
Universal Device Pairing using an Auxiliary Device

Nitesh Saxena
Polytechnic University
Brooklyn, NY 11201
nsaxena@poly.edu

Md. Borhan Uddin
Polytechnic University
Brooklyn, NY 11201

borhan@cis.poly.edu

Jonathan Voris
Polytechnic University
Brooklyn, NY 11201

jvoris@cis.poly.edu

ABSTRACT

The operation of achieving authenticated key agreement between

two human-operated devices over a short-range wireless communi-

cation channel (such as Bluetooth or WiFi) is referred to as “Pair-

ing”. The devices in such a scenario are ad hoc in nature, i.e., they

can neither be assumed to have a prior context (such as pre-shared

secrets) with each other nor do they share a common trusted on- or

off-line authority. However, the devices can generally be connected

using auxiliary physical channel(s) (such as audio, visual, etc.) that

can be authenticated by the device user(s) and thus form a basis for

pairing.

One of the main challenges of secure device pairing is the lack

of good quality output interfaces as well as corresponding receivers

on devices. In [13], we presented a pairing scheme which is uni-

versally applicable to any pair of devices (such as a WiFi AP and

a laptop, a Bluetooth keyboard and a desktop, etc.). The scheme

is based upon the device user(s) comparing short and simple syn-

chronized audiovisual patterns, such as “beeping” and “blinking”.

In this paper, we automate the (manual) scheme of [13] by making

use of an auxiliary, commonly available device such as a personal

camera phone. Based on a preliminary user study we conducted,

we show that the automated scheme is generally faster and more

user-friendly relative to the manual scheme. More importantly, the

proposed scheme turns out to be quite accurate in the detection of

any possible attacks.

Keywords

Distributed Protocols, Mobile/Ad-Hoc Systems, Authentication, Se-

curity.

1. INTRODUCTION
Short-range wireless communication, based on technologies such

as Bluetooth andWiFi, is becoming increasingly popular and promises

to remain so in the future. With this surge in popularity comes an

increase in security risks. Wireless communication channels are

easy to eavesdrop upon and manipulate. Therefore, a fundamen-

tal security objective is to secure these communication channels.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2008, July 23–25,
2008, Pittsburgh, PA USA
.

In this paper we will use the term “pairing” to refer to the opera-

tion of bootstrapping secure communication between two devices

connected via a short-range wireless channel. Examples of pair-

ing from day-to-day life include associating a WiFi laptop with an

access point, a Bluetooth keyboard and a desktop, and so on. Pair-

ing would be easy to achieve if there existed a global infrastructure

enabling devices to share an on- or off-line trusted third party, cer-

tification authority, PKI or any pre-configured secrets. However,

such a global infrastructure is close to impossible to come by in

practice, thereby making pairing an interesting and a challenging

real-world research problem.1

A recent research approach to pairing is to use an auxiliary phys-

ically authenticatable channel, called an out-of-band (OOB) chan-

nel, which is governed by humans, i.e., the users operating the de-

vices. Examples of OOB channels include audio and visual chan-

nels. Unlike the wireless channel, an adversary is assumed to be

incapable of modifying messages on the OOB channel. An adver-

sary does have the ability to eavesdrop on, delay, drop and replay

OOB messages, however. A pairing scheme should therefore be

secure against an adversary with these capabilities.

The usability of a pairing scheme based on OOB channels is

clearly of utmost importance. Since the OOB channels typically

have low bandwidth, the shorter the data that a pairing scheme

needs to transmit over these channels, the better the scheme be-

comes in terms of usability.

Various pairing protocols have been proposed so far. These pro-

tocols are generally based on bidirectional automated device-to-

device (d2d) OOB channels. Such d2d channels require both de-

vices to have transmitters and corresponding receivers. In settings

where d2d channel(s) do not exist (i.e., when at least one device

does not have a receiver) and even otherwise, equivalent protocols

can be based upon device-to-human (d2h) and human-to-device

(h2d) channel(s) instead. Depending upon the protocol, only two

d2h channels may be a sufficient replacement. This is the case

when the user has to perform a very simple operation (such as

“comparison”) on the data received over these channels. Clearly,

the usability of d2h and h2d channel establishment is even more

critical than that of a d2d channel.

Earlier pairing protocols required at least 80 to 160 bits of data

to be transmitted over the OOB channel(s). The simplest such pro-

tocol [1] involves devices exchanging their public keys over the

wireless channel and authenticating them by exchanging (at least

80-bit long) hashes corresponding to the public keys over the OOB

channels. The more recent so-called SAS- (Short Authenticated

Strings) based protocols, [8] and [11], reduce the length of data

1The problem has been at the forefront of various recent standard-
ization activities, see [20].



transmitted over the OOB channels to approximately 15 bits.2

Based on the protocols listed above, a number of pairing schemes

with various OOB channels have been proposed. These include

schemes based on two bidirectional d2d infra-red channels [1],

two bidirectional d2d visual channels consisting of barcodes and

photo cameras [10], a unidirectional d2d visual channel consisting

of blinking LED and video camera plus a unidirectional d2h chan-

nel consisting of a blinking LED and a unidirectional h2d chan-

nel [15], and two audio/visual d2h channels consisting of MadLib

sentences and displayed text [7]. In addition, the SAS protocols

trivially yield pairing schemes involving two bidirectional d2h and

h2d channels – the user reads 15 bits of data displayed on one de-

vice and inputs it on the other, and vice versa. Most recently, [21]

performed user studies of pairing schemes based on user comparing

the data transmitted over two independent d2h SAS channels.

The aforementioned schemes have varying degrees of usability

and are applicable to different device combinations. However, all

the above schemes become inapplicable in pairing scenarios where

1. both devices do not have good quality transmitters (such as

displays, speakers, etc.), and

2. both devices do not have the necessary receivers (such as

cameras, microphones, etc.).

Notice that pairing scenarios involving most common commer-

cial devices, such as laptops and access points, would fall into this

category.

A very recent proposal, [17], focuses on pairing two devices with

the help of “button presses” by the user. The scheme can be used

to pair devices with minimal hardware interfaces (only an LED and

a button are required) using one of the SAS protocol. However, as

we discuss in the next section and as indicated in the results of [17],

the scheme is a bit slow.

In [13] we presented a pairing scheme universally applicable to

any pair of devices. The scheme can be based on any of the ex-

isting SAS protocols and does not require devices to have good

transmitters or any receivers, that is, just a pair of LEDs is suffi-

cient. The scheme involves users comparing very simple audio-

visual patterns, such as “beeping” and “blinking”, transmitted as

simultaneous streams which form two synchronized d2h channels.

We believe that the universality of a pairing scheme is an advan-

tage in terms of security as well as usability as it can eliminate user

confusion as to what process to follow while pairing the devices.

The results of [13] show that users are indeed able to compare

OOB output using the Blink-Blink and Beep-Blink combinations.

In practice, however, the manual comparison is quite likely to oc-

casionally encounter errors. Though the scheme was designed to

minimize the burden placed on users, they must still devote a sig-

nificant amount of attention to the OOB output during the pairing

procedure.

Our Contributions. We ask a question: would the efficiency, ro-

bustness and usability of the pairing process improve if users could

make use of an auxiliary device to compare the audiovisual OOB

patterns instead of manually comparing them as done in [13]? An

example of such a commonly available auxiliary device is a per-

sonal camera phone. We answer this question affirmatively and

present an automated version of the scheme of [13].

