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Abstract—Many RFID tags store valuable information privy
to their users that can easily be subject to unauthorized
reading, leading to owner tracking or impersonation. RFID
tags are also susceptible to different forms of relay attacks. This
paper presents novel sensing-enabled defenses to unauthorized
reading and relay attacks against RFID systems without
necessitating any changes to the traditional RFID usage model.

More specifically, the paper proposes the use of on-board
tag sensors to (automatically) acquire useful contextual infor-
mation about the tag’s environment (or its owner, or the tag
itself). It suggests how this information can be used to achieve
two security functionalities. First, such context recognition can
be leveraged for the purpose of selective tag unlocking – the tag
will respond selectively to reader interrogations, i.e., only when
it is deemed safe to do so. Second, context recognition can be
used as a basis for transaction verification in order to provide
protection against a severe form of relay attacks involving
malicious RFID readers. To demonstrate the feasibility of the
overall idea, a novel selective unlocking mechanism based on
owner’s posture recognition is presented. The evaluation of
the proposed mechanism shows its effectiveness in significantly
raising the bar against many different RFID attacks.

I. INTRODUCTION

Low cost, small size, and the ability of allowing com-
puterized identification of objects make Radio Frequency
IDentification (RFID) systems increasingly ubiquitous in
both public and private domains. A typical RFID system
consists of tags, readers and/or back-end servers. Tags are
miniaturized wireless radio devices that store information
about their corresponding subject. Such information is usu-
ally sensitive and personally identifiable. For example, a US
e-passport stores the name, nationality, date of birth, digital
photograph, and (optionally) fingerprint of its owner [19].
Readers broadcast queries to tags in their radio transmission
ranges for information contained in tags and tags reply with
such information. The queried information is then sent to
the server for further processing.

Due to the inherent weaknesses of underlying wireless
radio communication, RFID systems are plagued with a wide
variety of security and privacy threats [16]. A large number
of these threats are due to the tag’s promiscuous response to
any reader requests. This renders sensitive tag information
easily subject to unauthorized reading [11]. Information

(such as an identifier) gleaned from a RFID tag can be used
to track the owner of the tag, or to clone the tag so that an
adversary can impersonate the tag’s owner [16].

Promiscuous responses also incite different types of relay
attacks. These include the “ghost-and-leech” attack [20],
whereby an attacker (leech) relays the information surrep-
titiously read from a legitimate RFID tag to a colluding
entity (ghost) which relays it to a legitimate reader. This
way a ghost and leech pair can succeed in impersonating a
legitimate RFID tag without actually possessing the device.
A more severe form of relay attacks, usually against payment
cards, is called a “reader-and-leech” attack. In this attack,
a malicious reader colludes with the leech [6]1, and can
make purchases using a victim’s RFID tag. We note that
addressing the reader-and-leech attack requires transaction
verification, i.e., validation that the tag is indeed authorizing
the intended payment amount. The feasibility of executing
relay attacks has been demonstrated on many RFID (or
related) deployments [6], [8].

With the increasingly ubiquitous deployment of RFID
applications, there is a pressing need for the development
of security primitives and protocols to defeat unauthorized
reading and relay attacks. However, providing security and
privacy services for RFID tags presents a unique and
formidable set of challenges. The inherent difficulty stems
partially from the constraints of RFID tags in terms of
computation, memory and power, and partially from the un-
usual usability requirements imposed by RFID applications
(originally geared for automation). Consequently, solutions
designed for RFID systems need to satisfy the requirements
of the underlying RFID applications in terms of not only
efficiency and security, but also usability.

A. Sensing-Enabled Automated Defenses

This paper proposes the use of sensing technologies
towards addressing unauthorized reading and relay attacks
without necessitating any changes to the traditional RFID
usage model, i.e., without incorporating any explicit user
involvement beyond what is practiced today.

1In contrast to the ghost-and-leech attack, the owner in the reader-and-
leech attack is aware of the interrogation from the (malicious) reader.



The premise of our work is a current technological
advancement that enables many RFID tags with low-cost
sensing capabilities. Various types of sensors have been
incorporated with many RFID tags [28], [12], [30]. Intel’s
Wireless Identification and Sensing Platform (WISP) [29],
[34] is a representative example of a sensor-enabled tag
which extends RFID beyond simple identification to in-
depth sensing. This new generation of RFID devices can
facilitate numerous promising applications for ubiquitous
sensing and computation. They also suggest new ways of
providing security and privacy services by leveraging the
unique properties of the physical environment or physical
status of the tag (or its owner).

