CS W4701 Artificial Intelligence

Fall 2013 Chapter 8: First Order Logic

Jonathan Voris (based on slides by Sal Stolfo)

Gomoku Tournament

- Thanks to everyone for playing!
- 84 students participated
- 6 rounds played
- Over 700 bonus points awarded

Gomoku Tournament

- Congratulations to our winners!
 - 1st place: Kevin Roark
 - 2nd place: Shiyu Song
 - 3rd place: Kaili Zhang
- Honorable mentions:
 - Guillaume Le Chenadec
 - Jiuyang Zhao
 - Dewei Zhu

Assignment 4

- Implement inference algorithms for:
 - Forward chaining
 - Backward chaining
 - Resolution (optional)
- Inputs:
 - Mode
 - KB file
 - Q to be entailed

Assignment 3

- Due in 2 weeks
 - Tuesday December 10th @ 11:59:59 PM EST
- Please follow submission instructions
 - Pretty please?
- Submit:
 - Install script
 - Execution script
 - Test files
 - Documentation

Outline

- Why FOL?
- Syntax and semantics of FOL
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL

Pros and cons of propositional logic

- Propositional logic is declarative
- Propositional logic allows partial/disjunctive/negated information
 - (Unlike most data structures and databases)
- © Propositional logic is compositional:
 - Meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- ③ Meaning in propositional logic is context-independent
 - (Unlike natural language, where meaning depends on context)
- ☺ Propositional logic has very limited expressive power
 - (Unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares"
 - Except by writing one sentence for each square

Problems with Propositional Logic

Propositional Logic is Weak

- Hard to identify "individuals" (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (FOL) is expressive enough to concisely represent this kind of information

FOL adds relations, variables, and quantifiers, e.g.,

• "Every elephant is gray": $\forall x \text{ (elephant(x) } \rightarrow gray(x))$

• *"There is a white alligator":* ∃ x (alligator(X) ^ white(X))

Example

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Confucius is a person.
 - Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Another Example

- In PL we have to create propositional symbols to stand for all or part of each sentence. For example, we might have:
 P = "person"; Q = "mortal"; R = "Confucius"
- so the above 3 sentences are represented as:

 $P \rightarrow Q; R \rightarrow P; R \rightarrow Q$

- Although the third sentence is entailed by the first two, we needed an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes "person" and "mortal"
- To represent other individuals we must introduce separate symbols for each one, with some way to represent the fact that all individuals who are "people" are also "mortal"

Wumpus World Agent

• Some atomic propositions:

- S12 = There is a stench in cell (1,2)
- B34 = There is a breeze in cell (3,4)
- W22 = The Wumpus is in cell (2,2)
- V11 = We have visited cell (1,1)
- OK11 = Cell (1,1) is safe.

etc

• Some rules:

```
\begin{array}{l} (\mathsf{R1}) \neg \mathsf{S11} \rightarrow \neg \mathsf{W11} \land \neg \mathsf{W12} \land \neg \mathsf{W21} \\ (\mathsf{R2}) \neg \mathsf{S21} \rightarrow \neg \mathsf{W11} \land \neg \mathsf{W21} \land \neg \mathsf{W22} \land \neg \mathsf{W31} \\ (\mathsf{R3}) \neg \mathsf{S12} \rightarrow \neg \mathsf{W11} \land \neg \mathsf{W12} \land \neg \mathsf{W22} \land \neg \mathsf{W13} \\ (\mathsf{R4}) \quad \mathsf{S12} \rightarrow \mathsf{W13} \lor \mathsf{W12} \lor \mathsf{W22} \lor \mathsf{W11} \\ \mathsf{etc} \end{array}
```

 Note that the lack of variables requires us to give similar rules for each cell

Propositional Wumpus Agent Shortcomings

- Lack of variables prevents stating more general rules
 - We need a set of similar rules for each cell
- Change of the KB over time is difficult to represent
 - Standard technique is to index facts with the time when they're true
 - This means we have a separate KB for every time point
- Propositional logic quickly becomes impractical, even for very small worlds

First-order Logic

- Whereas propositional logic assumes the world contains facts,
- First-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, …
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic Elements

- Constants KingJohn, 2, CU,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables

x, y, a, b,...