In our new scheme the auxiliary device does not need to be

trusted with respect to any cryptographic data or shared secrets,

2For the SAS-based authentication and related prior work, refer to
[22].

nor does it need to communicate (over any in-band wireless chan-

nel) with the two devices being paired. Based on a user study we

conducted, we show that the automated scheme is generally faster

and more user-friendly as compared to the manual scheme. More

importantly, the scheme turns out to be quite safe in that it has no

false negatives. The proposed scheme is universally applicable to

pairing any set of devices (such as access points, keyboards, and

other devices that lack any displays) given a suitable auxiliary de-

vice.

Our contributions are twofold. First, we present the design and

implementation of a scheme to automate the comparison of audio-

visual patterns. Second, we evaluate this scheme via a usability

study.

Organization. The rest of this paper is organized as follows. In

Section 2, we review prior pairing schemes. In Section 3, we de-

scribe the security model and summarize relevant protocols. In

Section 4, we present our scheme, followed by a description of its

design and implementation. Finally, the results of our user tests are

presented in Section 5.

2. RELATED WORK
There exists a significant amount of prior work on the general

topic of pairing.

In their seminal work, Stajano, et al. [19] proposed to establish

a shared secret between two devices using a link created through

a physical contact (such as an electric cable). In many settings,

however, establishing such a physical contact might not be possible,

for example, the devices might not have common interfaces to do so

or it might be too cumbersome to carry the cables along. Balfanz, et

al. [1] extended this approach through the use of infrared as a d2d

channel – the devices exchange their public keys over the wireless

channel followed by exchanging (at least 80-bits long) hashes of

their respective public keys over infrared. The main drawback of

this scheme is that it is only applicable to devices equipped with

infrared transceivers.

Another approach taken by a few research papers is to perform

the key exchange over the wireless channel and authenticate it by

requiring the users to manually and visually compare the estab-

lished secret on both devices. Since manually comparing the es-

tablished secret or its hash is cumbersome for the users, schemes

were designed to make this visualization simpler. These include

Snowflake mechanism [6] by Levienet et al., Random Arts visual

hash [12] by Perrig et al. etc. These schemes, however, require

high-resolution displays and are thus only applicable to a limited

number of devices, such as laptops.

Based on the pairing protocol of Balfanz et al. [1], McCune et

al. proposed the “Seeing-is-Believing” (SiB) scheme [10]. SiB in-

volves establishing two unidirectional visual d2d channels – one

device encodes the data into a two-dimensional barcode and the

other device reads it using a photo camera. Since the scheme re-

quires both devices to have cameras, it is only suitable for pairing

devices such as camera phones.

Goodrich, et al. [7], proposed a pairing scheme based on “MadLib”

sentences. This scheme also uses the protocol of Balfanz et al. The

main idea is to establish a d2h channel by encoding the data into a

MadLib sentence. Device A encodes the hash of its public key into

a MadLib sentence and transmits this over a d2h channel (using a

speaker or a display); device B encodes the hash of the (received)

public key from device A into a MadLib sentence and transmit this

over a d2h channel (using a speaker or a display); the user reads

and compares the data transmitted over the two d2h channels, and

vice versa. The scheme, as proposed in the paper, requires four



d2h channels and the user needs to perform two comparisons. This

is quite slow and tedious for the user. One can trivially improve

the scheme by using a slightly modified protocol, the one where

devices exchange the hash (of size at least 160-bits) of the con-

catenation of both public keys, after exchanging their public keys.

The modified scheme would then require only one user compari-

son. Note that, however, the scheme is not applicable to pairing

scenarios where one of the devices does not have a display or a

speaker.

Note that the previously described schemes, with trivial modifi-

cations, can (and should) all be based upon one of the SAS pro-

tocols [8], [11]. Since the SAS protocols require only 15-bits of

data to be transmitted over the OOB channel, such a migration will

immensely improve the efficiency as well as the usability of these

schemes.

Saxena et al. [15] proposed a new scheme based on visual OOB

channel. The scheme uses one of the SAS protocols [8], and is

aimed at pairing two devices A and B (such as a cell phone and

an access point), only one of which (say B) has a relevant receiver

(such as a camera). First, a unidirectional d2d channel is estab-

lished by device A transmitting the SAS data, e.g., by using a blink-

ing LED and device B receiving it using a video camera. This is

followed by device B comparing the received data with its own

copy of the SAS data, and transmitting the resulting bit of compar-

ison over a d2h channel (say, displayed on its screen) . Finally, the

user reads this bit transmitted and accordingly indicates the result

to device A by transmitting a bit over an h2d input channel.

A very recent proposal, [17], focuses on pairing two devices with

the help of “button presses” by the user. The scheme described in

the paper is based upon a protocol that first performs an unauthen-

ticated Diffie-Hellman key agreement and then authenticate the es-

tablished key using a short password. Such a short password can

be agreed upon between the two devices via three variants using

button presses. The first variant involves the user simultaneously

pressing buttons on both devices within certain intervals and each

of these intervals are used to derive 3-bits of the password (and thus

with 5 button presses, the user is able to inputs the same password

on both devices). In the other two variants, one device picks up

a short password, encodes each 3-bit block of the password into

the delay between consecutive flashing of the device’s screen or its

vibration. As one device flashes or vibrates, the user presses the

button on the other device thereby transmitting the password from

one device to another.

One drawback with the above scheme, as described in [17], is

that its security is based upon the secrecy of the agreed upon pass-

word. At least the button presses and the flashing of the screen can

possibly be recorded by a video camera and therefore, the secrecy

of the password is not guaranteed. The scheme, however, can eas-

ily be based upon a SAS protocol in a straight-forward manner and

be used for pairing devices which do not have good transmitters or

receivers. Assuming that both devices have an LED and a button

each, we can have them transmit their SAS values by blinking of

the LED (on one device) and pressing of button (on the other) and

vice versa. Unfortunately, this would be quite slow – to transmit a

15-bit SAS value, it will take about a minute in each direction (see

the results of the scheme called “D-To-B” in [17]; users can pos-

sibly not perform simultaneous “blink-press” faster than 3-4 sec-

onds). One could apply the protocol variant of Saxena et al. [15] to

avoid transmission of SAS in the other direction thereby reducing

the execution time to close to a minute.

Uzun et al. [21] carry out a comparative usability study of simple

pairing schemes. They consider pairing scenarios where devices

are capable of displaying 4-digits of SAS data. In what they call

the “Compare-and-Confirm” approach, the user simply reads and

compares the SAS data displayed on both devices. The “Select-

and-Confirm” approach, on the other hand, requires the user to se-

lect a 4-digit string (out of a number of strings) on one device that

matches with the 4-digit string on the other device. The third ap-

proach, called “Copy-and-Confirm”, requires the user to read the

data from one device and input it onto the other. These schemes are

undoubtedly simple, however, the results of [21] seem to indicate

that Select-and-Confirm and Copy-and-Confirm are error prone.

In [18], authors consider the problem of pairing two devices

which might not share any common wireless communication chan-

nel at the time of pairing, but do share only a common audio chan-

nel.

In [13] we presented a pairing scheme universally applicable

to any set of devices, irrespective of hardware limitations. The

scheme can be based on any of the existing SAS protocols and

does not require devices to have good transmitters or any receivers,

e.g., only a pair of LEDs is sufficient. The scheme involves users

comparing very simple audiovisual patterns, such as “beeping” and

“blinking”, which are transmitted as simultaneous streams to form

two synchronized d2h channels. Recall that we present an auto-

mated version of this scheme in this paper.

In an independent result [14], the authors present a scheme sim-

ilar to the “blinking” scheme we presented in [13]. The scheme of

[14] is aimed at the detection of “evil twin” access points in cafés,

airport lounges, etc. The two schemes, however, differ significantly

in their implementation and therefore in terms of user experience.

