CS W4701
 Artificial Intelligence

Fall 2013
Chapter 8:
First Order Logic

Jonathan Voris
(based on slides by Sal Stolfo)

Gomoku Tournament

- Thanks to everyone for playing!
- 84 students participated
- 6 rounds played
- Over 700 bonus points awarded

Gomoku Tournament

- Congratulations to our winners!
- $1^{\text {st }}$ place: Kevin Roark
- $2^{\text {nd }}$ place: Shiyu Song
- 3rd place: Kaili Zhang
- Honorable mentions:
- Guillaume Le Chenadec
- Jiuyang Zhao
- Dewei Zhu

Assignment 4

- Implement inference algorithms for:
- Forward chaining
- Backward chaining
- Resolution (optional)
- Inputs:
- Mode
- KB file
- Q to be entailed

Assignment 3

- Due in 2 weeks
- Tuesday December 10 ${ }^{\text {th }}$ @ 11:59:59 PM EST
- Please follow submission instructions
- Pretty please?
- Submit:
- Install script
- Execution script
- Test files
- Documentation

Outline

- Why FOL?
- Syntax and semantics of FOL
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL

Pros and cons of propositional logic

© Propositional logic is declarative
© Propositional logic allows partial/disjunctive/negated information

- (Unlike most data structures and databases)
© Propositional logic is compositional:
- Meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
© Meaning in propositional logic is context-independent
- (Unlike natural language, where meaning depends on context)
© Propositional logic has very limited expressive power
- (Unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares"
- Except by writing one sentence for each square

Problems with Propositional Logic

Propositional Logic is Weak

- Hard to identify "individuals" (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (FOL) is expressive enough to concisely represent this kind of information
FOL adds relations, variables, and quantifiers, e.g.,
- "Every elephant is gray": $\forall \mathrm{x}($ elephant $(\mathrm{x}) \rightarrow \operatorname{gray}(\mathrm{x}))$
-"There is a white alligator": $\exists \mathrm{x}$ (alligator $(\mathrm{X})^{\wedge}$ white(X$)$)

Example

- Consider the problem of representing the following information:
- Every person is mortal.
- Confucius is a person.
- Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Another Example

- In PL we have to create propositional symbols to stand for all or part of each sentence. For example, we might have:
P = "person"; $\mathrm{Q}=$ "mortal"; $\mathrm{R}=$ = "Confucius"
- so the above 3 sentences are represented as:

$$
\mathrm{P} \rightarrow \mathrm{Q} ; \mathrm{R} \rightarrow \mathrm{P} ; \mathrm{R} \rightarrow \mathrm{Q}
$$

- Although the third sentence is entailed by the first two, we needed an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes "person" and "mortal"
- To represent other individuals we must introduce separate symbols for each one, with some way to represent the fact that all individuals who are "people" are also "mortal"

Wumpus World Agent

- Some atomic propositions:

S12 $=$ There is a stench in cell $(1,2)$
B34 $=$ There is a breeze in cell $(3,4)$
W22 = The Wumpus is in cell $(2,2)$
V11 = We have visited cell $(1,1)$
OK11 = Cell $(1,1)$ is safe.
etc

- Some rules:

$$
\begin{aligned}
& \text { (R1) } \neg \text { S11 } \rightarrow \neg \text { W11 } \wedge \neg \text { W12 } \wedge \neg \text { W21 } \\
& \text { (R2) } \neg \text { S21 } \rightarrow \neg \text { W11 } \wedge \neg \text { W21 } \wedge \neg \text { W22 } \wedge \neg \text { W31 } \\
& \text { (R3) } \neg \text { S12 } \rightarrow \neg \mathrm{W} 11 \wedge \neg \mathrm{~W} 12 \wedge \neg \mathrm{~W} 22 \wedge \neg \mathrm{~W} 13 \\
& \text { (R4) } \mathrm{S} 12 \rightarrow \mathrm{~W} 13 \vee \mathrm{~W} 12 \vee \mathrm{~W} 22 \vee \mathrm{~W} 11 \\
& \text { etc }
\end{aligned}
$$

- Note that the lack of variables requires us to give similar rules for each cell

Propositional Wumpus Agent Shortcomings

- Lack of variables prevents stating more general rules
- We need a set of similar rules for each cell
- Change of the KB over time is difficult to represent
- Standard technique is to index facts with the time when they're true
- This means we have a separate KB for every time point
- Propositional logic quickly becomes impractical, even for very small worlds

First-order Logic

- Whereas propositional logic assumes the world contains facts,
- First-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars, ...
- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic Elements

