
Pairing Devices with Good Quality Output Interfaces

Nitesh Saxena and Jonathan Voris
Polytechnic University

nsaxena@duke.poly.edu,jvoris@cis.poly.edu

Abstract

“Pairing” is referred to as the operation of achieving au-
thenticated key agreement between two human-operated devices
over a short-range wireless communication channel (such as
Bluetooth or WiFi). The devices are ad hoc in nature, i.e., they
can neither be assumed to have a prior context (such as pre-
shared secrets) with each other nor do they share a common
trusted on- or off-line authority. However, the devices cangen-
erally be connected using auxiliary physical channel(s) (such
as audio, visual, etc.) that can be authenticated by the device
user(s), and thus form the basis for pairing.

In this paper, we present the results of a user study of
a technique to pair two devices (such as two cell phones)
which have good quality output interfaces (in the form of dis-
play/speaker/vibration).

Keywords: Authentication, Key Agreement, Device Pairing

1 Introduction

Short-range wireless communication, based on technologies
such as Bluetooth and WiFi, is becoming increasingly popular
and promises to remain so in the future. With this surge in pop-
ularity, come various security risks. A wireless communication
channel is easy to eavesdrop upon and to manipulate, and there-
fore a fundamental security objective is to secure this commu-
nication channel. In this paper, we will use the term “pairing”
to refer to the operation of bootstrapping secure communica-
tion between two devices connected with a short-range wireless
channel. Examples of pairing from day-to-day life include pair-
ing of a WiFi laptop and an access point, a Bluetooth keyboard
and a desktop, and so on. Pairing would be easy to achieve if
there existed a global infrastructure enabling devices to share an
on- or off-line trusted third party, a certification authority, a PKI
or any pre-configured secrets. However, such a global infras-
tructure is close to impossible to come by in practice, thereby
making pairing an interesting and challenging real-world re-
search problem.1

A recent research direction to pairing is to use an auxil-
iary physically authenticatable channel, called an out-of-band
(OOB) channel, which is governed by humans, i.e., by the users
operating the devices. Examples of OOB channels include au-
dio, visual channels, etc. Unlike the wireless channel, on the

1The problem has been at the forefront of various recent standardization ac-
tivities, see [15].

OOB channel, an adversary is assumed to be incapable of mod-
ifying messages. It can eavesdrop on, delay, drop and replay
them, however. A pairing scheme should therefore be secure
against such an adversary.

The usability of a pairing scheme based on OOB channels
is clearly of utmost importance. Since OOB channels typically
have low bandwidth, the shorter the data that a pairing scheme
needs to transmit over these channels, the better the schemebe-
comes in terms of usability.

Various pairing protocols have been proposed so far. These
protocols are generally based on bidirectional automated device-
to-device (d2d) OOB channels. Suchd2d channels require both
devices to have transmitters and corresponding receivers.In set-
tings whered2d channel(s) do not exist (i.e., when at least one
device does not have a receiver) and even otherwise, similarpro-
tocols can be based upon device-to-human (d2h) and human-to-
device (h2d) channel(s) instead. Depending upon the protocol,
only two d2h channels may be sufficient, such as in case when
the user has to perform a very simple operation (such as “com-
parison”) of the data received over these channels. Clearly, the
usability of d2h and h2d channel establishment is even more
critical than that of ad2d channel.

Earlier pairing protocols required at least160 to 80 bits of
data to be transmitted over the OOB channels. The simplest
protocol [1] involves devices exchanging their public keysover
the wireless channel, and authenticating them by exchanging (at
least80-bit long) hashes of the corresponding public keys over
the OOB channels. The more recent, so-called SAS- (Short Au-
thenticated Strings) based protocols, [5], [7] and [14], reduce
the length of data to be transmitted over the OOB channels to
approximately15 bits.2

Based on the above protocols, a number of pairing schemes
with various OOB channels have been proposed. These include
schemes based on two bidirectionald2d infra-red channels [1];
two bidirectionald2d visual channels consisting of barcodes and
photo cameras [6]; a unidirectionald2d visual channel consist-
ing of blinking LED and video camera plus a unidirectional
d2h channel consisting of a blinking LED and a unidirectional
h2d channel [9]; two audio/visuald2h channels consisting of
MadLib sentences and displayed text [4]. In addition, the SAS
protocols trivially yield pairing schemes involving two bidirec-
tionald2h andh2d channels – the user reads15 bits of data dis-
played on one device and inputs it on the other, and vice versa.
[16] proposed pairing schemes that require the user to compare

2The concept of SAS-based authentication was first introduced by Vaudenay
in [17].