Firstly, in the scheme of [14], the user controls the time period

during which she compares each bit of the SAS data, by pressing

and releasing a button on her device. The scheme of [13], on the

other hand, is automatic in that this time period is a pre-determined

experimental value. Secondly, in [14], the user’s device needs to

trigger the display of next bit on the other device by sending it a

signal over the wireless channel. This requires k such signals for

a k-bit long SAS and the user needs to verify whether or not these

signals are delayed, dropped or injected. This is unlike the scheme

of [13], where only one synchronization signal is sent between the

two devices.

The use of an auxiliary device to provide security functionalities

has been previously proposed, e.g., in [2, 9, 23, 5]. However, to the

best of our knowledge, the use of auxiliary device in device pairing

has not been suggested prior to this paper. In addition, unlike prior

proposals [2, 9, 23, 5], our scheme does not require the auxiliary

device to communicate with other devices, nor does it require it to

be trusted with respect to any cryptographic keys.

3. SECURITY MODEL AND APPLICABLE

PROTOCOLS
Our pairing protocols are based upon the following communica-

tion and adversarial model [22]. The devices being paired are con-

nected via two types of channels: (1) a short-range, high-bandwidth

bidirectional wireless channel and (2) one or more auxiliary low-

bandwidth physical OOB channel(s). Based on the type of devices

being used, the OOB channel(s) can be device-to-device (d2d),

device-to-human (d2h), or human-to-device (h2d). An adversary

attacking the pairing protocol is assumed to have full control of

the wireless channel, namely, he or she can eavesdrop, delay, drop,

replay and modify messages. On the OOB channel, the adversary

can eavesdrop, delay, drop, replay and re-order messages; however,

it can not modify them (it is important to note that given a binary

string ‘s’ over the SAS channel, the adversary can delay/replay the

whole of s, but not its individual bits). In other words, the OOB



channel is assumed to be an authenticated channel.

The security notion applied to a pairing protocol in this setting is

adopted from the model of authenticated key agreement by Canneti

and Krawczyk [3]. In this model, a multi-party setting is considered

wherein a number of parties simultaneously run multiple/parallel

instances of pairing protocols. In practice, however, it is reasonable

to assume that there are only two parties running just a few serial

or parallel instances of the pairing protocol. For example, during

the authentication of an ATM transaction there are only two parties,

namely the ATM machine and a user. Further, the user is restricted

to only three authentication attempts. The security model does not

consider denial-of-service (DoS) attacks. Note that with a wireless

channel explicit attempts to prevent protocol-level DoS attacks are

not useful because an adversary can simply launch an attack by

jamming the wireless signal.

To date, two three-round pairing protocols based on short au-

thenticated strings (SAS) have been proposed: [11] and [8]. We

depict the protocol of [11] in Figure 1. In a communication setting

involving two users restricted to running three instances of the pro-

tocol these SAS protocols need to transmit only k (= 15) bits of

data over the OOB channel. As long as the cryptographic primitives

used in the protocol are secure, an adversary attacking one of these

protocols can not win with a probability significantly higher than

2−k (= 2−15). This gives us security equivalent to that provided

by 5-digit PIN-based ATM authentication.

Similar to the scheme of [13], which requires the user(s) to man-

ually compare the SAS strings transmitted in the form of “beeping”

and/or “blinking”, our automated scheme can also be based on any

of the existing SAS protocols. This is because in each of these pro-

tocols the SAS messages are computed as a common function of

the public keys and/or random nonces exchanged during the pro-

tocol. Thus the authentication is based upon whether the two SAS

messages match or not (see Figure 1, [8]).

4. AUTOMATED COMPARISON OF AUDIO-

VISUAL PATTERNS
Manual comparison of SAS data can be achieved using two com-

binations which we will refer to as Blink-Blink and Beep-Blink
[13]. Basically, for the Blink-Blink combination both devices trans-

mit their SAS data via a “blinking” LED. For the Beep-Blink com-

bination one device encodes its SAS data using a “blinking” LED

and the other encodes its SAS data using “beeping” through a speaker.

In both combinations the SAS data is transmitted in a synchro-

nized fashion for the user to compare. This synchronization can

be achieved by one device sending a signal to the other over the

wireless channel. Since this synchronization signal can be delayed,

each d2h channel also requires an “END” marker which indicates

the end of the SAS data. The two END markers also need to be

compared by the user.

In this paper we build automated versions of these two schemes

which we call Blink-Blink and Audio-Blink. The encoding of SAS

data in these setups is performed in a manner very similar to the

manual version of the scheme but the decoding and comparison of

SAS data is performed by an “Auxiliary Third Device” (ATD), such

as a camera phone, which possesses a video camera to capture the

blinking LEDs and a microphone to capture the audio output.

1. “Blink-Blink”. This combination requires both devices to have

visual transmitters, the simplest of which are LEDs. In cases where

the devices have good displays, one could use the whole screen or

a part of it as a transmitter. The two devices encode their respective

SAS strings into blinks of a green LED – a ‘1’ bit corresponds to

a “ON" period and a ‘0’ bit to an “OFF" period. The two devices

also encode the END markers by lighting up a red LED. The aux-

iliary device ATD captures the blinking LEDs using an on-board

video camera, then decodes the SAS strings and compares them as

well as the synchronization bits. The result of the SAS and SYNC

comparison is indicated to the user, who then accepts or rejects the

pairing session on both of the devices being paired.

2. “Audio-Blink”. This combination requires one device to have

an audio transmitter and the other to have a visual transmitter. One

device, A, encodes its SAS data using two types of sounds S1,

S2(‘0’/‘1’) and the END marker using sound S3, and the other de-

vice, B, encodes its SAS information through a blinking green LED

and represents the END marker by lighting up a red LED. The ATD
captures the blinking LEDs using its video camera and the sounds,

S1,S2 and S3, using its microphone. It then decodes the two SAS

strings and compares them as well as the synchronization bits. The

result of the SAS and SYNC comparison is indicated to the user,

who then accepts or rejects the pairing session on the two devices

being paired.

The security of our scheme is equivalent to the security of the un-

derlying SAS protocol under the assumption that the user correctly

transfers the result of comparison from the ATD to the two devices

being paired. Note that the ATD does not need to be trusted with

respect to any cryptographic secret data, nor does it need to com-

municate with the two devices being paired. The ATD only needs

to possess the correct software (for decoding and comparison of

captured data) and hardware (a camera and/or a microphone, in ad-

dition to a display and/or a speaker).

5. DESIGN AND IMPLEMENTATION
In this section, we describe the design and implementation of our

pairing schemes using the automated Blink-Blink and Audio-Blink
combinations.

5.1 Hardware Requirements on Devices
For the Blink-Blink setup, the two pairing devices require trans-

mitters in the form of two LEDs each. The ATD requires a good

quality video camera as a receiver as well as a screen to present the

result of the pairing operation to the user. In the Audio-Blink setup,

the necessary transmitters are two LEDs on one pairing device and

a speaker on the other. Therefore, in the Audio-Blink setup the

ATD requires both a camera and a microphone as receivers. In ad-

dition, the ATD must have a screen or speaker to inform its user of

the outcome of the pairing operation. Since it already has a video

camera and a screen, such a device could also be used as a compos-

ite ATD to work with both the Blink-Blink and Audio-Blink setups.

As a practical point, an ATD with “capturing” interfaces (such as a

camera or microphone) and output interfaces (including a screen or

speaker) on opposite sides of the device (as is the case with tradi-

tional cameras) are advantageous in terms of pairing usability.

Note that a crucial design element of our scheme is that the ATD
does not need to communicate (over any wireless channel) with the

devices being paired.