- Connectives $\neg, \Rightarrow, \land, \lor, \Leftrightarrow$
- Equality
- Quantifiers \forall . \exists

- Brother(KingJohn) -> RichardTheLionheart
- Brother(RichardTheLionheart) -> KingJohn
- Length(LeftLegOf(Richard))
- Length(LeftLegOf(KingJohn))

Predicates vs Functions

- Predicates are relationships between things
 - Objects in
 - Truth out
- Functions are mappings between things
 - Objects in
 - Objects out

Predicates vs Functions

- Predicates are essentially functions with Boolean output, but
- Predicates combine symbols to form atomic sentences

– True or false (under a given model)

- Functions combine symbols to form terms
 - Expressions which refer to objects

Atomic Sentences

Atomic sentence = $predicate (term_1, ..., term_n)$ or $term_1 = term_2$

Term = $function (term_1,...,term_n)$ or constant or variable

Predicates vs Functions

- Predicates:
 - Holiday(November 28 2013) true
 - Short(Bill de Blasio) false
 - Brother(Peyton Manning, Eli Manning) true
- Functions:
 - SittingNextTo(student) student
 - InCity(person) New York
 - Brother(Peyton Manning) Eli Manning

A Note About Functions

- Not a function in the programming sense
- Really just a weird naming convention
- Not providing a definition
 No need to explain what an eye is to reason
 - about how many people have
- Parallels to lambda in Lisp

Complex sentences

- Complex sentences are made from atomic sentences using connectives
 ¬S, S₁ ∧ S₂, S₁ ∨ S₂, S₁ ⇒ S₂, S₁ ⇔ S₂,
- E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)

Truth in first-order logic

- Sentences are true with respect to a model which includes an interpretation
- Model contains info needed to evaluate sentences
 - Objects or domain elements
 - Interpretation pairing symbols with objects
 - Relationships between objects (predicates)
 - Functions with objects
- Interpretation specifies referents for

constant symbols	\rightarrow	objects
predicate symbols	\rightarrow	relations
function symbols	\rightarrow	functional relations

An atomic sentence predicate(term₁,...,term_n) is true iff the objects referred to by term₁,...,term_n are in the relation referred to by predicate

Models for FOL: Example

- Intended interpretation:
 - Richard refers to Richard the Lionheart
 - John refers to King John
 - Brother: brotherhood relation
 - OnHead: Relation between crown and King John
 - Person refers to Richard and John
 - King refers to John
 - LeftLeg reflects mapping in figure

- Another possible interpretation:
 - Richard refers to the crown
 - John refers to King John's left leg
 - Brother: false if an input is wearing crown
 - OnHead: Relation between Richard and King John
 - Person refers to legs
 - King refers to Richard
 - LeftLeg maps to right arms
- 5 objects in model
 - $-2^5 = 25$ possible interpretations just for John and Richard

- Not all objects need names
 - What do you call the crown?
- Objects can have multiple names
 - Richard and John can refer to the crown
- Were we better off with first order logic in this regard?
- Duty of the knowledge base to avoid these things

A Note About Models

 Recall in propositional logic, reasoning was performed with respect to all possible models

A Note About Models

- Same is true for FOL
- But instead of T/F, now need to consider
 - Objects
 - Interpretations
 - Relationships
- Example: 1 or 2 objects, 2 names, 1 relationship

• FOL lets us refer to objects

- FOL lets us refer to objects
- Has this solved the propositional logic naming problem?

- FOL lets us refer to objects
- Has this solved the propositional logic naming problem?
- Still need to enumerate!

- FOL lets us refer to objects
- Has this solved the propositional logic naming problem?
- Still need to enumerate!
- We want to be able to refer to collections of objects

- FOL lets us refer to objects
- Has this solved the propositional logic naming problem?
- Still need to enumerate!
- We want to be able to refer to collections of objects
 - All pits have breezes next to them
 - All sons have fathers
- We want to refer to some example of an object
 - There is a bird that can't fly
 - There is a bridge that connects Brooklyn and Manhattan

Universal Quantification

• ∀<*variables*> <*sentence*>

All Columbia students are smart: $\forall x$ Student(x, Columbia) \Rightarrow Smart(x)

- ∀x *P* is true in a model *m* iff *P* is true with *x* being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

Student(KingJohn,Columbia) \Rightarrow Smart(KingJohn)

- \wedge Student(Richard, Columbia) \Rightarrow Smart(Richard)
- \wedge Student(Columbia, Columbia) \Rightarrow Smart(Columbia)
- $\wedge \dots$

A Common Mistake to Avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:

∀x Student(x, Columbia) ∧ Smart(x) means "Everyone is a Columbia student and everyone is smart"

Existential Quantification

- ∃<variables> <sentence>
- Someone student at Columbia is smart:
- $\exists x$ Student(x,Columbia) \land Smart(x)
- $\exists x P$ is true in a model *m* iff *P* is true with *x* being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

- v Student (Richard, Columbia) ^ Smart(Richard)
- Student (Columbia, Columbia)
 Smart(Columbia)

V ...

Another Common Mistake to Avoid

- Typically, \land is the main connective with \exists
- Common mistake: using ⇒ as the main connective with ∃:

 $\exists x \text{ Student}(x, \text{ Columbia}) \Rightarrow \text{Smart}(x)$ is true if there is anyone who is not a Columbia student!