1



the data transmitted over twod2h SAS channels.
Most recently, in [10], we proposed a new pairing scheme

that is universally applicable to pair any two devices, the fo-
cus being on devices which do not have good quality output
interfaces. The scheme can use any of the existing SAS pro-
tocols and does not require devices to have good transmitters
or any receivers, e.g., only a pair of LEDs are sufficient. The
scheme involves users comparing very simple audiovisual pat-
terns, such as “beeping” (using a basic speaker) and “blinking”
(using LEDs), transmitted as simultaneous streams, forming two
synchronizedd2h channels.

Our Contributions. In this paper, we focus on pairing devices,
such as cell phones, which have good quality output interfaces,
such as in the form of display, speaker and vibration. Basically,
we use the same idea as in [10], however, we make use of bet-
ter output interfaces which are often available on some devices.
We wanted to investigate if the usability and efficiency of the
scheme of [10] will improve if devices have better (and in some
cases) multiple output interfaces. We extend the scheme of [10]
to the following; theFlash-Flash andVibrate-Vibrate combi-
nations, which send output to the users using a “flashing” screen
and vibration, respectively, and theAll-All combination, which
makes use of all three outputs, flashing screen, vibration and
“beeping”, simultaneously. We also compare our schemes with
a simple scheme (calledNum-Num) that requires the user to
compare two 4-digit numbers displayed on devices’ screens.

Our results indicate that no single scheme is a true winner.
However, theAll-All combination turns out to be the safest, in
that it has very low false negatives, whereas theVibrate-Vibrate
combination turns out to be the most user-friendly.

Organization. The rest of the paper is organized as follows. In
Section 2, we review prior pairing schemes. In Section 3, we
describe the security model and summarize relevant protocols.
In Section 4, we present our scheme, its design, implementation
and performance.

2 Related Work

There exists a significant amount of prior work on the general
topic of pairing. Due to lack of space, we only summarize it
here. For a detailed description, refer to the related work section
in [10].

In their seminal work, Stajano, et al. [13] proposed to estab-
lish a shared secret between two devices using a link created
through a physical contact (such as an electric cable). Balfanz,
et al. [1] extended this approach through the use of infraredas
ad2d channel – the devices exchange their public keys over the
wireless channel followed by exchanging (at least80-bits long)
hashes of their respective public keys over infrared.

Another approach taken by a few research papers is to per-
form the key exchange over the wireless channel and authenti-
cate it by requiring the users to manually and visually compare
the established secret on both devices. Since manually com-
paring the established secret or its hash is cumbersome for the
users, schemes were designed to make this visualization sim-
pler. These include Snowflake mechanism [3] by Levienet et
al., Random Arts visual hash [8] by Perrig et al. etc.

Based on the pairing protocol of Balfanz et al. [1], McCune
et al. proposed the “Seeing-is-Believing” (SiB) scheme [6]. SiB
involves establishing two unidirectional visuald2d channels –
one device encodes the data into a two-dimensional barcode and
the other device reads it using a photo camera.

Goodrich, et al. [4], proposed a pairing scheme based on
“MadLib” sentences. This scheme also uses the protocol of
Balfanz et al. The main idea is to establish ad2h channel by
encoding the data into MadLib sentences, which the users can
easily compare.

As an improvement to SiB [6], Saxena et al. [9] proposed
a new scheme based on visual OOB channel. The scheme uses
one of the SAS protocols [5], and is aimed at pairing two devices
(such as a cell phone and an access point), only one of which has
a relevant receiver (such as a camera).