5.2 The Setup
Instead of working with real devices we chose to use the fol-

lowing simulated setup. We implemented both the Blink-Blink and

Audio-Blink combinations using a simulator written in Microsoft

Visual C#. The simulator has two components. The first is for

transmitting the SAS data encoded as “blinking” and/or “speaking

audio”. The second part simulates the role of the ATD by auto-

detecting the transmission, capturing, and comparison of the trans-

mitted data, as well as outputting the pairing result on a screen or



A B

Pick RA ∈ {0, 1}k

(cA, dA)← commit(pkA, RA)
pkA,cA

//

Pick RB ∈ {0, 1}k

pkB ,RB
oo

dA
//

SASA = RB ⊕HRA
(pkB)

SASA
+3

RA ← open(pkA, cA, dA)
SASB = RB ⊕HRA

(pkB)
SASB

ks

Accept pkB as B’s public key if Accept pkA as A’s public key if

SASB = RB ⊕HRA
(pkB) SASA = RB ⊕HRA

(pkB)

←→: the wireless channel
⇐⇒: the OOB channel
pkA, pkB : (Diffie-Hellman) public keys of devices A and B
commit() and open(): functions of a commitment scheme based on random oracle model
H(): hash function drawn from an almost universal hash function family

Figure 1: The SAS protocol of [11]

through the speaker. To simulate the ATD we used a DELL Vostro

1500 laptop (Intel Core 2 Duo 1.6 GHz; 2 GB RAM) with a DELL

Laptop Integrated webcam and microphone (see Figure 2). The we-

bcam has 640×480 resolution and its frame rate is 30 frames per

second. The integrated microphone and speaker of the laptop use

the Sigmatel audio driver.

Figure 2: Audio-Visual Receiver of ATD: Laptop Camera and

Microphone

To simulate the blinking devices performing the SAS transmis-

sion we set up 2 LEDs per blinking device on a breadboard (see

Figure 4 for the Blink-Blink set-up) and integrated it with a desk-

top computer (Intel Xenon 1.8 GHz; 1 GB RAM) through a paral-

lel port (DB25 connector). The Microsoft Windows “inpout32.dll”

file was used to send data to the LEDs through the parallel port.

We also needed a speaker to replicate the device’s audio transmit-

ter. The speaker was connected to the desktop machine’s standard

audio output. SAS data was encoded into audio output using the

Microsoft SAPI 5.0 Text-To-Speech (TTS) engine, which repre-

sented bits as spoken English words (‘one’ for 1, ‘zero’ for 0 and

’stop’ for END marker). Refer to Figure 3 for a picture of overall

Blink-Blink and Audio-Blink setup.

Figure 3: The Overall Setup of Blink-Blink and Audio-Blink

The simulated ATD’s receiver was programmed using the Mi-

crosoft Windows “avicap32.dll” file to capture streaming video.

The laptop webcam was set to preview mode so that video frames

were transferred to the video stream buffer as soon as they were

captured. For fast frame processing, the ATD simulation applica-

tion locked the frame buffer and accessed it using direct memory

references of pixel locations. The Microsoft Speech API (SAPI)

5.0 Speech Recognition (SR) engine was used to decode the incom-

ing audio. The C#, “Environment.TickCount” variable was used to

track the elapsed time on both devices.

5.3 The Role of the User
In our pairing scheme, the role of the user is limited to simply

initiating the pairing process by pressing a button on one of the

devices being paired, adjusting the camera or microphone of the

ATD to focus on the transmitters of the devices being paired, and

finally accepting or rejecting the pairing instance based on the out-

put shown on the screen and/or output from the speaker of the ATD.

The pairing process can be completed with the following steps for



Figure 4: Set-up of Blink-Blink Transmitter: display of two

devices on a Breadboard

both the Blink-Blink and Audio-Blink combinations:

1. The user presses a button on one of the pairing devices to

start the execution of the SAS protocol.

2. When the devices are done with their SAS computation, they

show their ready state (by lighting their (RED) signal LED(s))

to transmit SAS data.

3. The user adjusts the ATD’s receiver(s) to focus on the trans-

mitters of the pairing devices and activates the ATD receiver(s)

by pressing a ready button on the ATD.

4. The user presses another button on one of the pairing devices,

causing them to simultaneously transmit their SAS data.

5. The ATD detects the beginning of the SAS transmission spon-

taneously and captures the data from the transmitters of both

pairing devices. At the end of the protocol session, the ATD
decodes and compares the received data. If both the SAS data

and the END markers sent by the two pairing devices match,

the ATD outputs “Accept”, otherwise it outputs “Reject”.

6. Based on the Accept/Reject result indicated by the ATD, the

user accepts or rejects the pairing instance for the two de-

vices by pressing the appropriate buttons on both the pairing

devices.

5.3.1 Blink-Blink: Encoding using “Blinking” LEDs

For the Blink-Blink combination, each pairing device is equipped

with two LEDs which act as transmitters – one data LED and one

synchronization (SYNC) LED. The data LED is used for SAS data

transmission, while the SYNCLED is used to send the END marker.

This marker is used at the beginning and end of SAS transmis-

sion to protect against delay attacks. The data and SYNC LEDs

are of distinct colors. A green LED is used to send data and a

red LED is used to transmit SYNC information. Thus a glowing

green LED indicates a data bit of ‘1’ and an unlit green LED rep-

resents a data bit of ‘0’. A glowing red LED, shown at the end of

the SAS transmission, indicates presence of a SYNC bit. The red

LED is also lit up prior to sending SAS data to inform users that

the device has performed the necessary calculations and is ready

to display its data. After completing the SAS data calculation, the

devices being paired issue a ready signal by turning on their red

LEDs. Next, the user turns on the ATD’s camera, focuses it on the

lit LEDs of the pairing devices, and presses a button on the ATD’s

camera to make it “ready” and enable video streaming. The user

then presses a button on one of the pairing devices. This causes

both devices performing the pairing to start transmitting their SAS

data simultaneously through their green LEDs. Each frame of cap-

tured blinking LED video requires an experimentally determined

value of 250 milliseconds to be successfully captured by the ATD’s

video camera. The data transmission is preceded by two additional

video frames. We call the first of these “All-OFF”. In this frame the

data and SYNC LEDs of both pairing devices are in the OFF state

(that is, not lit up). The second preliminary is dubbed “All-ON”.

In this frame all of both devices’ LEDs are in the ON state (that

is, lit up). Both these frames are needed for the receiver to learn

where the devices’ LEDs are located in the environment. There-

fore, in order to transmit 15 bits of SAS data and one SYNC bit a

total of 18 frames are required. This results in a transmission time

of 250× 18 = 4500 ms = 4.5 sec.

5.3.2 Auto Detection of “Blinking” Data Transmis-
sion

Prior to the first frame of data transmission (All-OFF) being de-

tected, the video frames are “fast processed”. This is a single pass

process works using pre-adjusted threshold values. In other words,

no threshold value adjustment takes place during fast processing.

As such, it takes only 0-16 milliseconds of processing time per

frame, which is less than the frame streaming rate (i.e., ≥ 33.33

milliseconds per frame). During this phase the threshold values are

pre-adjusted in such a manner that the capturing of video frames

(saving frames to memory from the video stream buffer) is deter-

ministically triggered after the detection of data transmission. This

occurs correctly when the pairing devices are within a certain dis-

tance of the ATD’s inputs (about 2-3 feet).