We argue that contextual information can be leveraged
in two broad ways towards providing enhanced protection
against RFID unauthorized reading and relay attacks:

• Context-Aware Selective Unlocking: The contextual
information can be used to design selective unlocking
mechanisms so that tags can selectively respond to
reader interrogations. That is, rather than responding
promiscuously to queries from any reader, a tag can
utilize “context recognition” and will only communi-
cate when it makes sense to do so, thus raising the
bar even for sophisticated adversaries. For example, an
office building access card can remain locked unless
it is aware that it is near the (fixed) entrance of the
building.

• Context-Aware Transaction Verification: The contex-
tual information can be used as a basis for transaction
verification in order to defend against the reader-and-
leech attacks, a specialized form of relay attacks in-
volving malicious readers. For example, a bank server
can deny a $2000 transaction (jewellery purchase) when
it detects the valid tag (RFID credit card) is currently
located in a restaurant where a normal transaction is
usually less than $200, and can prevent the attack
presented in [6].
Specifically, a new class of transaction verification
mechanism can be developed that can determine the
proximity (or lack thereof) between a valid tag and a
valid reader by correlating certain sensor data (such as
microphone readings) extracted from the two devices.
This is based on the assumption that certain ambient
information, extracted by the tag and reader at the same
time (transaction time), will be highly correlated if the
two devices are in close physical proximity.

B. Technical Contributions

In this paper, we specifically concentrate on the first
security primitive – context-aware selective unlocking. As
our technical contribution, we propose a novel selective
unlocking mechanism geared for many different RFID ap-
plications. Our approach is based on owner’s posture recog-
nition, and is well-suited for many applications where a

specific posture of the owner of the RFID tag may serve
as a valid context. These include implanted medical devices
and smart car keys used as part of the Passive Keyless
Entry and Start (PKES) systems [8]. For example, in the
latter application, a car engine starts automatically when
the driver sits down on the car seat while the key resides
in the driver’s pocket; a valid context for the key to get
unlocked is an “upright seating posture”. We present the
design, implementation, and evaluation of such a posture
recognition/translation mechanism based on a combination
of accelerometer and magnetometer readings. Our results
indicate the mechanism to be fairly accurate even under
severe resource constraints.

C. Cost for Sensing-Enabled Tags

The cost of an RFID tag is dependent on several factors
such as the capabilities of the tag (computation, memory),
the packaging of the tag (e.g., encased in plastic or em-
bedded in a label), and the volume of tags produced. The
current cost of WISP tags – equipped with a thermometer
and an accelerometer – assembled from discrete components
is roughly $25 but it is expected that this number will be
reduced closer to $1 once the WISPs are mass manufactured
[4].

Integrating a magnetometer and a microphone with an
RFID tag (as required as part of our sensing-enabled de-
fenses) is also quite feasible economically. We note that
usually cost of sensing hardware varies greatly not only
between different types of sensors but also between various
models of the same kind. Magnetometers, for example, can
be as costly as several hundred dollars [25] or as inexpensive
as a few cents when purchased in bulk [24]. Microphones
are typically quite inexpensive [35], These cost estimates are
certainly acceptable for high-end tags and do not affect their
business model.

II. PRIOR WORK

There exist many handware-based selective unlocking
mechanisms for RFID tags. These include: Blocker Tag
[17], RFID Enhancer Proxy [18] RFID Guardian [27], and
Vibrate-to-Unlock [32]. All of these approaches, however,
require the users to carry an auxiliary device (a blocker tag in
[17], a mobile phone in [32], and a PDA like special-purpose
RFID-enabled device in [18], [27]). Such an auxiliary device
may not be available at the time of accessing RFID tags, and
users may not be willing to always carry these devices. A
Faraday cage can also be used to prevent an RFID tag from
responding promiscuously by shielding its transmission.
However, a special-purpose cage (a foil envelope or a wallet)
would be needed and the tag would need to be removed from
the cage in order to be read. This may decrease the usability
of such solutions. Moreover, building a true Faraday Cage
that shields all communication is known to be a significant



challenge. For example, a crumpled sleeve is shown to be
ineffective for shielding purposes [22].