A very recent proposal, [11], focuses on pairing two devices
with the help of “button presses” by the user. The scheme de-
scribed in the paper is based upon a protocol that first performs
an unauthenticated Diffie-Hellman key agreement and then au-
thenticate the established key using a short password. Sucha
short password can be agreed upon between the two devices via
three variants using button presses.

Uzun et al. [16] carry out a comparative usability study of
simple pairing schemes. They consider pairing scenarios where
devices are capable of displaying4-digits of SAS data. In what
they call the “Compare-and-Confirm” approach, the user simply
reads and compares the SAS data displayed on both devices.
The “Select-and-Confirm” approach, on the other hand, requires
the user to select a4-digit string (out of a number of strings)
on one device that matches with the4-digit string on the other
device.

In [12], the authors consider the problem of pairing two de-
vices which might not share any common wireless communi-
cation channel at the time of pairing, but only share a common
audio channel.

3 Communication and Security Model, and Ap-
plicable Protocols

Our pairing protocols are based upon the following commu-
nication and adversarial model [17]. The devices being paired
are connected via two types of channels: (1) a short-range, high-
bandwidth bidirectional wireless channel, and (2) auxiliary low-
bandwidth physical OOB channel(s). Based on device types,
the OOB channel(s) can be device-to-device (d2d), device-to-
human (d2h) and/or human-to-device (h2d). An adversary at-
tacking the pairing protocol is assumed to have full controlon
the wireless channel; namely, it can eavesdrop, delay, drop, re-
play and modify messages. On the OOB channel, the adversary
can eavesdrop, delay, drop, replay and re-order messages, how-
ever, it can not modify them. In other words, the OOB channel is
assumed to be an authenticated channel. The security notionfor
a pairing protocol in this setting is adopted from the model of au-
thenticated key agreement due to Canneti and Krawczyk [2]. In
this model, a multi-party setting is considered wherein a number
of parties simultaneously run multiple/parallel instances of pair-
ing protocols. In practice, however, it is reasonable to assume
just two-parties running only a few serial/parallel instances of

2



the pairing protocol. For example, during authentication for an
ATM transaction, there are only two parties, namely the ATM
machine and a user, restricted to only three authenticationat-
tempts. The security model does not consider denial-of-service
(DoS) attacks. Note that on wireless channels, explicit attempts
to prevent DoS attacks might not be useful because an adversary
can simply launch an attack by jamming the wireless signal.

To date, three three-round pairing protocols based on short
authenticated strings (SAS) have been proposed [7], [5] and
[14]. In a communication setting involving two users restricted
to running three instances of the protocol, these SAS protocols
need to transmit onlyk (= 15) bits of data over the OOB chan-
nels. As long as the cryptographic primitives used in the proto-
cols are secure, an adversary attacking these protocols cannot
win with a probability significantly higher than2−k (= 2

−15).
This gives us security equivalent to the security provided by 5-
digit PIN-based ATM authentication.

Recall that the pairing scheme that we propose in this paper,
similar to the schemes of [10], requires the users to “compare”
the data transmitted over twod2h channels. Our scheme can
be based on any of the existing SAS protocols. This is because
in all protocols, the SAS messages are computed as a common
function of the public keys and/or random nonces exchanged
during the protocol, and therefore the authentication is based
upon whether the two SAS messages match or not (see [7], [5]
and [14]).

4 Pairing Using Synchronized Outputs

In this section, we describe the design and implementation
of our pairing schemes based on theFlash-Flash, Vibrate-
Vibrate andAll-All combinations, as well as our study of their
experimental usability. We also compare these combinations
with the simple schemeNum-Num.