The ATD’s camera detects the beginning of data transmission by

continuously monitoring the incoming video stream frames from

the beginning of its ready state, which is indicated by the glowing

of the red LED on each of the two pairing devices. Starting from

the ready state all video frames are monitored to detect the All-OFF

state of the LEDs of the devices being paired. If an LED switches

from its OFF state to its ON state, its luminance increases while

its saturation decreases, and vice versa. This property was used

to detect the transition of the pairing device’s LEDs from the ready

state to the All-OFF state. The luminance (lum) and saturation (sat)

of each pixel of each video frame is measured using the following

algorithm, as depicted in [4].

_______________________________________________________

Get the RBG values to the range 0-255

Find min and max values of R, B, G

L = (maxcolor + mincolor)/2

if(maxcolor==mincolor)

S=0;

elseif(L < 128)

S=((maxcolor-mincolor)*256)/(maxcolor+mincolor)

elseif(L >= 128)

S=((maxcolor-mincolor)*256)/(256*2-maxcolor-mincolor)

_______________________________________________________

When the user presses the “start session” button on the ATD, the

camera takes the first frame (which captures the ready state with

the red LEDs of the pairing devices turned on) and measures the

saturation and luminance of each pixel of the frame. These mea-

surements are stored in two byte arrays, one for luminance and the

other for saturation. For each subsequent incoming frame, the lum

and sat of each pixel are measured and compared against the ready

state’s lum and sat values for the same pixel. If a pixel matches

the criteria for transition from the ON state to the OFF state (an

increase in sat over the threshold value of SAT_TH and a decrease

of lum by at least LUM_TH) the corresponding pixel is compared



to groups of transitioning pixels within a certain proximity to each

other. If there is a match with any existing groups, the pixel count

of that group is incremented; otherwise a new group is created. So,

after a single pass over all the pixels in a frame, the total number

of groups created and their corresponding member counts is calcu-

lated.

Occasionally there are transient changes of luminance or satura-

tion in small areas of video frames without any viable cause (i.e.,

no LED is actually present) which may cause a group to be created.

However, a glowing LED will have a group with a larger member

count of pixels than such anomalies. The groups with a number of

members smaller than a threshold value MEM_COUNT_TH must

thus be filtered out. Therefore, we end up with the total count of

groups with more members than MEM_COUNT_TH. If the num-

ber of observed groups that meet this threshold condition is equal

to the number of LEDs which changed their state from ON to OFF

(i.e., that transitioned from the ready state to the All-OFF state)

we know that we have received the All-OFF frame. This process-

ing must be performed for every frame until the All-OFF frame is

detected.

When the All-OFF frame is detected, the timestamps of future

frames are pre-calculated by adding the transmission frame interval

value to the base timestamp of the All-OFF frame. This value is cal-

culated as follows: (250 milliseconds)×current_frame_position.

The rest of the frames are captured at their corresponding times-

tamps as tracked by the C# “Environment.TickCount” variable.

5.3.3 Decoding of Blinking Data from Captured Video
Frames

After the capturing of all the required frames is complete, the

captured frames are “fine processed” to extract their SAS data. The

number of LEDs present is determined via analysis of the All-OFF

and All-ON frames based on their maximum color difference for all

the pixels, max(dR, dG, dB). This process is performed by build-

ing bit strings based on the threshold value for max(dR, dG, dB)
for each row of pixels. Consecutive or adjacent ‘1’ values in the bit

strings, over a certain threshold, indicate the presence of an LED.

This technique is described in greater detail in [16].

If the calculated LED count does not match the actual amount of

LEDs, the threshold for max(dR, dG, dB) is adjusted. The LED

counting process then starts over with this new threshold. This

process continues a given number of times, until the LED count

matches the number of LEDs which are actually present. If the ex-

act number of LEDs are detected, the dimension and location of

these LEDs are extracted and stored in memory. The RGB color

values of the LED OFF and ON states are also extracted from the

All-OFF and All-ON frames and stored in memory for use in deter-

mining the state of LEDs in the forthcoming data frames. In these

data frames, only the pixels corresponding to LED locations and

dimensions are explored to detect whether an LED is in its OFF or

ON state. These pixels are matched against the initial RGB values

of the LEDs ON and OFF states. In this way, SAS data is retrieved

exploring the data frames. Similarly, data frames are checked for

red LEDs to be in OFF state and final SYNC frame is checked- if

all the green LEDs are in OFF state and red LEDs are in ON state or

not. If SYNC and data LEDs are not in desired states in all frames,

it is regarded as SYNC failure(natural or malicious). It requires less

than one second for the simulator to decode the blinking data from

all the captured frames.

5.3.4 Audio-Blink: Encoding using Speech

The Microsoft Speech API (SAPI) 5.0 Text-To-Speech (TTS)

engine was used to encode SAS data into speech.3 We used the

English pronunciation of “one” to represent a data bit ‘1’, the En-

glish pronunciation of “zero” for a data bit ‘0’, and the English

pronunciation of “stop” to act as an END marker i.e., a SYNC

bit. During the transmission of the All-OFF and All-ON frames

of the data transmission process, an audio “zero” and an audio

“one” are transmitted respectively. Through preliminary experi-

mentation we determined the time required to accurately transmit

and detect each bit was 400 milliseconds with a SAPI “speech rate”

setting of ‘+8’. It was difficult for the SAPI speech recognizer to

detect the synthesized speech at a speech rate higher than this set-

ting. This time interval, which is slower than the 250 millisecond

interval that was used for Blink-Blink was necessitated by the rela-

tively slower rate at which the SAPI TTS and SR engines could

operate on the SAS data. Thus the Audio-Blink setup requires

400× 18 = 7200 ms = 7.2 sec of transmission time.

5.3.5 Decoding of Speech

We used the Microsoft SAPI Speech Recognizer (SR) to detect

the SAS data transmitted as English speech. We created a gram-

mar containing three rules to recognize the spoken words “one”,

“zero” and “stop”. After detecting the captured speech, it is then

converted to a bit string. The speech decoding is done by an event

generator which detects each separate word and “live decodes” the

English words into a bit string. The timing of each bit is compared

to its calculated expected arrival time. If a transmitted bit is delayed

beyond a certain threshold value as determined by the SR engine’s

delay tolerance, the corresponding bit will cause a SYNCmismatch

to be reported as the result of the pairing process. Thus, a delayed

SYNC bit is detected by comparing an observed bit’s arrival time

to its anticipated arrival times, while a missing SYNC bit is caught

by monitoring for absence of the “STOP” signal.

5.3.6 Indicating the Result of Comparison

The result of the comparison of the SAS data and SYNC bits,

and thus whether the pairing succeeded or failed, is displayed on

the screen of the ATD for both the Blink-Blink and Audio-Blink se-

tups. For the Audio-Blink setup the result is also “spoken” through

audio by the TTS engine on the ATD. The pairing procedure is

successful if all of the OOB signals from the two devices being

paired match. The OOB SAS data signals and SYNC signals must

all match in order for the pairing instance to be considered a suc-

cess. A successful pairing instance is indicated to the device user

by drawing a green rectangle across the LEDs of the two devices

whose OOB data matched. A failed pairing instance is presented

to the user by drawing a red rectangle across the LEDs of the two

devices whose OOB signals did not agree. The result of the pairing

process is also provided through a message box and a status bar on

the GUI of the ATD so the device user can easily detect the result.

See figures 5 and 6 for pictures of this output from our implemen-

tation.

5.3.7 User Testing Interface

We implemented a usability testing interface on our device sim-

ulators to measure the usability of the Blink-Blink and Audio-Blink
combinations using an ATD. Each step of user interaction during

the automated pairing process was implemented on our two simu-

lation computers to imitate the actions that would be necessary to

3We tried to train the engine to learn beeping sounds of different
frequencies and later detect them based on the acoustic patterns of
the beep. However, the SAPI is unable to learn and detect acoustic
patterns. It is only able to detect English and a few other common
languages.