- Constants KingJohn, 2, CU,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives $\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow$
- Equality
$=$
- Quantifiers \forall, \exists

FOL Examples

- Brother(KingJohn) -> RichardTheLionheart
- Brother(RichardTheLionheart) -> KingJohn
- Length(LeftLegOf(Richard))
- Length(LeftLegOf(KingJohn))

Predicates vs Functions

- Predicates are relationships between things
- Objects in
- Truth out
- Functions are mappings between things
- Objects in
- Objects out

Predicates vs Functions

- Predicates are essentially functions with Boolean output, but
- Predicates combine symbols to form atomic sentences
- True or false (under a given model)
- Functions combine symbols to form terms
- Expressions which refer to objects

Atomic Sentences

Atomic sentence $=$ predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term $_{1}=$ term $_{2}$

Term

$$
\begin{array}{ll}
= & \text { function }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
& \text { or constant or variable }
\end{array}
$$

Predicates vs Functions

- Predicates:
- Holiday(November 28 2013) - true
- Short(Bill de Blasio) - false
- Brother(Peyton Manning, Eli Manning) - true
- Functions:
- SittingNextTo(student) - student
- InCity(person) - New York
- Brother(Peyton Manning) - Eli Manning

A Note About Functions

- Not a function in the programming sense
- Really just a weird naming convention
- Not providing a definition
- No need to explain what an eye is to reason about how many people have
- Parallels to lambda in Lisp

Complex sentences

- Complex sentences are made from atomic sentences using connectives

$$
\neg S, S_{1} \wedge S_{2}, S_{1} \vee S_{2}, S_{1} \Rightarrow S_{2}, S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling(KingJohn,Richard) \Rightarrow

Sibling(Richard,KingJohn)

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

Truth in first-order logic

- Sentences are true with respect to a model which includes an interpretation
- Model contains info needed to evaluate sentences
- Objects or domain elements
- Interpretation pairing symbols with objects
- Relationships between objects (predicates)
- Functions with objects
- Interpretation specifies referents for
constant symbols $\rightarrow \quad$ objects
predicate symbols $\rightarrow \quad$ relations
function symbols $\quad \rightarrow \quad$ functional relations
- An atomic sentence predicate(term ${ }_{1}, \ldots$, term $_{n}$) is true iff the objects referred to by term ${ }_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Models for FOL: Example

FOL Examples

- Intended interpretation:
- Richard refers to Richard the Lionheart
- John refers to King John
- Brother: brotherhood relation
- OnHead: Relation between crown and King John
- Person refers to Richard and John
- King refers to John
- LeftLeg reflects mapping in figure

FOL Examples

- Another possible interpretation:
- Richard refers to the crown
- John refers to King John's left leg
- Brother: false if an input is wearing crown
- OnHead: Relation between Richard and King John
- Person refers to legs
- King refers to Richard
- LeftLeg maps to right arms
- 5 objects in model
$-2^{5}=25$ possible interpretations just for John and Richard

FOL Examples

- Not all objects need names
- What do you call the crown?
- Objects can have multiple names
- Richard and John can refer to the crown
- Were we better off with first order logic in this regard?
- Duty of the knowledge base to avoid these things

A Note About Models

- Recall in propositional logic, reasoning was performed with respect to all possible models

A Note About Models

- Same is true for FOL
- But instead of T/F, now need to consider
- Objects
- Interpretations
- Relationships
- Example: 1 or 2 objects, 2 names, 1 relationship

Quantifiers

- FOL lets us refer to objects

Quantifiers

- FOL lets us refer to objects
- Has this solved the propositional logic naming problem?

Quantifiers

- FOL lets us refer to objects
- Has this solved the propositional logic naming problem?
- Still need to enumerate!

Quantifiers

- FOL lets us refer to objects
- Has this solved the propositional logic naming problem?
- Still need to enumerate!
- We want to be able to refer to collections of objects

Quantifiers

- FOL lets us refer to objects
- Has this solved the propositional logic naming problem?
- Still need to enumerate!
- We want to be able to refer to collections of objects
- All pits have breezes next to them
- All sons have fathers
- We want to refer to some example of an object
- There is a bird that can't fly
- There is a bridge that connects Brooklyn and Manhattan

Universal Quantification

- $\forall<$ variables $><$ sentence>

All Columbia students are smart:
$\forall x$ Student(x, Columbia) \Rightarrow Smart(x)