4.1 Design and Implementation

Our objective was to develop pairing schemes that leverage
the decent quality output interfaces found on most ubiquitous
devices such as mobile phones and controllers. This is unlike
the motivation for the schemes in [10] which focused upon de-
vices which lack such output interfaces. The output interfaces
that we utilize in our schemes are in the form of “flashing” of
screen, “vibration” and “beeping” using a speaker. What we call
theFlash-Flash combination is implemented via the flashing of
backlit LCD screen and theVibrate-Vibrate combination using
vibration functionality. Basically, we wanted to determine how
to use various output interfaces in a way that placed minimal
burden on device users by being as short and simple as possi-
ble. In particular, since devices of these kind usually feature
more than one method of output, we desired to test whether the
use of multiple simultaneous output channels made the pairing
process any easier for users. To this end, we implemented the
All-All combination using the aforementioned flashing display
and vibration, as well as a beep in the form of a brief alert noise
or “ringtone.”. Since we learned from our experience with the
schemes in [10] that human users generally do not tend to pre-
fer “asymmetry” (such as when two devices use different output

interfaces), we decided not to proceed with combinations in-
volving different output channels, such asFlash-Vibrate, etc.
Moreover, it was also shown in [10] that the pairing combi-
nation,Beep-Beep, involving two similar audio-based output
channels is error-prone, we did not try to tinker with this com-
bination. However, since a pairing scheme (referred to asNum-
Num) that requires the user to compare two 15-bit strings en-
coded as two 4-digit numbers appears to be most basic and sim-
ple, we wanted to experiment with it and compare it with our
other combinationsFlash-Flash, Vibrate-Vibrate andAll-All.

A pairing scheme, in its entirety, consists of three phases:(1)
the device discovery phase, wherein the devices exchange their
identifiers over the wireless channel prior to communicating, (2)
the pairing protocol execution phase, wherein the devices exe-
cute the desired pairing protocol over the wireless channel, and
(3) the authentication phase, where the devices, using the OOB
channels, authenticate the messages exchanged during the pre-
vious phase. For the sake of our experimentation, we skipped
the first two phases and concentrated on the third phase, be-
cause our main goal was to test the feasibility of the way we
intended to implement the OOB channels, i.e., using theFlash-
Flash, Vibrate-Vibrate, All-All andNum-Num combinations.
As mentioned previously, our pairing scheme can be built on top
of any of the SAS protocols [7], [5] and [14].

Let us assume that we want to pair two devicesA andB.
Assuming thatA andB have already performed the device dis-
covery and protocol execution phases over the wireless channel,
the task is now reduced toA andB encoding the15-bits of their
respective SAS data,SASA andSASB, into vibrating, beep-
ing, flashing, or some combination of these outputs and then
transmitting it in a synchronized fashion for the user to com-
pare (clearly, theNum-Num combination does not require any
synchronziation.) This encoding should enable the user to eas-
ily identify both ”good” cases, i.e., whenSASA = SASB, and
”bad” cases, such as whenSASA 6= SASB.

In [10] synchronization was achieved by having one device
send a synchronization signalS to the other device over the
wireless channel. However, this synchronization signal can get
or be delayed, resulting in users being fooled into accepting non-
matching SAS strings (for example, stringsSASA = “010010”

andSASB = “100100”, will appear to be equal to the user if
the synchronization signal is delayed by a bit). [10] dealt with
this issue by using anEND marker to indicate the completion
of each SAS string. For these pairing schemes we opted to use
a different synchronization technique. Since these schemes are
targeted for devices that are hand-held and/or easy to manipu-
late, we assumed that users would be able to press a button to
activate the pairing process on two devices simultaneously. This
is a reasonable assumption for a wide range of devices such as
cell phones. This approach prevents potential synchronization
delays by placing the encoded SAS timing in the hands of the
user while also avoiding the added complexity introduced bythe
use ofS and anEND marker.

Encoding for Flash-Flash. A ‘1’ bit in the SAS string is sig-
naled by lighting up the backlight of a display for a given ”signal
interval,” while a ’0’ bit is represented by darkening the display
for the same interval. Every bit signal is followed by a brief
”sleep interval” of display darkness. This is included to facili-

3



tate ”human-comparison” by allowing users to differentiate two
separate bit signals. The time required to compare two SAS
strings is inversely proportional to the duration of the signal and
sleep intervals – the shorter these intervals, the faster the com-
parison will run, and vice versa. The optimal value for these
intervals needs to be determined through experimentation.The
best interval duration is a careful balance between giving users
enough time to comfortably compare the encoded SAS data and
making the comparison process as brief as possible. Figure 1il-
lustrates this encoding process using a combined interval of 700

msec.