Figure 5: Result of the Blink-Blink Setting: “Failed Pairing”

Figure 6: Result of the Audio-Blink Setting: “Successful Pairing”



perform the pairing process on actual devices. Our test implemen-

tation also included the measurement of user timing, that is, the

time it took users to execute the pairing protocol via the simulators.

The result of each testing instance, including this execution time,

was stored in log files for analysis of the usability of the automated

pairing schemes. See figure 7 for an example of the testing GUI.

Figure 7: Automated Transmitter and User Timing Interface

5.3.8 Comparison with the Manual Schemes

Manual versions of the Blink-Blink and Beep-Blink combina-

tions were also implemented (with setup and timing intervals sim-

ilar to those described in [13]). The user testing functionality, as

well as the timing of user pairing, was also implemented. The

recorded user testing data was stored in log files for future analysis

of user preferences and comparison of the automated and manual

device pairing schemes.

5.4 Usability Testing
Despite the automated nature of this scheme, assessing its us-

ability was still an important aspect of the system’s development.

We performed user testing to answer a number of critical questions

regarding the automated pairing process. First and foremost, we

wished to verify that the automated process could be used to re-

liably detect matches and mismatches in the SAS data. That is,

we wanted to make sure that the automated setup minimized, if

not eliminated, all safe errors (i.e. false positives, or identifying

a match as a mismatch) and fatal errors (i.e. false negatives, or

identifying a mismatch as a match) in the pairing procedure [21].

Secondly, we wanted to gain a qualitative sense of whether users

thought the addition of an ATD improved the ease and comfort of

the pairing operation. Next, user testing was performed to mea-

sure how long it took users unfamiliar with the system to complete

a pairing operation. Finally, tests were conducted to check that

the pairing scheme was robust when used on devices with differ-

ent speaker volumes and at various distances from the camera and

microphone inputs of the ATD.

Both the automated and manual pairing setups were tested by

20 subjects. All of our testers were college students interested in

working with new technology but not familiar with the underly-

ing theory of the pairing procedure. Each tester was given a short

summary of the secure device pairing scheme and its potential ap-

plications. Additionally, the testers were provided with both verbal

and written instructions explaining how to operate the test devices

in the automated and manual setups. The subjects did not receive

specialized training of any kind prior to performing the tests, how-

ever.

5.5 Testing Setup and Test Cases
The manual and automated experiments for both the Blink-Blink

and Audio-Blink output combinations were conducted in a gradu-

ate research lab of our university. Test volunteers were asked to

perform four kinds of tests. These were the automated setup with

the Blink-Blink combination, the automated arrangement with the

Audio-Blink combination, the manual system with the Blink-Blink
combination, and the manual layout with the Beep-Blink combina-

tion. For both combinations under the automated setup, 3 test cases

were designed to test for matches and mismatches in SAS strings

and 2 test cases were performed to test for synchronization delays,

that is, END marker or SYNC bit mismatches.

In addition, 2 test cases were performed for the automated Blink-
Blink combination with the ATD at different distances from the

simulated pairing devices to test the robustness of the ATD’s cam-

era input. Normal test cases were carried out with the pairing de-

vices at a distance of approximately 16 inches from the ATD’s cam-

era, while the distance test cases were done with the devices set

about 10 inches away and 30 inches away. For the Audio-Blink
combination, in place of the Blink-Blink distance tests, two vol-

ume test cases were designed to gauge the robustness of the ATD’s

microphone input. The standard test cases were created with the

pairing device’s volume set to medium, while one volume test was

done with the volume on the lowest setting and another on the high-

est setting. In order to provide our test subjects with a basis for

comparison, we also performed manual tests of the Blink-Blink and

Beep-Blink combinations identical to those done in [13]. However,

to obtain a fair and meaningful comparison between the manual and

automated schemes, we did not train the subjects with a matching

learning instance for the Beep-Blink combination, as was done in

[13]. For these tests we used the exact same test cases as the auto-

mated tests except for the distance and volume ones. To summarize,

7 test cases were administered for both output combinations using

the ATD and 5 test cases were given for both combination types

without the ATD, for a total of 24 test cases per subject.

The SAS data utilized in these test cases were randomly gener-

ated, but fixed from test volunteer to test volunteer to prevent some

users from receiving strings that were easier to identify than others

(as an example, most users would not have a problem differentiat-

ing between the encoding of “0000” and “1111”, while the more

subtle difference between the strings “1010” and “0101” might be

harder to notice). During the manual tests, these strings were pre-

sented to the test subjects in a random order. This was done to

minimize the effects of learning and fatigue on the test results. In

other words, we wanted to prevent users from anticipating future

test cases based on previous ones or losing motivation to pay proper

attention during the pairing procedure.

No bits were prepended to the SAS data for “padding” unlike

the tests in [13]. Such padding was designed to provide human

users with a chance to focus their attention on the OOB channel

transmitting the SAS information, which is superfluous when the

SAS data is transmitted to a device instead of a human user. The

padding bits were also omitted from the manual test cases strings

to keep as close of an equivalence as possible between the manual

and automated test setups. Thus each test case string consisted of



just the 15 bits of SAS data and nothing else.

As discussed in the Section 5, the two devices performing the

pairing operation were simulated using LEDs connected to the par-

allel port and a speaker of a desktop computer. A laptop with a built

in camera and microphone acted as the ATD. When the Blink-Blink
combination was in use, four LEDs (two green for transmitting data

and two red for the END marker) were used to simulate the two

devices being paired, while the Audio-Blink combination required

two LEDs (one green for data, the other red for the END marker)

to represent one device and a speaker to act as the other. The man-

ual test cases were administered similarly to those of [13]. As de-

scribed in Section 5.3, users initiated a pairing session by clicking

a “Get Ready/Start” button on the desktop machine. This caused

the devices to light up their red END marker LEDs, indicating that

they were ready to begin transmitting their SAS signal. Next, users

clicked the “Start” button on the desktop to initiate the blinking of

the attached LEDs and/or sound output, as per the Blink-Blink or

Audio-Blink channels being tested.

The automated test cases proceeded similarly, with the addition

of the laptop posing as the ATD. Users also initiated the automated

tests by clicking the desktop’s “Get Ready/Start” button. Users next

focused the laptop’s camera on the newly lit LEDs, being careful

to check that all LEDs were visible on the camera’s display. Next,

a “Start Session” button was pressed on the laptop to start the cap-

turing of video and/or sound output from the desktop simulating

the two pairing devices. After this, the “Start” button on the desk-

top was clicked to begin the transmission of the SAS data. After

the laptop recorded the SAS data, it reported an “accept” or a “re-

ject” status message. The final duty of the tester was to click two

buttons on the desktop machine, one for each simulated device,

corresponding to this status message.

5.6 Test Timing and Results.
For manual comparison, the output interval that users felt most

comfortable and committed the least errors with was established in

[13]. These values were 500 millisecond for the Beep-Blink com-

bination and 800 millisecond for the Blink-Blink combination. This

left us to determine the optimal interval for automated comparison

using the camera and microphone inputs of the ATD. The signal

duration for the automated configuration was not dependant on the

perception of human users, but instead on the capture rate of the

ATD’s inputs. In other words, we had to determine how quickly

the SAS data output by the pairing devices could be captured by

the ATD. This ideal output speed was determined by starting with

the intervals used in manual comparisons and decreasing it by 50

millisecond until the ATD’s camera started missing LED blinks or

the microphone was unable to pick up all of the transmitted sound.