Distance bounding protocols have been used to thwart
relay attacks [6], [8]. A distance bounding protocol is
a cryptographic challenge-response authentication protocol
which allows the verifier to measure an upper-bound of
its distance from the prover [3]. (We stress that traditional
“non-distance-bounding” cryptographic authentication pro-
tocols are completely ineffective in defending against relay
attacks.) Using this protocol, a valid RFID reader can verify
whether the valid tag is within a close proximity thereby
detecting ghost-and-leech and reader-and-leech relay attacks
[6], [8]. The upper-bound calculated by an RF distance
bounding protocol, however, is very sensitive to response
time delay, as even a slight delay (a few nanoseconds) may
result in a significant error in distance bounding. Therefore,
even XOR- or comparison-based distance bounding proto-
cols [3], [10] are not suitable for RF distance bounding
since simply signal conversion and modulation can lead to
significant delays. A recent protocol eliminated the need for
signal modulation and instead utilized signal reflection and
channel selection, achieving a processing time of less than
1 ns at the prover side [26]. However, the protocol requires
specialized hardware at the prover side for channel selection.
This renders existing protocols currently infeasible for even
high-end RFID tags.

“Secret Handshakes” is a recently proposed interesting se-
lective unlocking method that is based on context awareness
[5]. In order to unlock an accelerometer-equipped RFID tag
[29], [34] using Secret Handshakes, a user must move or
shake the tag (or its container) in a particular pattern. For
example, the user might be required to move the tag parallel
with the surface of the RFID reader’s antenna in a circular
manner. A number of unlocking patterns were studied and
shown to exhibit low error rates [5]. A central drawback to
Secret Handshakes, however, is that a specialized movement
pattern is required for the tag to be unlocked. While a stan-
dard, insecure RFID setup only requires users to bring their
RFID tags within range of a reader, the Secret Handshakes
approach requires that users consciously move the tag in a
certain pattern. This clearly requires subtle changes to the
existing RFID usage model.

“Motion Detection” [33] is another context-aware selec-
tive unlocking scheme. Here a tag would respond only when
it is in motion instead of doing so promiscuously. Although
Motion Detection raises the bar required for a few common
attacks to succeed, it is not capable of discerning whether
the device is in motion due to a particular gesture or because
its owner is in motion, which results in a high false positive
rate.

III. SELECTIVE UNLOCKING USING POSTURE
RECOGNITION

In certain RFID applications, a specific posture of the
tag owner may serve as a valid context. One class of
such applications involve implanted medical devices (IMDs).
Under legitimate IMD access, we can assume that the patient
is lying down on his or her back. Thus, access to the IMD
will be granted only when the patient’s body is in such a pre-
defined unique posture. This will prevent an attacker from
controlling the IMD in many common scenarios, such as
while standing just behind the patient in public. Yet another
class of applications that can benefit from posture based
contexts involve the Passive Keyless Entry and Start (PKES)
system [8]. In such applications, a driver needs to move into
the car and sit down on the driver’s seat before the engine
can be started automatically (while the key resides in the
driver’s pocket). Thus, getting into the car and sitting on the
driver seat can be considered necessary posture sequences
that need to be performed to unlock the car key. In turn, this
will unlock the door and start the engine. Such an unlocking
mechanism will prevent an adversary from launching attacks
in scenarios whereby the driver is not entering the car and
then sitting on the car seat. We note that the proposed posture
recognition functionality is fundamentally different from the
one used for identifying bodily positions during sleep [14],
where the sensors were attached to the mattresses and not
to the subject.

Since posture formations are human activities performed
by users unconsciously, posture recognition can provide a
finer-grained non-obtrusive unlocking mechanism without
purposeful or conscious user involvement.

In the subsequent sections, we first point out the dif-
ferences between two primary activity types: posture and
posture transition. We then concentrate on posture transition
recognition.

A. Posture Classifications

In order to optimize our algorithms (due to RFID resource
constraints), we classify postures into two primary types:
posture and posture transition. Posture means a static bodily
position that a user can maintain for a certain duration, such
as lying, sitting, standing and walking. Posture transition
subsumes different human movements, such as “stand-to-
sit”, “sit-to-stand”, “sit-to-lie”, “lie-to-sit”, and so on. Pos-
ture transitions capture the dynamics of human movement
and usually only last for a short duration.