Encoding for Vibrate-Vibrate. We utilize the vibration func-
tion commonly used for feedback in cell phones and video game
controllers. A ’1’ bit of a SAS string triggers a vibration for the
signal interval and a ’0’ bit causes the device to remain station-
ary. Just as was the case with ”flashing,” both types of bit signals
are followed by a brief ”sleep interval” of device stillness. As an
example, on a ’1’ bit the device could vibrate for210 msec and
then stay still for490 msec, while on a ’0’ bit the device would
remain stationary for the entire700 msec. Refer to Figure 2
for the vibration encoding process using a combined interval of
700 msec. Optimal values for these intervals also must be found
through testing.

Encoding for All-All. The All-All scheme is intended to test
whether users find multiple simultaneous forms of output help-
ful or distracting. As such, this method makes use of the afore-
mentioned flashing and vibrating outputs as well as an audio or
“beeping” output. That is, a ’1’ bit of SAS data is represented by
a coterminous display brightening, device vibration, and speaker
beeping, whereas a ’0’ bit is presented as a display darkening,
device stillness, and speaker silence. This type of encoding is
“all-or-nothing” in the sense that the device either outputs all
three types of feedback or none at all. As with the single out-
put kinds of encoding, both ’1’ and ’0’ bit signals are followed
by a short interval of ”sleep.” Once again, experiments mustbe
conducted to find optimal interval settings for the ”all” intervals.
Figure 3 shows this encoding with a combined interval of700

msec

Implementation. We used two Nokia 6030b mobile phones to
conduct our experiments. These phones have several good qual-
ity output interfaces, specifically a vibration feature, a speaker,
and a 16 bit color, 128 by 128 pixel display. The Nokia 6030b
runs the Nokia operating system and supports version 2.0 of
the Mobile Information Device Profile (MIDP) specification
and version 1.1 of the Connected Limited Device Configuration
(CLDC) framework, which are both part of the Java Platform,
Micro Edition, or J2ME. To utilize these APIs we wrote our
test programs in the Java programming language using the Java
Wireless Toolkit version 2.5.2 for CLDC. Because we were only
working with the authentication phase of the pairing schemeand
not the device discovery or pairing protocol execution phase,
and did not make use of a wireless channel for synchronization,
no actual wireless connection between the two mobile devices
was necessary for our tests.

4.2 Usability Testing

Our schemes were tested with a total of 40 subjects. All our
subjects were enthusiastic college students who were familiar
with mobile phones but not particularly proficient with the tech-
nology. Each tester was given a short summary of our secure
device pairing schemes and their potential applications. We
explained the experimental setup of the two devices and what
they were expected to do while working with theFlash-Flash
Vibrate-Vibrate, All-All andNum-Num combinations, but did
not give training of any kind to the subjects prior to performing
the tests.

The first goal of our user tests was to determine which of
the output combinations enabled them to most easily identify
SAS signal matches and mismatches. Put differently, we wanted
to determine which encoding caused users to commit the least
amount ofsafe errors(a false positive, that is, identifying a good
case as a bad one or a match as a mismatch) andfatal errors (a
false negative, that is, identifying a bad case as a good one or a
mismatch as a match) [16]. The second goal of our tests was to
establish an optimal timing interval for the type of output that
users were most comfortable with.