As stated in Sections 5.3.1 and 5.3.4, we discovered the best inter-

vals for automated SAS comparison to be 250 millisecond for the

Blink-Blink combination and 400 millisecond for the Audio-Blink
combination.

The results of our tests with the automated and manual test setups

are presented in Tables 1 and 2 respectively. At no point during our

tests did a user make an error in transferring the result indicated by

ATD onto the devices being paired. That is, users were able to reli-

ably transfer the one bit result (“accept” or “reject”) from the ATD
to the devices being paired. Therefore, we only consider errors that

occur at the ATD for the automated setup. When manually com-

paring the audiovisual patterns users committed a few safe errors

and also committed several of the more dangerous fatal errors. Out

of the 100 manual Blink-Blink tests performed, 2 safe errors and 2

fatal errors were committed causing both error rates to be 2.00%.

While only one safe error occurred (yielding a safe error rate of

1.00%) during the manual comparison of the Beep-Blink combi-

nation, its fatal error rate was higher. For this combination fatal

errors occurred 20 times out of 100 tests, or at a rate of 20.00%.

When aided by the ATD, on the other hand, users committed no

fatal errors whatsoever. The only errors to occur when using the au-

tomated setup were safe ones. When using the Blink-Blink output,

only two safe errors occurred over the course of 140 tests, yielding

an error rate of 1.43%. Safe errors were a more common occur-

rence with the Audio-Blink output. Using this combination, 10 safe

errors occurred out of 140 tests, producing an error rate of 7.14%.

Since more safe errors occurred with the automated Audio-Blink
combination than with the Blink-Blink type of output, the proba-

ble cause of these errors is the microphone picking up background

noise which the ATD confused for SAS data. This claim is further

substantiated by the fact that 4 of the 10 safe Audio-Blink errors

took place with the pairing device’s speaker set to a lower volume.

The automated pairing setups were robust to volume increases as

well as changes in distance, however. As long as the LEDs of the

pairing devices were discernible on the viewfinder of the ATD, it

was able to accurately record the SAS output.

The automated Blink-Blink combination took the least time for

users to execute, with an average pairing time of 13.079 seconds.

Using an ATD added some time to the operation of the pairing pro-

tocol, but this was counteracted by the very fast 250 millisecond

period at which the device’s camera could monitor the SAS data

output. When users manually detected the SAS data, the pairing

process averaged 20.983 seconds, which is 7.904 seconds slower

than the automated scheme. This is because human users require

an 800 millisecond interval to comfortably and accurately follow

the Blink-Blink SAS output. For the Audio-Blink combination, on

the other hand, the automated setup took 15.261 seconds, which

was 1.678 seconds longer than the 13.583 second average runtime

of the manual Beep-Blink pairing process. This is due to the fact

that the ATD required a 400 millisecond interval to accurately de-

tect SAS data in audio form, which is not much of a speedup over

the 500 millisecond which human users found comfortable. The

100 millisecond interval speedup was not enough to compensate

for the additional steps needed to manipulate the ATD during the

automated pairing process.

After the tests were completed users were asked to answer a very

brief questionnaire in order to qualitatively gauge which pairing

setup they preferred. Users were posed a single question, “If you

had to use a pairing scheme on a daily basis, which would you

prefer - the manual setup or the automated setup?” 80% of the

test subjects (i.e., 16 out of 20 of them) responded that they would

prefer to use the automated scheme over the manual scheme. This

suggests that users were willing to deal with a small amount of

additional pairing steps in order to not have to monitor the SAS

output as closely.

6. DISCUSSION
We can draw the following conclusions from the results of our

tests using an ATD to aid in the process of pairing two devices

using either the Blink-Blink combination or the Audio-Blink com-

bination. Our results indicate that using an ATD makes the pairing

process safer and less burdensome for users. However, this comes

at the cost of additional safe errors (albeit low in number) due to

occasional signal processing errors by the ATD.

Security. One of the restrictions of a pairing system that utilizes

human comparison of OOB output is that the length of data that can

be transmitted over these channels is limited by the bit string length

that users can reliably and comfortably compare. The SAS proto-



Combination Average User Timing (seconds) % Safe Error Rate % Fatal Error Rate

Blink-Blink 13.079 (sda=3.524) 1.43 0.00

Audio-Blink 15.261 (sd=3.387) 7.14 0.00

aEstimated Standard Deviation from the sample

Table 1: Results of User Tests based on Automated Comparison

Combination Average User Timing (seconds) % Safe Error Rate % Fatal Error Rate

Blink-Blink 20.983 (sd=3.107) 2.00 2.00

Beep-Blink 13.583 (sd=2.659) 1.00 20.00

Table 2: Results of User Tests based on Manual Comparison

cols make it possible to transmit a sufficient number of bits of data

to provide security comparable to ATM PIN authentication. Ob-

taining a level of security beyond this, however, would require the

transmission of longer bit strings that would tax users’ ability to tell

the difference between pattern matches and mismatches. The core

advantage that the automated pairing scheme has over the manual

setup is that it does not rely on human comparison of SAS data

while retaining the universality of the manual scheme. Therefore

the automated pairing system makes it possible to obtain stronger

security by transmitting longer strings of SAS data that would be

beyond the capability of the manual setup.

On the other hand, there are some security considerations that

must be taken into account for the automated setup that do not apply

to the manual system. One of these is that when the Audio-Blink
combination is employed users must make sure that their ATD is

picking up audio from the pairing device producing the audio out-

put and not somewhere else in the environment. If this is not done,

an adversary could potentially launch an attack by injecting audio

from its own device into the pairing process. Thus, while using

Audio-Blink combination in a noisy environment, with a variety of

devices around, the users need to pay close attention in determining

the source of the audio recorded by their ATD.

Fatal Pairing Errors. Our results show that applying an ATD
makes the pairing procedure safer because it completely eliminates

all fatal errors. These errors are dangerous because, when com-

mitted, a user has accepted a pairing instance where something has

gone wrong due to either an accidental error or a malicious occur-

rence.

When performing pairing using manual comparison, fatal errors

can also be reduced via user training, as was shown with the Beep-
Blink combination in [13]. As an example of such training, [13]

demonstrated that the high fatal error rate observed in the Beep-

Blink combination can be significantly reduced if the user is given

one matching learning instance. However, training-based solutions

can not be relied upon to completely eliminate all fatal errors. In

practice, it is quite likely that a user will end up committing these

errors no matter what, e.g., due to a slight distraction while per-

forming the manual process. Thus, the strongest advantage of the

automated pairing system is that it accomplishes the complete elim-

ination of fatal errors where other solutions can not.

Safe Pairing Errors. Safe errors, on the other hand, are relatively

benign because users can simply run another pairing session after

one has occurred. Moreover, we believe that with higher quality

ATD receivers and improvements to the audio and visual detection

algorithms, the amount of safe errors can be further reduced, if not

eliminated altogether. Our results show that the ATD is already

robust in terms of the positioning of the pairing devices relative to

the ATD. With a more sophisticated audio detection algorithm the

number of safe Audio-Blink errors could be reduced as well. Either

way, the safe errors that occur during the automated pairing process

are far less problematic than the fatal errors that occur without the

help of an ATD.

More safe errors occurred when the automated Audio-Blink com-

bination was used than when the manual Beep-Blink combination

was employed. There are two reasons for this. One is that the

SAPI used by the ATD to perform the automated audio decoding

is more susceptible to ambient noise than a human who manually

“decodes” the audio signal. Another is that the SAPI’s decoding

rate is not constant. This occasionally caused the audio SAS data

to be received slightly late, which was interpreted as a delay attack

by the ATD.

