
CS W4701 

Artificial Intelligence

Fall 2013

Chapter 8:

First Order Logic

Jonathan Voris

(based on slides by Sal Stolfo)



Gomoku Tournament 

• Thanks to everyone for playing!

• 84 students participated

• 6 rounds played

• Over 700 bonus points awarded
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Gomoku Tournament 

• Congratulations to our winners!

– 1st place: Kevin Roark

– 2nd place: Shiyu Song

– 3rd place: Kaili Zhang 

• Honorable mentions:

– Guillaume Le Chenadec

– Jiuyang Zhao

– Dewei Zhu
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Assignment 4

• Implement inference algorithms for:
– Forward chaining

– Backward chaining

– Resolution (optional)

• Inputs:

– Mode

– KB file

– Q to be entailed
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Assignment 3
• Due in 2 weeks

– Tuesday December 10th @ 11:59:59 PM EST

• Please follow submission instructions

– Pretty please?

• Submit:

– Install script

– Execution script

– Test files

– Documentation
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Outline

• Why FOL?

• Syntax and semantics of FOL

• Using FOL

• Wumpus world in FOL

• Knowledge engineering in FOL
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Pros and cons of propositional 

logic
 Propositional logic is declarative

 Propositional logic allows partial/disjunctive/negated 
information
– (Unlike most data structures and databases)

 Propositional logic is compositional:
– Meaning of B1,1  P1,2 is derived from meaning of B1,1 and of P1,2

 Meaning in propositional logic is context-independent
– (Unlike natural language, where meaning depends on context)

 Propositional logic has very limited expressive power
– (Unlike natural language)

– E.g., cannot say "pits cause breezes in adjacent squares“

• Except by writing one sentence for each square
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Problems with Propositional 

Logic
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Propositional Logic is Weak

• Hard to identify “individuals” (e.g., Mary, 3)

• Can’t directly talk about properties of individuals or 

relations between individuals (e.g., “Bill is tall”)

• Generalizations, patterns, regularities can’t easily be 

represented (e.g., “all triangles have 3 sides”)

• First-Order Logic (FOL) is expressive enough to 

concisely represent this kind of information

FOL adds relations, variables, and quantifiers, e.g.,

•“Every elephant is gray”:  x (elephant(x) → gray(x))

•“There is a white alligator”:  x (alligator(X) ^ white(X))
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Example

• Consider the problem of representing the 

following information: 
– Every person is mortal. 

– Confucius is a person. 

– Confucius is mortal.

• How can these sentences be represented 

so that we can infer the third sentence 

from the first two? 
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Another Example

• In PL we have to create propositional symbols to stand for 

all or part of each sentence. For example, we might have: 

P = “person”; Q = “mortal”; R = “Confucius”

• so the above 3 sentences are represented as: 

P  Q; R  P;  R  Q 

• Although the third sentence is entailed by the first two, we 

needed an explicit symbol, R, to represent an individual, 

Confucius, who is a member of the classes “person” and 

“mortal”

• To represent other individuals we must introduce separate 

symbols for each one, with some way to represent the fact 

that all individuals who are “people” are also “mortal”
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Wumpus World Agent

• Some atomic propositions:
S12 = There is a stench in cell (1,2)

B34 = There is a breeze in cell (3,4)

W22 = The Wumpus is in cell (2,2)

V11 = We have visited cell (1,1)

OK11 = Cell (1,1) is safe.

etc

• Some rules:
(R1) S11  W11   W12   W21
(R2)  S21  W11   W21   W22   W31
(R3)  S12  W11   W12   W22   W13
(R4)    S12  W13  W12  W22  W11
etc

• Note that the lack of variables requires us to give 
similar rules for each cell
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Propositional Wumpus Agent 

Shortcomings
• Lack of variables prevents stating more 

general rules

– We need a set of similar rules for each cell

• Change of the KB over time is difficult to 

represent

– Standard technique is to index facts with the time 

when they’re true

– This means we have a separate KB for every time 

point

• Propositional logic quickly becomes 

impractical, even for very small worlds
13



First-order Logic

• Whereas propositional logic assumes the 
world contains facts,

• First-order logic (like natural language) 
assumes the world contains

– Objects: people, houses, numbers, colors, 
baseball games, wars, …

– Relations: red, round, prime, brother of, 
bigger than, part of, comes between, …

– Functions: father of, best friend, one more 
than, plus, …
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Syntax of FOL: Basic Elements

• Constants KingJohn, 2, CU,... 