We analyze the features of these two posture types and
realize that most of the postures and some of the posture
transitions can be simply detected by measuring direction
changes or status changes in sagittal and transverse planes.
In case of posture recognition, consider, for example, an
IMD – such as a pacemaker implanted into the patient’s
chest area – equipped with a 3-axes accelerometer. As
the IMD is fixed to the human body, it remains static



relative to the body system but has different orientations
in the earth coordinate system (magnetic north and gravity)
due to human body movement. Thus, we can detect such
movements by simply monitoring its relative orientation
change in the earth coordinate system. For example, when
the patient is in the “sitting” position, the Z axis of the
accelerometer points to the sky and the X-Y plane is parallel
to the earth surface. When the patient lies down, the Z axis
now should be parallel to the earth surface while one of
the X or Y axis should point to the sky. Thus, by simply
monitoring the change of directions of axes, we can tell
whether a patient is lying or not. We note that mobile
devices also commonly use such detection techniques based
on accelerometer axis direction change to perform screen
rotation functions [21]. Similarly, the work of [7] tracks
direction changes of magnetometer axes during walking.

In contrast, posture transition recognition is similar to
gesture recognition to a certain extent. Similar to the gesture
recognition schemes, such as Secret Handshake [5] and
uWave [23], in posture transition recognition, user move-
ment is recorded by motion sensors such as accelerometers.
The captured motion data is then compared with a reference
posture template which has been recorded by performing the
corresponding movement in a reference coordinate system.
A match between the captured data and the reference tem-
plate implies that the user has exhibited a certain posture
transition defined by the reference template. However, there
is one primary difference between gesture recognition and
posture transition recognition, i.e., device tilt. In (hand)
gesture recognition systems, users are assumed to be aware
of their hand activities. So gestures are performed in a more-
or-less controlled way without tilting the tag so that the
effect of tilt can be greatly minimized or ignored. However,
in posture transition recognition, we do not require any
explicit user involvement. Thus the tag can be tilted due to
the movement of the human body. The reference template is
usually collected in a reference coordinate system. However,
once a device is tilted, movement data collected from the
device is no longer in the reference coordinate system and
the corresponding posture will not be detected correctly. It
is therefore critical to detect the tag’s orientation in order
to rotate the data vector back to the reference coordinate
system for correct recognition.

In the following subsections, we will focus on posture
transition recognition in the presence of device tilt. From
here on, we use posture and posture transition interchange-
ably.

B. Design Considerations

Choice of Sensors: Current systems for full orientation
estimation, such as the one in Apple iPad2, typically use a
set of sensor modalities – including gyroscopes, accelerome-
ters and magnetometers – to estimate device orientation. Gy-
roscopes are used to accurately determine angular changes

while the other sensors are used to compensate for the
gyroscopes’ integration drift. However, a typical gyroscope
is larger and requires about 5 to 10 times more power than
magnetometer and accelerometer together [1]. Therefore,
gyroscopes are not commonly available in a tiny single
package MEMS-chip. In addition, it has been shown that
neither accelerometers or magnetometers are good enough
alone to estimate full orientation [9], [31]. On the other hand,
orientation estimation schemes that use both accelerome-
ters and magnetometers show very promising results [37],
[15]. Considering the resource constrains imposed by RFID
platforms, we avoid using gyroscopes and instead focus on
accelerometers and magnetometers for device orientation
and posture estimation. As integrated accelerometers and
magnetometers are commercially available in tiny packages,
an RFID tag with such sensors can be flat and less obtrusive
for the user, which makes them very attractive to be used in
IMDs or smart car keys.

Device Orientation: A number of schemes have been
proposed to estimate device orientation via the calculation
of Euler angles using readings from both accelerometers and
magnetometers [2], [15], [1]. However, many of them suf-
fered from a common problem, called motion disturbance,
which leads to inaccurate orientation estimation when the
device is in motion. The scheme proposed in [15] uses an
unscented Kalman filter to effectively reduce the influence
of motion disturbance on the sensor signals. However, it
has higher computational complexity due to the addition
of a signal processing module. Considering the limited
computation and memory resources of the RFID platform,
it is clear that we have to simplify the algorithms as much
as possible without losing efficiency and accuracy.