Usability. Furthermore, use of an ATD reduces the burden placed

on users during the pairing process. A large majority of users pre-

ferred the automated pairing setup because they did not have to fo-

cus nearly as intently on the devices performing the pairing when

using the automated scheme as they did when using the manual

setup. Since one of the essential qualities of a good pairing pro-

cedure is usability, this is another key advantage of the automated

testing system. Another noteworthy insight is that users can eas-

ily transfer a one bit result(“accept” or “reject”) from one devices

to another. This was consistently done by our test subjects when

they transferred the pairing outcome from the ATD to the pairing

devices.

We also want to note that the usability of our automated schemes

is expected to improve with a real implementation involving a smart-

phone. Recall that our current proof-of-concept simulated set-up is

a bit crude in terms of ATD functionalities.

Pairing Speed. Whether the ATD is a help or a hindrance in terms

of pairing speed depends on the difference between the rate at which

the ATD can process the SAS data and the speed at which human

users can comfortably monitor the SAS output. For the Blink-Blink
combination, the automated configuration took less time to use than

the manual one. This is because the ATD could monitor visual in-

put at a much higher rate (250 ms) than a human user (800 ms).

When using the Audio-Blink output, however, the ATD slowed the

process down slightly because it could not keep track of audio data

much faster (400 ms) than a human user (500 ms) and required ex-

tra steps to execute. Clearly, the speed benefit imparted by the use

of a ATD is dependant on the particulars of the OOB channel used

to transmit the SAS data.



7. CONCLUSION AND FUTURE WORK
To conclude, there are several advantages to using an ATD to

pair two devices. The input and output interfaces that are required

to automate the pairing process are increasingly common on per-

sonal devices such as palmtops, PDAs and “smart” phones. As

these devices become more ubiquitous, it will therefore be more

likely that users will have a suitable device present to take advan-

tage of during the pairing process. Using an ATD makes it possible

to provide stronger security than would be possible through man-

ual comparison by using longer SAS. Furthermore, an ATD can be

used more efficiently to pair devices having simultaneous multiple-

bit output interfaces, such as a single device using more than one

data LEDs or speaker producing multiple frequency tones or audio

outputs(i.e., multiple bits of SAS data transmission at a time). This

increase in parallel OOB output would be overwhelming for a hu-

man to compare but could easily and efficiently be handled by an

ATD. Finally, using an ATD to automate the pairing procedure in

no way hinders the universality of the pairing scheme. The pair-

ing devices can still use input and output interfaces that are of low

quality, and an ATD can handle two different forms of SAS out-

put (such as audio and visual output in the case of the Audio-Blink
combination) at the same time without any special alterations.

In a practical environment it would probably make more sense

not to restrict users to the manual or automated setup alone. In

many situations users may not have access to an ATD that features

receivers of the type and quality necessary to automate the pairing

process. In such circumstances a user has no choice but to manu-

ally pair the devices. When a suitable ATD is available, however,

our tests demonstrate it to be beneficial to the pairing process by re-

ducing dangerous errors and increasing usability. Recall that both

the manual and automated schemes (given a suitable ATD) are uni-

versally applicable to any pairing scenario, as these schemes only

require the pairing devices to have low-cost and commonly avail-

able hardware interfaces.

In our future work, we plan to test both the manual and auto-

mated schemes more rigorously and with a wider range of subjects.

In addition, we will explore other simpler and more usable ways to

leverage an auxiliary device for performing the pairing operation.

As a related work, we also plan to perform a comparative usability

study of most existing pairing techniques.

Acknowledgements

The authors would like to thank the anonymous reviewers for their

useful comments.

8. REFERENCES
[1] D. Balfanz, D. Smetters, P. Stewart, and H. C. Wong. Talking

to strangers: Authentication in ad-hoc wireless networks. In

Network and Distributed System Security Symposium

(NDSS), 2002.

[2] M. Burnside, D. Clarke, B. Gassend, T. Kotwal, S. Devadas,

and R. Rivest. The untrusted computer problem and

camera-based authentication. In Pervasive Computing

(Pervasive), 2002.

[3] R. Canetti and H. Krawczyk. Analysis of key-exchange

protocols and their use for building secure channels. In

EUROCRYPT, 2001.

[4] J. D. Foley and V. D. Andries. Fundamentals of Interactive

Computer Graphics. 2nd Edition. Addison-Wesley, Reading,

Massachusetts U.S.A., 1990.

[5] E. Gieseke and J. McLaughlin. Secure web authentication

with mobile phones using keyed hash authentication. CSCI E

170 Final Project, Harvard University Extension, 2005.

[6] I. Goldberg. Visual Key Fingerprint Code, 1996. http:

//www.cs.berkeley.edu/iang/visprint.c.

[7] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and

E. Uzun. Loud and Clear: Human-Verifiable Authentication

Based on Audio. In International Conference on Distributed

Computing Systems (ICDCS), 2006.

[8] S. Laur, N. Asokan, and K. Nyberg. Efficient mutual data

authentication based on short authenticated strings. IACR

Cryptology ePrint Archive: Report 2005/424, 2005.

[9] A. Madhavapeddy, D. Scott, R. Sharp, and E. Upton. Using

camera-phones to enhance human-computer interaction. In

Ubiquitous Computing (Adjunct Proceedings: Demos), 2004.

[10] J. M. McCune, A. Perrig, and M. K. Reiter.

Seeing-is-believing: Using camera phones for

human-verifiable authentication. In IEEE Symposium on

Security and Privacy, 2005.

[11] S. Pasini and S. Vaudenay. SAS-Based Authenticated Key

Agreement. In Theory and Practice of Public-Key

Cryptography (PKC), 2006.

[12] A. Perrig and D. Song. Hash visualization: a new technique

to improve real-world security. In Cryptographic Techniques

and E-Commerce (CrypTEC), 1999.

[13] R. Prasad and N. Saxena. Efficient device pairing using

human-comparable synchronized audiovisual patterns. In

Applied Cryptography and Network Security (ACNS), to

appear, 2008.

[14] V. Roth, W. Polak, E. Rieffel, and T. Turner. Simple and

effective defenses against evil twin access points. In ACM

Conference on Wireless Network Security (WiSec), short

paper, 2008.

[15] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan.

Secure device pairing based on a visual channel. In IEEE

Symposium on Security and Privacy, short paper, 2006.

[16] N. Saxena and M. B. Uddin. Device pairing using

unidirectional physical channels. In Mobile and Wireless

Networks Security (MWNS), 2008.

[17] C. Soriente, G. Tsudik, and E. Uzun. BEDA: Button-Enabled

Device Association. In International Workshop on Security

for Spontaneous Interaction (IWSSI), 2007.

[18] C. Soriente, G. Tsudik, and E. Uzun. Hapadep: Human

asisted pure audio device pairing. Cryptology ePrint Archive,

Report 2007/093, 2007.

[19] F. Stajano and R. J. Anderson. The resurrecting duckling:

Security issues for ad-hoc wireless networks. In Security

Protocols Workshop, 1999.

[20] J. Suomalainen, J. Valkonen, and N. Asokan. Security

associations in personal networks: A comparative analysis.

In European Workshop on Security and Privacy in Ad hoc

and Sensor Networks (ESAS), 2007.

[21] E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of

secure pairing methods. In Usable Security (USEC), 2007.

[22] S. Vaudenay. Secure communications over insecure channels

based on short authenticated strings. In International

Cryptology Conference (CRYPTO), 2005.

[23] M. Wu, S. Garfinkel, and R. Miller. Secure web

authentication with mobile phones.

http://dimacs.rutgers.edu/Workshops/

Tools/abstract-wu-garfinkel-miller.pdf.