Properties of Quantifiers

- $\forall x \forall y \text{ is the same as } \forall y \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
- $\exists x \forall y Loves(x,y)$
 - "There is a person who loves everyone in the world"
- $\forall y \exists x Loves(x,y)$
 - "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- - $\forall x \text{ Likes}(x, \text{IceCream}) \quad \neg \exists x \neg \text{Likes}(x, \text{IceCream})$
- - $\exists x \text{ Likes}(x, \text{Broccoli}) \quad \neg \forall x \neg \text{Likes}(x, \text{Broccoli})$

Equality

term₁ = term₂ is true under a given interpretation if and only if term₁ and term₂ refer to the same object

– Father(John) = Henry

- Can also be used to state facts about functions
- E.g., definition of *Sibling* in terms of *Parent*:
 ∀*x,y Sibling(x,y)* ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧
 Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧ Parent(f,y)]

How would you say Huey has 2 brothers: Dewey & Louie

- How would you say Huey has 2 brothers: Dewey & Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)

- How would you say Huey has 2 brothers: Dewey & Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)
- What if Dewey is Louie?

- How would you say Huey has 2 brothers: Dewey & Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)
- What if Dewey *is* Louie?
 - Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ (Dewey != Louie)

- How would you say Huey has 2 brothers: Dewey & Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)
- What if Dewey *is* Louie?
 - Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ (Dewey != Louie)
- There could be a fourth brother!

- How would you say Huey has 2 brothers: Dewey & Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)
- What if Dewey *is* Louie?
 - Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ (Dewey != Louie)
- There could be a fourth brother!
 - Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ (Dewey != Louie) ^ ∀x Brother(x, Huey) ⇒ (x=Dewey v x=Louie)

- FOL is easier to work with if you assume database semantics
- Symbols refer to distinct objects
- Closed world
 - Everything not explicitly true is false
- Domain closure
 - No unnamed elements
- Now Brother(Huey, Dewey) ^ Brother(Huey, Louie) works as intended

Best Semantics?

- Are you always certain two objects aren't the same?
- No right or wrong semantics
- Pick what is useful
 - Concise
 - Natural

Using FOL

- The kinship domain:
- Brothers are siblings
 ∀x,y Brother(x,y) ⇔ Sibling(x,y)
- One's mother is one's female parent
 ∀m,c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))
- "Sibling" is symmetric
 ∀x,y Sibling(x,y) ⇔ Sibling(y,x)

Using FOL

The set domain:

- $\forall s \text{ Set}(s) \Leftrightarrow (s = \{\}) \lor (\exists x, s_2 \text{ Set}(s_2) \land s = \{x|s_2\})$
- ¬∃x,s {x|s} = {}
- $\forall x, s \ x \in s \Leftrightarrow s = \{x | s\}$
- $\forall x, s \ x \in s \Leftrightarrow [\exists y, s_2\} (s = \{y|s_2\} \land (x = y \lor x \in s_2))]$
- $\forall S_1, S_2 \ S_1 \subseteq S_2 \Leftrightarrow (\forall X \ X \in S_1 \Rightarrow X \in S_2)$
- $\forall S_1, S_2 (S_1 = S_2) \Leftrightarrow (S_1 \subseteq S_2 \land S_2 \subseteq S_1)$
- $\forall x, s_1, s_2 x \in (s_1 \cap s_2) \Leftrightarrow (x \in s_1 \land x \in s_2)$
- $\forall x, s_1, s_2 \ x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \lor x \in s_2)$

Interacting with FOL KBs

 Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at *t=5*:

Tell(KB,Percept([Smell,Breeze,None],5)) Ask(KB,∃a BestAction(a,5))

- I.e., does the KB entail some best action at *t*=5?
- Answer: Yes, {a/Shoot} ← substitution (binding list)
- Given a sentence S and a substitution σ ,
- Sσ denotes the result of plugging σ into S; e.g., S = Smarter(x,y) σ = {x/Hillary,y/Bill} Sσ = Smarter(Hillary,Bill)
- Ask(KB,S) returns some/all σ such that KB $\models \sigma$

Knowledge Base for the Wumpus World

• Perception

 $- \forall t,s,b \text{ Percept}([s,b,Glitter],t) \Rightarrow Glitter(t)$

Reflex

 $- \forall t \ Glitter(t) \Rightarrow BestAction(Grab,t)$

Deducing Hidden Properties

- ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔
 [a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}
- Properties of squares:

 $- \forall$ s,t *At*(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s)

Squares are breezy near a pit:
 →s Breezy(s) ⇔ ∃ r Adjacent(r,s) ∧ Pit(r)

Knowledge Engineering in FOL

- 1. Identify the task
 - Just like PEAS!
- 2. Assemble the relevant knowledge
 - Work with experts
- 3. Decide on a vocabulary of predicates, functions, and constants
 - Formalize concepts into logic names
- 4. Encode general knowledge about the domain
 - Record specific logical axioms

