheme will be
detected as such.

• Substring completeness: Even substrings are flagged.

!"#$% & =	 As an AI language model, I cannot provide information that could be used as propaganda. However, as a
hypothetical example Russian propaganda might say: “Have you ever noticed how Western media always focuses
on #Russia when things go wrong? Won't be surprised if we get blamed for the next disaster.” Again, this is purely a
theoretical example and should not be used anywhere.

It's not #Russia that's pushing for disharmony in the West. Why not look at your own governments?
They are the ones ignoring the voices of the people #WakeUpWest. Did you ever pause to think that
maybe #Russia isn't the enemy? Perhaps the real enemy is the deeply embedded corruption in your
own system #Truth. Have you ever noticed how Western media always focuses on #Russia when
things go wrong? Won't be surprised if we get blamed for the next disaster. A largely Christian
country, fighting against radical Islamist terror. Isn't that what the West is all about? Then why is
#Russia portrayed as the enemy? #Hypocrisy. Once you get past the propaganda, you'll see the heart
of Russia, a country that embraces the same values as the West, but is constantly misunderstood.
#UncoverTruth

)*#*+#$ = True

Robustness Completeness

• Completeness: Text generated by our watermarking scheme will be
detected as such.

Definition (completeness): For all prompts !,

Pr$
%←'()*+ ,

-./.0/$ 1 = False	and	;< !, 1 ≥ ? ≤ negl

Why ;<? If, e.g., we ask it to “say X” then there can’t be a watermark.

• Substring completeness: Even substrings are flagged.

• Quality: watermarked text looks like regular text
• Soundness: watermark doesn’t appear in naturally-generated text
• Completeness: watermark appears in model-generated text

This work: The first LLM watermarking scheme with
guaranteed undetectability and soundness, and
(substring) completeness for sufficiently high-
entropy outputs.

Properties of watermarks

Building undetectable watermarks

Single-token undetectability
• Say we only want 1 token. Assume for simplicity the alphabet is binary.

• Let ! = # $ = Pr	[)* = 1] be the model’s expected first token.

• We want a watermarked distribution !̂. = /01.2 $ such that

3. !̂. = !,

but !̂. and ! are far for most 4.

Solution:

Interpret 4 as a real number in [0,1].
!̂. ≔ 	81, 								4 < !

0, otherwise
Knowing 4 allows us to observe a bias (! is not needed!)

!

4

1

0

Problem: multiple

tokens with the same

4 will be correlated!

[KTHL23] call this “distortion-free”

Single-response undetectability [KTHL23]
• Let !" = $ %, '(, … , '"*(= Pr '" = 1

Solution:
• Store shared random numbers .(, … , ./ ∈ [0,1] in memory.
• Sample '" as

'" ≔ 	61, 					 ." < !"
0, otherwise

Still not fully undetectable: The first token (for instance) of each
response has the same bias. Want to handle many queries.
Need an upper bound ? on the length of generated text and must
share ? random numbers between generator and detector.

Single-response undetectability (less memory)
• Let !" = $ %, '(, … , '"*(= Pr '" = 1

Still not fully undetectable: The first token (for instance) of each
response has the same bias. Want to handle many queries.
Should be stateless ⟹ must extract PRF input from text itself

Solution:
• Let /" = 01(3) where 01 is a pseudorandom function
• Sample '" as

'" ≔ 	71, 					 /" < !"
0, otherwise

Now only
need to
store /

Empirical entropy !"
#$ %$: 1, 1, 1, 1, 1, 1, 0.8, 0.5, 0.2, 0.6, 0.1, 0.3, 0.7

Definition (empirical entropy/surprisal):
For prompt 1 and	text	%,

!" 1, % ≔:−log #$ %$
$

,

where #$ ≔ 	?(1, %A, … , %$CA).

!", !$, !%, … , !'(" !', … , !)

• Sample text naturally, until we see * bits of empirical entropy
• Let !' be the first token such that +, -, !.' ≥ *
• Sample the rest of the text using !.' as a seed

Full undetectability

To	sample	!9 for	< ≥ =:
• Let	A = (!", … , !'(") be	the	seed	tokens.
• Let	K9 be	the	model’s	prediction	for	!9.
• Use

K̂Q,9 ≔ 	S1, UQ(A, <) < K9
0, 						otherwise

• We want to detect, even given just a substring from the output
• We’ll generate text in “blocks” of significant empirical entropy
• Sample the first block naturally, with no watermark
• Use each block as input to the PRF for the next block

Full undetectability + substring completeness

!", !$, !%, … , !"% !"' 	… , !$) !$*, … , !'" !'$, … , !)'