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Connectives , , , , 

• Equality = 

• Quantifiers  , 
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FOL Examples

• Brother(KingJohn) -> RichardTheLionheart 

• Brother(RichardTheLionheart) -> KingJohn

• Length(LeftLegOf(Richard))

• Length(LeftLegOf(KingJohn))
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Predicates vs Functions

• Predicates are relationships between 

things

– Objects in

– Truth out

• Functions are mappings between things

– Objects in

– Objects out
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Predicates vs Functions

• Predicates are essentially functions with 

Boolean output, but

• Predicates combine symbols to form 

atomic sentences

– True or false (under a given model)

• Functions combine symbols to form terms

– Expressions which refer to objects
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Atomic Sentences

Atomic sentence = predicate (term1,...,termn) 

or term1 = term2

Term            = function (term1,...,termn) 

or constant or variable
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Predicates vs Functions

• Predicates:

– Holiday(November 28 2013) – true

– Short(Bill de Blasio) – false

– Brother(Peyton Manning, Eli Manning) - true

• Functions:

– SittingNextTo(student) – student

– InCity(person) – New York

– Brother(Peyton Manning) - Eli Manning
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A Note About Functions

• Not a function in the programming sense

• Really just a weird naming convention

• Not providing a definition 

– No need to explain what an eye is to reason 

about how many people have

• Parallels to lambda in Lisp
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Complex sentences

• Complex sentences are made from atomic 

sentences using connectives

S, S1  S2, S1  S2, S1 S2, S1S2,

E.g. Sibling(KingJohn,Richard) 

Sibling(Richard,KingJohn)

>(1,2)  ≤ (1,2)

>(1,2)   >(1,2) 

22



Truth in first-order logic

• Sentences are true with respect to a model which includes an 
interpretation

• Model contains info needed to evaluate sentences
– Objects or domain elements

– Interpretation pairing symbols with objects

– Relationships between objects (predicates)

– Functions with objects

• Interpretation specifies referents for
constant symbols → objects

predicate symbols → relations

function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true

iff the objects referred to by term1,...,termn

are in the relation referred to by predicate
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Models for FOL: Example
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FOL Examples

• Intended interpretation:

– Richard refers to Richard the Lionheart

– John refers to King John

– Brother: brotherhood relation

– OnHead: Relation between crown and King John

– Person refers to Richard and John

– King refers to John

– LeftLeg reflects mapping in figure
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FOL Examples

• Another possible interpretation:

– Richard refers to the crown

– John refers to King John’s left leg

– Brother: false if an input is wearing crown

– OnHead: Relation between Richard and King John

– Person refers to legs

– King refers to Richard

– LeftLeg maps to right arms

• 5 objects in model

– 25 = 25 possible interpretations just for John and Richard
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FOL Examples

• Not all objects need names

– What do you call the crown?

• Objects can have multiple names

– Richard and John can refer to the crown

• Were we better off with first order logic in this regard?

• Duty of the knowledge base to avoid these things
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A Note About Models

• Recall in propositional logic, reasoning was performed 

with respect to all possible models
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A Note About Models

• Same is true for FOL

• But instead of T/F, now need to consider

– Objects

– Interpretations

– Relationships

• Example: 1 or 2 objects, 2 names, 1 relationship
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Quantifiers

• FOL lets us refer to objects
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Quantifiers

• FOL lets us refer to objects

• Has this solved the propositional logic naming 
problem?
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Quantifiers

• FOL lets us refer to objects

• Has this solved the propositional logic naming 
problem?

• Still need to enumerate!

32



Quantifiers

• FOL lets us refer to objects

• Has this solved the propositional logic naming 
problem?

• Still need to enumerate!

• We want to be able to refer to collections of objects

33



Quantifiers

• FOL lets us refer to objects

• Has this solved the propositional logic naming 
problem?

• Still need to enumerate!

• We want to be able to refer to collections of objects
– All pits have breezes next to them

– All sons have fathers

• We want to refer to some example of an object
– There is a bird that can’t fly

– There is a bridge that connects Brooklyn and Manhattan
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Universal Quantification

• <variables> <sentence>

All Columbia students are smart:

x Student(x, Columbia)  Smart(x)

• x P is true in a model m iff P is true with x being each 
possible object in the model

• Roughly speaking, equivalent to the conjunction of 
instantiations of P

Student(KingJohn,Columbia)  Smart(KingJohn) 

 Student(Richard, Columbia)  Smart(Richard) 

 Student(Columbia, Columbia)  Smart(Columbia) 

 ...
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A Common Mistake to Avoid

• Typically,  is the main connective with 

• Common mistake: using  as the main 

connective with :

x Student(x, Columbia)  Smart(x)

means “Everyone is a Columbia student and everyone 

is smart”
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Existential Quantification