After investigating multiple schemes in the literature
on human movement detection, we chose to adopt the
scheme proposed in [2] for posture recognition. Unlike other
schemes, which can be applied to detect generic types of
movements (not only human movements), the scheme pro-
posed in [2] is specifically designed to track certain human
movements, e.g., rising from a chair or walking. So, it is well
suited to planar movements which are classically performed
by humans and relevant for our RFID applications. Many
classical human movements are usually constrained to one
or two degrees of freedom (DOFs). For example, during
walking, we are interested in rotations in the sagittal plane
and azimuth direction of the walking motion. This means
that we can give up one DOF and still correctly catch the
features of a specific posture. By giving up one DOF, the
amount of computation needed for orientation estimation
can be greatly reduced and in turn the complexity of the
underlying algorithm will be much lower compared to the
one using the Kalman Filter [15].



C. System Design

Our posture recognition system makes use of the strategies
explored in the two gesture recognition systems [5], [23]
and extends them to deal with device tilt due to certain
human movements. Because our system is free of orientation
limitations, there is no need for the user to hold the device
in a certain fixed way during the movement. We achieve
our goal by utilizing a 3-axis magnetometer and a 3-axis
accelerometer combination. The magnetometer data is used
to estimate device orientation in motion to mitigate the
effect of motion disturbance since magnetometer reading is
insensitive to acceleration. With the orientation information,
the accelerometer data is “shifted” back to the reference
coordinate system, and is then compared with the template(s)
stored on the tag to recognize a certain posture.

Orientation Estimation: In this paper, all coordinate
systems used are right-handed Cartesian coordinate systems.
The earth-fixed reference coordinate system I is defined as
follows (see Figure 1). The z axis points to the sky and
is perpendicular to the ground. The x axis is parallel to
the ground and points to the magnetic north. The y axis
follows the right-hand rule, is also parallel to the ground and
orthogonal to z and x. Each sensor, 3-axis magnetometer and
3-axis accelerometer, has its own body coordinate system B.

(a) Horizontal plane (b) North meridian plane

Figure 1. The Earth Reference Coordinate System

Let v⃗acc = (ax, ay, az) denote the values of the 3
axes from the accelerometer and v⃗mag = (mx,my,mz)
denote the values of the 3 axes from the magnetometer.
Let I⃗ = (x, y, z) be the unit vector in the earth reference
coordinate system. In the general case, there exists a unique
rotation matrix R that gives the relative orientation between
the sensor coordinate system B and the reference system I .
The rotation matrix R can be decomposed as a sequence of
three elementary rotations, i.e., rotation around the Z axis
or yaw angle (ψ), followed by a rotation around the Y axis
or pitch angle (θ), and finally a rotation around the X axis
or roll angle (φ). This transformation is shown as:

R(ψ, θ, φ) = R(ψ)R(θ)R(φ)

By adapting the approach proposed in [2], without losing
the capability to catch the features of movements, we assume

a null roll angle (φ = 0) and a null acceleration along the
ay axis. Now we can simply represent the rotation matrix
as R(ψ, θ) = R(ψ)R(θ). By minimizing a cost function:

J = || v⃗mag

|v⃗mag|
−RI⃗||2 (1)

we can recover the two Euler angles ψ and θ. From
these angles, we can compute the acceleration in horizontal
and vertical direction in the reference coordinate system as
follows (g = 9.81m/s2):

ah = −ax cos θ cosψ − az sin θ (2)
av = ax sin θ − az cos θ + g (3)

System Components: Based on the orientation calcula-
tion algorithm presented above, posture recognition can be
accomplished in the following steps:

1) Template Creation: Posture templates in the refer-
ence coordinate system are created and stored on
the tag before posture recognition is performed. Each
template defines a specific type of posture. It serves as
a reference to be later compared with real-time user
movement data: a match indicates the recognition of
a particular posture defined by the posture template.
We will also convert the template data into vertical
and horizontal direction acceleration. A vector in the
template is denoted as T⃗i = (Thi, Tvi).

2) Data Collection: While a user performs the movement
corresponding to a particular posture, accelerometer
and magnetometer data are collected for a certain short
period depending on the number of data points needed
to accurately identify a movement. Posture changes
are relatively slow in comparison with hand gestures.
Thus, variations in the acceleration components do not
vary a lot during a posture transition. Hence, under
normal circumstances, fewer data points are needed in
posture recognition than in gesture recognition. During
data collection, the device/tag is either fixed on the
shoulder/chest or casually placed inside the pocket.

3) Orientation Estimation: Once a series of temporal
magnetometer data is captured, it is used to estimate
the orientation of the tag and to transform the accel-
eration vector back to reference coordinate system as
adjusted acceleration data. That is, the data is used to
calculate the two Euler angles ψ and θ by minimizing
the cost function J (as defined in formula 1).