The Set-up and Test Cases. The experiments for theFlash-
Flash, Vibrate-Vibrate, All-All andNum-Num combinations
were conducted in a graduate research lab room of our univer-
sity. These test cases were designed to test for matches and
mismatches in SAS strings, and consisted of a fixed set of ran-
domly generated strings that were presented to the test subjects
in a random order to prevent users from guessing the outcome
of test cases based on previous ones. Similar to the findings of
[10] as well as some preliminary testing, we observed that users
had an easier time noticing mismatches early in a SAS string if
the string was prepended with 3 ‘1’ bits as padding to provide
users with a learning distance. We used 3 padding bits, which
combined with 15 bits of SAS data to produce 18 bit long test
case strings. Prior to each test case, the administrator of the
test would configure the test parameters on both phones, such
as which SAS string and what timing interval to use. Volunteer
users then started the test process by pressing a button on each
phone simultaneously. After a very brief (100 msec) delay both
devices started signaling their particular SAS string via vibrat-
ing, flashing, or vibrating, flashing and beeping in accordance
with theFlash-Flash, Vibrate-Vibrate andAll-All combination
in use for that particular test case. For theNum-Num combina-
tion, users were not required to press the buttons simultaneously
and were asked to compare the 4-digit numbers corresponding
to two SAS values displayed on devices’ screens.

The Vibrate-Vibrate tests. Since theVibrate-Vibrate combi-
nation was a fresh scheme we didn’t have any prior experience
with, we decided to test it first. Having establishedVibrate-
Vibrate as the pairing output of choice, we set about finding
the best interval for this pairing scheme with respect to user
comfortability and the overall runtime of the pairing scheme.
We experimented with a number of such intervals ranging be-
tween 300-800 msecs. Each overall interval consisted of ap-
proximately 30% signal interval and 70% sleep interval. For
example, an overall interval of 300 msecs corresponds to 80
msec of signal interval and 220 msec of sleep interval, 400 msec

4



Interval ← 700ms→ ← 700ms→ ← 700ms → ← 700ms → ← 700ms →

Bits 1 0 1 1 0
Bit Signal flash darkness flash flash darkness

Figure 1. Encoding for Flash-Flash using a sleep interval of 700 msec

Interval ← 700ms→ ← 700ms→ ← 700ms → ← 700ms → ← 700ms →

Bits 1 0 1 1 0
Bit Signal vibration stillness vibration vibration stillness

Figure 2. Encoding for Vibrate-Vibrate using a sleep interval of 700 msec

msecs corresponds to 120 msec of signal interval and 280 msec
of sleep interval, 500 msecs corresponds to 150 msec of sig-
nal interval and 350 msec of sleep interval, and so on. Each of
the 20 volunteers for these tests performed 20Vibrate-Vibrate
pairing test cases for a total of 400 test runs (4 users also par-
ticipated in 35 preliminary test cases for a grand total of 435
tests). As pointed before, 3 ‘1’ bits were provided as padding
on a 15 bit SAS string to produce total test string lengths of 18
bits. Our findings for theVibrate-Vibrate tests with different
intervals are depicted in Table 1.

The results indicate that users commit errors whenVibrate-
Vibrate is run with an interval of 300 msec – 650 msec. The
error rates range from 2% for a 500 msec interval to around 19%
for a 550 msec interval. It is worth noting, however, that these
error are comparable to the combinations presented in [10].The
most promising results, however, occur in the 700 msec – 800
msec intervals. For these values, there were no errors observed
at all. At this interval level users can easily and comfortably
detect all errors in the SAS strings. The entire comparison pro-
cess takes between 13-15 seconds to complete. This shows that
as the sleep interval duration increases, users feel increasingly
comfortable performing comparisons using theVibrate-Vibrate
combination. Moreover, almost all users indicated that with
time interval around 700 msec, they were able to identify both
matching and non-matching test instances with great ease and
that they liked the scheme. Having recorded these promising
results and users’ positive feedback, we moved on to our sec-
ond bout of tests using which we wanted to compareVibrate-
Vibrate with other combinations.