• <variables> <sentence>

• Someone student at Columbia is smart:

• x Student(x,Columbia)  Smart(x)

• x P is true in a model m iff P is true with x being some 
possible object in the model

• Roughly speaking, equivalent to the disjunction of 
instantiations of P

Student(KingJohn, Columbia)  Smart(KingJohn) 

 Student (Richard, Columbia)  Smart(Richard) 

 Student (Columbia, Columbia)  Smart(Columbia) 

 ...
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Another Common Mistake to 

Avoid
• Typically,  is the main connective with 

• Common mistake: using  as the main 

connective with :

x Student(x, Columbia)  Smart(x)

is true if there is anyone who is not a Columbia 

student!
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Properties of Quantifiers

• x y is the same as y x

• x y is the same as y x

• x y is not the same as y x

• x y Loves(x,y)
– “There is a person who loves everyone in the world”

• y x Loves(x,y)
– “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other

• x Likes(x,IceCream) x Likes(x,IceCream)

• x Likes(x,Broccoli) x Likes(x,Broccoli)
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Equality

• term1 = term2 is true under a given interpretation 

if and only if term1 and term2 refer to the same 

object

– Father(John) = Henry

• Can also be used to state facts about functions

• E.g., definition of Sibling in terms of Parent:

x,y Sibling(x,y)  [(x = y)  m,f  (m = f) 

Parent(m,x)  Parent(f,x)  Parent(m,y)  Parent(f,y)]
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Different Semantics

• How would you say Huey has 2 brothers: Dewey 

& Louie
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Different Semantics

• How would you say Huey has 2 brothers: Dewey 

& Louie

• Brother(Huey, Dewey) ^ Brother(Huey, Louie)
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Different Semantics

• How would you say Huey has 2 brothers: Dewey 

& Louie

• Brother(Huey, Dewey) ^ Brother(Huey, Louie)

• What if Dewey is Louie?
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Different Semantics

• How would you say Huey has 2 brothers: Dewey 

& Louie

• Brother(Huey, Dewey) ^ Brother(Huey, Louie)

• What if Dewey is Louie?

– Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ 

(Dewey != Louie)
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Different Semantics

• How would you say Huey has 2 brothers: Dewey 

& Louie

• Brother(Huey, Dewey) ^ Brother(Huey, Louie)

• What if Dewey is Louie?

– Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ 

(Dewey != Louie)

• There could be a fourth brother!
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Different Semantics

• How would you say Huey has 2 brothers: Dewey 

& Louie

• Brother(Huey, Dewey) ^ Brother(Huey, Louie)

• What if Dewey is Louie?

– Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ 

(Dewey != Louie)

• There could be a fourth brother!

– Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ 

(Dewey != Louie) ^ x Brother(x, Huey)  (x=Dewey 

v x=Louie)
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Different Semantics

• FOL is easier to work with if you assume database 

semantics

• Symbols refer to distinct objects

• Closed world

– Everything not explicitly true is false

• Domain closure

– No unnamed elements

• Now Brother(Huey, Dewey) ^ Brother(Huey, Louie) 

works as intended
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Best Semantics?

• Are you always certain two objects aren’t the same?

• No right or wrong semantics

• Pick what is useful

– Concise

– Natural
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Using FOL

The kinship domain:

• Brothers are siblings

x,y Brother(x,y)  Sibling(x,y)

• One's mother is one's female parent

m,c Mother(c) = m  (Female(m)  Parent(m,c))

• “Sibling” is symmetric

x,y Sibling(x,y)  Sibling(y,x)
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Using FOL

The set domain: 

• s Set(s)  (s = {} )  (x,s2 Set(s2)  s = {x|s2})

• x,s {x|s} = {}

• x,s x  s  s = {x|s}

• x,s x  s  [ y,s2} (s = {y|s2}  (x = y  x 
s2))]

• s1,s2 s1  s2  (x x  s1  x  s2)

• s1,s2 (s1 = s2)  (s1  s2  s2  s1)

• x,s1,s2 x  (s1  s2)  (x  s1  x  s2)

• x,s1,s2 x  (s1  s2)  (x  s1  x  s2)
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Interacting with FOL KBs

• Suppose a wumpus-world agent is using an FOL KB and perceives a smell 
and a breeze (but no glitter) at t=5:

Tell(KB,Percept([Smell,Breeze,None],5))

Ask(KB,a BestAction(a,5))

• I.e., does the KB entail some best action at t=5?