4) Posture Recognition: Similar to the Secret Handshake
scheme, we use cross-correlation to measure the sim-
ilarity between two time series. The cross-correlation
C of the adjusted acceleration data (ah, av) against a
template T is calculated as follows:



C =

n∑
i=1

(ahiThi + aviTvi) (4)

A match will be confirmed when C exceeds a cer-
tain cross-correlation threshold. The estimation of the
cross-correlation threshold will be described in Section
IV.

IV. IMPLEMENTATION AND EVALUATION

To evaluate the effectiveness and performance of the
proposed posture based selective unlocking technique, we
built proof-of-concept prototypes on the Intel WISP tags.

WISPs are passively-powered RFID tags that are com-
pliant with the Electronic Product Code (EPC) protocol.
Specifically, we utilized the 4.1 version of the WISP hard-
ware, which partially implements Class 1 Generation 2 of
the EPC standard. These tags possess an onboard Texas
Instruments MSP430F2132 microcontroller and sensors such
as the ADXL330 three-axis ±3g accelerometer [36]. The 16-
bit MCU features an 8 MHz clock rate, 8 kilobytes of flash
memory, and 512 bytes of RAM. WISP is chosen as our test
platform because: (1) it is the only existing programmable
UHF RFID device, and (2) it has an extensible hardware
architecture which allows for integration of new sensors.

A. Interfacing Magnetic Sensors with the WISP

As mentioned above, the WISP already possesses an
accelerometer which will be used as part of our posture
recognition mechanism. In addition, we needed to integrate
a magnetometer with the WISP. To this end, we decided to
use HMC1053 [13], a 3-axis magnetometer from Honeywell.
The Honeywell HMC1053 is specifically designed for low-
field magnetic sensing and can measure the direction as
well as the magnitude of magnetic field ranging from 120
micro-gauss to 6 gauss. Each of its magnetoresistive sensors
is configured as a 4-element wheatstone bridge to convert
magnetic fields to differential output voltages. There are 3
such magnetoresistive sensor bridges connected orthogonally
to obtain the magnetic field intensity in 3 axes. HMC1053
has ultra low power requirements which can be satisfactorily
sustained by the WISP as these tags work ideally at 1.8 V.

B. Experiments and Results

We report on our implementation and evaluation of the
posture recognition based selective unlocking scheme.

We have implemented a prototype of posture recognition
on the WISP to evaluate the effectiveness of the proposed
scheme in terms of successful recognition rate. In our current
realization of the orientation estimation module, however, to
find the (ψ, θ) pair that minimizes the cost function J in
Equation 1, we need to go through, in an exhaustive way, a
list of 360 × 360 possible candidate values. Moreover, the
WISP platform has limited mathematical function support.
We thus had to use software implementation of the sin and

cos functions in order to rotate data vectors back to the Earth
reference coordinate system. Although we tried to mini-
mize computation cost via implementation optimizations,
the aforementioned factors still make posture recognition
with orientation estimation a bit slow on WISP tags. So,
our evaluation with the WISP prototype does not use this
module currently. We expect that implementation of posture
recognition techniques with orientation estimation will be
better-suited for more powerful tags with more resources,
such as the smart keys used in modern cars which provides
the user with various functionalities such as starting the car
automatically while the driver sits down in the car. An NFC
enabled smartphone can also be thought of as a powerful
sensing-enabled RFID device.

While we were looking for a more efficient orientation
estimation design for use with WISP tags, we also im-
plemented a prototype on a desktop PC. Our PC-based
prototype implementation serves the purpose of evaluating
the effectiveness of posture recognition with orientation
estimation on a more powerful RFID platform. Our design
is modular and so the orientation estimation module can be
ported to more powerful tags when they become available
on the market.

We manually created posture templates by affixing a
WISP on the front trouser pocket area of a test subject and
recorded accelerometer data while the subject performed cer-
tain movements. We created templates for 4 postures: “sit-
to-std” (moving from sitting posture to standing posture),
“std-to-sit” , “sit-to-lie” and “std-to-car-sit”. The std-to-car-
sit posture simulates the smart key setting when a driver gets
into the car, i.e., she stands before a car, then moves into
the car, and sits down on the driver’s seat. Normally, posture
movement is slower than gesture movement. Thus, variations
in the acceleration components do not change much during
a posture movement. Therefore fewer data points are needed
for successful posture recognition in comparison to gesture
recognition. In our experiments, we collected 30 data points
for each posture. Our experimental results show that this
number is sufficient for accurate posture recognition.