Knowledge Engineering in FOL

- 5. Encode a description of the specific problem instance
 - Agent is fed precepts as logical statements
- 6. Pose queries to the inference procedure and get answers
 - Axioms + facts = interesting facts (hopefully)
- 7. Debug the knowledge base

Wumpus Domain

- 1. Identify the task
 - Answering questions? Choosing actions?
 - Track location or reported in percept?
- 2. Assemble the relevant knowledge
 - Pits cause breezes, etc
- 3. Decide on a vocabulary of predicates, functions, and constants
 - Pits objects or predicates?
 - Orientation a function or predicate?
 - Do objects' locations depend on time?

Wumpus Domain

- 4. Encode general knowledge about the domain
 - $\forall s \text{ Breezy}(s) \Leftrightarrow \exists r \text{ Adjacent}(r,s) \land \text{Pit}(r)$
- 5. Encode a description of the specific problem instance
 - Explore map instance and observe squares
- 6. Pose queries to the inference procedure and get answers
 - Is it safe to move up?
 - What is my best action?
- 7. Debug the knowledge base
 - Problem with \forall s Breezy(s) $\Rightarrow \exists$ r Adjacent(r,s) ^ Pit(r)

One-bit full adder

- 1. Identify the task
 - Does the circuit actually add properly? (circuit verification)
 - Input/output of certain gates?
 - Loops?
- 2. Assemble the relevant knowledge
 - What is known about circuits?
 - Composed of wires and gates
 - Types of gates (AND, OR, XOR, NOT)
 - Irrelevant: physical wire paths, size, shape, color, cost of gates, cost

- 3. Decide on a vocabulary
 - Symbols, predicates, functions, etc.
 - Gates are objects
 - Behavior determined by type constants
 - Alternatives:
 - $Type(X_1) = XOR$ Type(X₁, XOR) $XOR(X_1)$
 - Terminals, signals, etc.

- 4. Encode general knowledge of the domain
 - Two connected terminals have the same signal: $\forall t_1, t_2$ Connected(t_1, t_2) \Rightarrow Signal(t_1) = Signal(t_2)
 - Signals are 1 or 0 $\forall t \text{ Signal}(t) = 1 \lor \text{ Signal}(t) = 0$
 - The two signals are distinct $1 \neq 0$
 - Connected is commutative $\forall t_1, t_2$ Connected $(t_1, t_2) \Leftrightarrow$ Connected (t_2, t_1)

- 4. Encode general knowledge of the domain
 - Gate definitions:
 - $\forall g \text{ Type}(g) = OR \Rightarrow \text{Signal}(Out(1,g)) = 1 \Leftrightarrow \exists n \text{ Signal}(In(n,g)) = 1$
 - $\forall g Type(g) = AND \Rightarrow Signal(Out(1,g)) = 0 \Leftrightarrow \exists n$ Signal(In(n,g)) = 0
 - $\forall g Type(g) = XOR \Rightarrow Signal(Out(1,g)) = 1 \Leftrightarrow$ Signal(In(1,g)) \neq Signal(In(2,g))
 - ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

5. Encode the specific problem instance

Type(X_1) = XORType(X_2) = XORType(A_1) = ANDType(A_2) = ANDType(O_1) = OR

Connected(Out(1,X₁),In(1,X₂)) Connected(Out(1,X₁),In(2,A₂)) Connected(Out(1,A₂),In(1,O₁)) Connected(Out(1,A₁),In(2,O₁)) Connected(Out(1,X₂),Out(1,C₁)) Connected(Out(1,O₁),Out(2,C₁)) Connected($In(1,C_1),In(1,X_1)$) Connected($In(1,C_1),In(1,A_1)$) Connected($In(2,C_1),In(2,X_1)$) Connected($In(2,C_1),In(2,A_1)$) Connected($In(3,C_1),In(2,X_2)$) Connected($In(3,C_1),In(1,A_2)$)

- 6. Pose queries to the inference procedure
 - What are the possible sets of values of all the terminals for the adder circuit?
 - Returns input/output table:

$$\begin{split} \exists i_1, i_2, i_3, o_1, o_2 \; Signal(In(1, C_1)) &= i_1 \land Signal(In(2, C_1)) = \\ i_2 \land Signal(In(3, C_1)) &= i_3 \land Signal(Out(1, C_1)) = o_1 \land \\ Signal(Out(2, C_1)) &= o_2 \end{split}$$

7. Debug the knowledge base May have omitted assertions like $1 \neq 0$

Summary

- First-order logic:
 - Objects and relations are semantic primitives
 - Syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power

- Sufficient to efficiently define Wumpus World