• Answer: Yes, {a/Shoot}  ← substitution (binding list)

• Given a sentence S and a substitution σ,

• Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x,y)

σ = {x/Hillary,y/Bill}

Sσ = Smarter(Hillary,Bill)

• Ask(KB,S) returns some/all σ such that KB╞ σ
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Knowledge Base for the 

Wumpus World
• Perception

– t,s,b Percept([s,b,Glitter],t)  Glitter(t)

• Reflex

– t Glitter(t)  BestAction(Grab,t)
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Deducing Hidden Properties

• x,y,a,b Adjacent([x,y],[a,b]) 

[a,b]  {[x+1,y], [x-1,y],[x,y+1],[x,y-1]} 

• Properties of squares:
– s,t At(Agent,s,t)  Breeze(t)  Breezy(s)

• Squares are breezy near a pit:
– s Breezy(s)   r Adjacent(r,s)  Pit(r)
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Knowledge Engineering in FOL

1. Identify the task
– Just like PEAS!

2. Assemble the relevant knowledge
– Work with experts

3. Decide on a vocabulary of predicates, 
functions, and constants

– Formalize concepts into logic names

4. Encode general knowledge about the domain
– Record specific logical axioms
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Knowledge Engineering in FOL

5. Encode a description of the specific problem 
instance

– Agent is fed precepts as logical statements

6. Pose queries to the inference procedure and 
get answers

– Axioms + facts = interesting facts (hopefully)

7. Debug the knowledge base
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Wumpus Domain

1. Identify the task
– Answering questions? Choosing actions?

– Track location or reported in percept?

2. Assemble the relevant knowledge
– Pits cause breezes, etc

3. Decide on a vocabulary of predicates, 
functions, and constants

– Pits objects or predicates?

– Orientation a function or predicate?

– Do objects’ locations depend on time?
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Wumpus Domain

4. Encode general knowledge about the domain
– s Breezy(s)  r Adjacent(r,s) ^ Pit(r)

5. Encode a description of the specific problem 
instance

– Explore map instance and observe squares

6. Pose queries to the inference procedure and 
get answers

– Is it safe to move up? 

– What is my best action?

7. Debug the knowledge base
– Problem with s Breezy(s)  r Adjacent(r,s) ^ Pit(r)
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The Electronic Circuits Domain

One-bit full adder
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The Electronic Circuits Domain

1. Identify the task
– Does the circuit actually add properly? (circuit 

verification)

– Input/output of certain gates?

– Loops?

2. Assemble the relevant knowledge
– What is known about circuits?

– Composed of wires and gates

– Types of gates (AND, OR, XOR, NOT)

– Irrelevant: physical wire paths, size, shape, color, 
cost of gates, cost 
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The Electronic Circuits Domain

3. Decide on a vocabulary
– Symbols, predicates, functions, etc.

– Gates are objects

– Behavior determined by type constants

– Alternatives:
Type(X1) = XOR

Type(X1, XOR)

XOR(X1)

– Terminals, signals, etc.
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The Electronic Circuits Domain

4. Encode general knowledge of the domain
– Two connected terminals have the same signal:

t1,t2 Connected(t1, t2)  Signal(t1) = Signal(t2)

– Signals are 1 or 0

t Signal(t) = 1  Signal(t) = 0

– The two signals are distinct

1 ≠ 0

– Connected is commutative

t1,t2 Connected(t1, t2)  Connected(t2, t1)
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The Electronic Circuits Domain

4. Encode general knowledge of the domain
– Gate definitions:

• g Type(g) = OR  Signal(Out(1,g)) = 1  n 
Signal(In(n,g)) = 1

• g Type(g) = AND  Signal(Out(1,g)) = 0  n 
Signal(In(n,g)) = 0

• g Type(g) = XOR  Signal(Out(1,g)) = 1 
Signal(In(1,g)) ≠ Signal(In(2,g))

• g Type(g) = NOT  Signal(Out(1,g)) ≠
Signal(In(1,g))
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The Electronic Circuits Domain

5. Encode the specific problem instance
Type(X1) = XOR Type(X2) = XOR

Type(A1) = AND Type(A2) = AND

Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))

Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))

Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))

Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))

Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))

Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

63



The Electronic Circuits Domain

6. Pose queries to the inference procedure

– What are the possible sets of values of all the 

terminals for the adder circuit? 

– Returns input/output table:

i1,i2,i3,o1,o2 Signal(In(1,C_1)) = i1  Signal(In(2,C1)) = 

i2  Signal(In(3,C1)) = i3  Signal(Out(1,C1)) = o1 

Signal(Out(2,C1)) = o2

7. Debug the knowledge base

May have omitted assertions like 1 ≠ 0
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Summary

• First-order logic:

– Objects and relations are semantic primitives

– Syntax: constants, functions, predicates, 

equality, quantifiers

• Increased expressive power

– Sufficient to efficiently define Wumpus World 
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