To determine which cross-correlation detection thresholds
to use, we collected 40 traces of accelerometer data for each
posture. Each trace is then used as a template, which is
compared with all the other traces to calculate a serial of
C values (Equation 4). The smallest C value is chosen as
the threshold value. This threshold value is stored with the
corresponding template and a matched posture needs to yield
a C value larger than this threshold.

We conducted the following experiment with the WISP
prototype – posture recognition without orientation estima-
tion. In this experiment, posture data is collected when the
WISP is fixed in the position similar to the one we used
while collecting the template data. This simulates the case of
an implanted device which would usually remain in the same
fixed position inside the body. For our second experiment,



sit-std std-sit sit-lie std-car-sit
sit-std 91.67% 3.33% 3.33% 1.67%
std-sit 1.66% 88.34% 6.67% 3.33%
sit-lie 3.33% 1.66% 93.34% 1.67%

std-car-sit 3.33% 3.33% 1.67% 91.67%

sit-std std-sit sit-lie std-car-sit
sit-std 96.66% 1.67% 1.67% 0.00%
std-sit 1.67% 93.33% 3.33% 1.67%
sit-lie 1.67% 3.33% 95.00% 0.00%

std-car-sit 0.00% 1.67% 5.00% 93.33%

Table I
CONFUSION MATRICES FOR POSTURE RECOGNITION: (LEFT) WITHOUT ORIENTATION ESTIMATION AND DEVICE TILT (WISP IMPLEMENTATION);

(RIGHT) WITH ORIENTATION ESTIMATION AND DEVICE TILT (PC IMPLEMENTATION)

we tilted the WISP in different ways in the sagittal plane
and then affixed it to the trouser pocket area. This is to
simulate other (external) RFID devices that can be tilted
inside the pocket or purse. We conducted this second type
of experiments with orientation estimation using our PC
prototype.

We requested a single participant to generate templates
and test samples for our experiments. For each posture, we
conducted 60 tests (each test yielded 30 data points) and
calculated the success rate based on these 60 test results.

The results of our first experiment show that it takes
only around 220 ms to recognize a posture on the WISP.
Our overall results for the two posture recognition ex-
periments are summarized in the two confusion matrices
depicted in Table I. Table I(Left) represents the results
for the WISP implementation without orientation estimation
functionality executed on samples where the device was not
tilted (simulating medical implants, for example); Table I
(Right) represents the results for the PC implementation with
orientation estimation module executed on samples where
the device was tilted.

First comparing the successful posture recognition rates
in Table I(Left) with that of gesture recognition schemes,
such as Secret Handshakes [5] and uWave [23], we find
that we achieve slightly lower recognition rates, although
still high enough for practical purposes. This might be
because of the tilt effect of human movement, as postures
can not be performed in as controlled of a way as gestures.
(Note that we could not completely prevent the effect of
tilt while collecting our samples, unlike the case of a real
fixed medical implant). The posture recognition rates in
Table I(Right), on the contrary, are comparable to that of
gesture recognition schemes. This confirms the effectiveness
of the orientation estimation module for posture recognition
in scenarios where device tilt occurs.

V. CONCLUSIONS
We proposed sensing-enabled defenses to unauthorized

reading and relay attacks against RFID systems without
necessitating any changes to the traditional RFID usage
model. Specifically, we developed a novel selective unlock-
ing mechanism based on owner’s posture recognition. Our
evaluation of the proposed mechanisms demonstrate its fea-
sibility in effectively and significantly raising the bar against
many lingering RFID attacks without negatively affecting
the currently employed usage model of the underlying RFID
applications.

As an immediate avenue for further work, we intend
to further optimize and fine-tune our posture recognition
algorithm for better efficiency on resource-constrained RFID
platforms and improved tolerance to errors whenever appli-
cable. Additionally, we are exploring the use of audio data
correlation for the second security primitive – transaction
verification. In particular, we have developed signal process-
ing techniques that can be used for determining similarity
between two short audio signals extracted by the valid
tag and valid reader. Our experiments indicate that these
techniques are quite useful in significantly raising the bar
against the reader-and-leech attacks.
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