Interval Safe Error Rate Fatal Error Rate
(msec) (%) (%)

300 16.667 5.556
400 6.122 4.082
500 10.000 2.000
550 6.250 18.750
600 4.167 8.333
650 4.348 8.696
700 0.000 0.000
750 0.000 0.000
800 0.000 0.000

Table 1. Responses of 20 users when tested for the Vibrate-Vibrate
combination

Comparison Tests and their Interpretation. Based on some
of our initial tests, we found out that the optimal values of
time interval for theFlash-Flash andAll-All combinations were

1000 msecs and 700 msecs, respectively. We then performed
comparison tests to compare theVibrate-Vibrate combination
(with 700 msecs interval),Flash-Flash combination (with 1000
msecs interval),All-All combination (with 700 msec interval)
and theNum-Num combination. Among 20 test volunteers, 60
test cases were performed for each of theFlash-Flash, Vibrate-
Vibrate, All-All andNum-Num combinations. The results of
these comparison tests are depicted in Tables 2 and 3. The tim-
ings shown are averaged over all test runs and include user reac-
tion timings. Unlike our previous tests, we did get some errors
this time. Out of all schemes we tested, users committed the
least amount of safe errors, in fact none, when using theNum-
Num combination. TheNum-Num combination also turned
out be the fastest. With theAll-All combination, the fatal er-
rors were the lowest, around 1.67%. TheVibrate-Vibrate and
Flash-Flash combinations both showed some amount of safe
as well as fatal errors, with number of errors with theVibrate-
Vibrate combination being on the lower side.

Users were also asked to give a qualitative ranking of which
output combination they found to be the easiest to use. About
54% of the test subjects foundVibrate-Vibrate to be the best,
while about 36% pickedNum-Num and only about 9% selected
All-All. None of the subjects ratedFlash-Flash the best.

The above test results and user feedback indicate thatnone
of the schemes can be termed as a sole winner.All-All andNum-
Num turned out to be more or less complementary to each other
– All-All has the lowest fatal error rate whileNum-Num has
the lowest safe error rate. This means that feeding in three si-
multaneous outputs to the users as inAll-All does help users
to catch a non-matching instance more accurately, however,it
also distracted them in detecting a matching instance. Anal-
ogously,Num-Num turned out to be quite easy for the users
to detect a matching instance, however, it also made them too
lax at times and made them miss some non-matching instances.
Flash-Flash andVibrate-Vibrate on the other hand, showed
intermediary error rates, with users missing a few matchingas
well as a few non-matching instances. While there were some
exceptions, users generally stated that they found the visual-only
output ofFlash-Flash difficult to focus on and the multiple out-
puts ofAll-All to be distracting. On the other hand, users found
that the tactile feedback ofVibrate-Vibrate demanded less at-
tention and was easier to keep track of.

5 Conclusion

Based on the results obtained, we make the following con-
clusions regarding the applicability ofVibrate-Vibrate, Flash-
Flash, All-All andNum-Num combinations to pairing two de-

5



Interval ← 700ms→ ← 700ms→ ← 700ms → ← 700ms → ← 700ms →

Bits 1 0 1 1 0
flash& darkness& flash& flash& darkness&

Bit Signal vibration& stillness& vibration& vibration& stillness&
beep silence beep beep silence

Figure 3. Encoding for All-All using a sleep interval of 700 msec

Combination Average Timing Safe Error Fatal Error
Rate Rate

(sec) (%) (%)

Vibrate-Vibrate 14.3 3.333 5.000
Flash-Flash 18.0 8.333 10.000

All-All 15.2 10.000 1.667
Num-Num 2.1 0.000 9.091

Table 2. Responses of 20 users when tested for the Vibrate-Vibrate,
Flash-Flash, All-All and Num-Num combinations

Combination Ranked Ranked Ranked Ranked
#1 #2 #3 #4
(%) (%) (%) (%)

Vibrate-Vibrate 54.55 9.09 36.36 0.00
Flash-Flash 0.00 45.45 18.18 36.36

All-All 9.09 27.27 18.18 45.45
Num-Num 36.36 18.18 27.27 18.18

Table 3. Responses of 20 users when tested for the Vibrate-Vibrate,
Flash-Flash, All-All and Num-Num combinations