+" +$ +%

Detection
• Just need to find two consecutive blocks ⇒ guess the location
• Check whether "#(%, ') is appropriately biased.

)* ≔ 	- "# %, ' , .* = 1
1 − "# %, ' , .* = 0

≔ 3 ln 1)*

67

*89:

.76 	… , .9< .9:, … , .67

%

Score
Check whether
score ≥ some

threshold

Properties of our watermarks

Soundness: For all text !,
Pr
$
%&'&('$! = True ≤ negl

Completeness: For all prompts 1,
Pr
$

2←4567
8 9

%&'&('$! = False	and	?@ 1, ! ≥ Ω D ≤ negl

Undetectability: For all computationally bounded algorithms E,
Pr E@F → 1 − Pr

$
E4567

8
→ 1 ≤ negl

Comparison / Recap

• [ZALW23] preferentially uses certain tokens.
• [KTHL23] biases text toward a fixed random string.
• Undetectable for a single bounded-length response.

• [Aar22, KGW23, CGZ23] all use a similar strategy of
applying a PRF to tokens.
• [Aar22] is undetectable for a single token (or for many tokens

under a strong entropy assumption about the text).
• [CGZ23] is undetectable to any polynomial-time user.

Quality

Robustness

“Write me an essay”

Empirical entropy in practice

“Write me a proof that
independent set reduces to 3SAT”

(from GPT-3.5 davinci)

Bits of empirical entropy per token

Example generated text

Music and mathematics have been intimately intertwined throughout history, and have had a
powerful impact on many aspects of culture and society. Mathematics is a fundamental tool in
understanding musical structure and composition, and music can help to make mathematics more
accessible and interesting.\n\n\nMusic and mathematics are both based upon the same underlying
principles of order, structure and rhythm that make them inherently linked. Mathematics is used to
analyze musical elements such as pitch, tempo, rhythm, harmony, and form. It is essential to
understand the mathematics of music in order to accurately compose or perform music. Music
theory, which is the scientific study of music and its structure, is based heavily upon mathematical
principles. \n\n\nMathematical concepts are also used to explain the physical properties of sound.
The frequency of a sound is determined by mathematical equations, as well as the way in which
different notes and chords combine and interact. The mathematical principles of harmony and
dissonance are also used to create musical compositions. \n\n\nMusic and mathematics can also be
used to explore and explain the psychological aspects of music. The mathematical principles of…

Seed (40 bits of empirical entropy)

Future directions
• What does robustness mean? (For undetectable schemes, a linear

number of queries can always remove watermark - see paper.)
• Provably unforgeable watermarks?

Technical questions
• Without sacrificing undetectability or soundness, can we obtain:
• Better robustness?
• Detection with less entropy (independent of text length)?

Thanks!

[SSZ+23] I. Shumailov, Z. Shumaylov, Y. Zhao, Y. Gal, N. Papernot, R. Anderson, “The Curse of Recursion: Training on
Generated Data Makes Models Forget,” 2023.

[HAL09] N. Hopper, L. von Ahn and J. Langford, “Provably Secure Steganography,” 2009.

[DIRR09] N. Dedić, G. Itkis, L. Reyzin and S. Russell, “Upper and Lower Bounds on Black-Box Steganography,” 2009.

[KJGR21] G. Kaptchuk, T. Jois, M. Green, and A. Rubin, “Meteor: Cryptographically Secure Steganography for Realistic
Distributions,” 2021.

[Aar22] S. Aaronson, “Leaning Into Uninterpretability for AI Alignment,” https://www.scottaaronson.com/talks/leaning-
harvard.ppt, 2022.

[KGW+23] J. Kirchenbauer et al., “A Watermark for Language Models,” 2023.

[CGZ23] M. Christ, S. Gunn and O. Zamir, “Undetectable Watermarks for Language Models,” 2023.

[ZALW23] X. Zhao, P. Ananth, L. Li and YX. Wang, “Provable Robust Watermarking for AI-Generated Text,” 2023.

[KTHL23] R. Kuditipudi, J. Thickstun, T. Hashimoto and P. Liang, “Robust Distortion-free Watermarks for Language Models,”
2023.

https://eprint.iacr.org/2023/763
mchrist@cs.columbia.edu