vices which have decent quality output interfaces. Clearly, no
single scheme is a true winner. In practice, we will most likely
encounter both safe as well as fatal errors while using any
of these combinations. Since most users did not likeFlash-
Flash that much and sinceFlash-Flash suffered from both
safe as well as fatal errors, we believe that it is not a good
choice. This leaves us withVibrate-Vibrate, All-All andNum-
Numcombinations. We noticed thatAll-All andNum-Num are
complementary to each other in terms of errors –All-All has
very few (in fact, the fewest of all) fatal errors whileNum-Num
has very few safe errors. This means thatAll-All is probably
the safestof all combinations, as it is easy to detect any non-
matching instances (potentially arising due to attacks) using All-
All. On the contrary,Num-Num makes it easier for the users to
detect matching instances, however, it tends to make users too
lax and accept a few non-matching instances as well. Based on
our testing using the comparison of 4-digits inNum-Num, we
believe that it might be risky to use it as it is. Perhaps compar-
ison of longer (say, 6-digit long) numbers would help in reduc-
ing fatal errors with respect toNum-Num[16] as these would
require the users to be more attentive.

The combination that most users preferred wasVibrate-
Vibrate, although it showed slightly higher safe error rates than
Num-Num and sightly higher fatal error rates thanAll-All. Un-
doubtedly, our results indicate thatVibrate-Vibrate is most us-
able. We feel that since users like this scheme so much, it might
help in improving its security and yield much lower error rates
in practice. Of course,Vibrate-Vibrate is only applicable to
pairing two devices with vibration capabilities (phones, game
controllers, etc.). On a positive side, however,Vibrate-Vibrate

is a good (and by far the only “noise-less”) choice for bootstrap-
ping communication between devices of two visually impaired
people. Recall that theBlink-Blink combination of [10] was
shown to be highly error prone because it is hard for users to
determine the actual source(s) of “beeping”.

In our future work, we plan to test the schemes presented
in this paper more rigorously and also compare them with the
scheme of [4].

References

[1] D. Balfanz, D. Smetters, P. Stewart, and H. C. Wong. Talking to strangers:
Authentication in ad-hoc wireless networks. InNDSS, 2002.

[2] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. InEUROCRYPT, 2001.

[3] I. Goldberg. Visual Key Fingerprint Code, 1996. Available at
http://www.cs.berkeley.edu/iang/visprint.c.

[4] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E.Uzun. Loud
and Clear: Human-Verifiable Authentication Based on Audio.In ICDCS,
2006.

[5] S. Laur, N. Asokan, and K. Nyberg. Efficient mutual data authentication
based on short authenticated strings. IACR Cryptology ePrint Archive:
Report 2005/424, 2005.

[6] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using
camera phones for human-verifiable authentication. InIEEE Symposium
on Security and Privacy, 2005.

[7] S. Pasini and S. Vaudenay. SAS-Based Authenticated Key Agreement. In
PKC, 2006.

[8] A. Perrig and D. Song. Hash visualization: a new technique to improve
real-world security. InCrypTEC, 1999.

[9] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device
pairing based on a visual channel. InIEEE Symposium on Security and
Privacy (ISP’06), short paper, 2006.

[10] N. Saxena and R. Prasad. Efficient device pairing using human-
comparable audiovisual patterns. InSubmission,http://cis.poly.
edu/ ˜ nsaxena/docs/sr07.pdf , 2007.

[11] C. Soriente, G. Tsudik, and E. Uzun. BEDA: Button-Enabled Device As-
sociation. InIWSSI, 2007.

[12] C. Soriente, G. Tsudik, and E. Uzun. HAPADEP: Human Asisted Pure
Audio Device Pairing. Ineprint, 2007.

[13] F. Stajano and R. J. Anderson. The resurrecting duckling: Security issues
for ad-hoc wireless networks. InSecurity Protocols Workshop, 1999.

[14] Stanislaw Jarecki and Nitesh Saxena. Encryption-based authenticated key
agreement using short authenticated strings. InSubmission, 2007.

[15] J. Suomalainen, J. Valkonen, and N. Asokan. Security associations in
personal networks: A comparative analysis. InESAS, 2007.

[16] E. Uzun, K. Karvonen, and N. Asokan. Usability analysisof secure pairing
methods. InUSEC, 2007.

[17] S. Vaudenay. Secure communications over insecure channels based on
short authenticated strings. InCRYPTO, 2005.

6