- $\forall x P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

Student(KingJohn,Columbia) \Rightarrow Smart(KingJohn)
$\wedge \quad$ Student(Richard, Columbia) \Rightarrow Smart(Richard)
$\wedge \quad$ Student(Columbia, Columbia) \Rightarrow Smart(Columbia)

A Common Mistake to Avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall :
$\forall x$ Student(x, Columbia) ^Smart(x) means "Everyone is a Columbia student and everyone is smart"

Existential Quantification

- ヨ<variables> <sentence>
- Someone student at Columbia is smart:
- $\exists x$ Student(x,Columbia) ^Smart(x)
- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

Student(KingJohn, Columbia) ^ Smart(KingJohn)
\checkmark Student (Richard, Columbia) ^ Smart(Richard)
\vee Student (Columbia, Columbia) \wedge Smart(Columbia)
\vee...

Another Common Mistake to Avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :
$\exists x$ Student(x, Columbia) $\Rightarrow \operatorname{Smart}(x)$
is true if there is anyone who is not a Columbia student!

Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y \operatorname{Loves}(x, y)$
- "There is a person who loves everyone in the world"
- $\forall y \exists x \operatorname{Loves}(x, y)$
- "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- $\forall x$ Likes(x,IceCream) $\neg \exists x \neg$ Likes(x,IceCream)
- $\exists x$ Likes(x,Broccoli) $\neg \forall x \neg$ Likes(x,Broccoli)

Equality

- term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term, and term ${ }_{2}$ refer to the same object
- Father(John) = Henry
- Can also be used to state facts about functions
- E.g., definition of Sibling in terms of Parent:
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists \mathrm{m}, \mathrm{f} \neg(\mathrm{m}=\mathrm{f}) \wedge$ $\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$

Different Semantics

- How would you say Huey has 2 brothers: Dewey \& Louie

Different Semantics

- How would you say Huey has 2 brothers: Dewey \& Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)

Different Semantics

- How would you say Huey has 2 brothers: Dewey \& Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)
- What if Dewey is Louie?

Different Semantics

- How would you say Huey has 2 brothers: Dewey \& Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)
- What if Dewey is Louie?
- Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ (Dewey != Louie)

Different Semantics

- How would you say Huey has 2 brothers: Dewey \& Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)
- What if Dewey is Louie?
- Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ (Dewey != Louie)
- There could be a fourth brother!

Different Semantics

- How would you say Huey has 2 brothers: Dewey \& Louie
- Brother(Huey, Dewey) ^ Brother(Huey, Louie)
- What if Dewey is Louie?
- Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ (Dewey != Louie)
- There could be a fourth brother!
- Brother(Huey, Dewey) ^ Brother(Huey, Louie) ^ (Dewey != Louie) ^ $\forall x$ Brother(x, Huey) \Rightarrow ($x=$ Dewey v x=Louie)

Different Semantics

- FOL is easier to work with if you assume database semantics
- Symbols refer to distinct objects
- Closed world
- Everything not explicitly true is false
- Domain closure
- No unnamed elements
- Now Brother(Huey, Dewey) ^ Brother(Huey, Louie) works as intended

Best Semantics?

- Are you always certain two objects aren't the same?
- No right or wrong semantics
- Pick what is useful
- Concise
- Natural

Using FOL

The kinship domain:

- Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Leftrightarrow \operatorname{Sibling}(x, y)$
- One's mother is one's female parent
$\forall \mathrm{m}, \mathrm{c} \operatorname{Mother}(\mathrm{c})=\mathrm{m} \Leftrightarrow(\operatorname{Female}(\mathrm{m}) \wedge \operatorname{Parent}(\mathrm{m}, \mathrm{c}))$
- "Sibling" is symmetric $\forall x, y$ Sibling $(x, y) \Leftrightarrow$ Sibling (y, x)

Using FOL

The set domain:

- $\forall \mathrm{s} \operatorname{Set}(\mathrm{s}) \Leftrightarrow(\mathrm{s}=\{ \}) \vee\left(\exists x, \mathrm{~s}_{2} \operatorname{Set}\left(\mathrm{~s}_{2}\right) \wedge \mathrm{s}=\left\{\mathrm{x} \mid \mathrm{s}_{2}\right\}\right)$
- $\neg \exists \mathrm{x}, \mathrm{s}\{\mathrm{x} \mid \mathrm{s}\}=\{ \}$
- $\forall x, s x \in s \Leftrightarrow s=\{x \mid s\}$
- $\forall x, s x \in s \Leftrightarrow\left[\exists y, s_{2}\right\}\left(s=\left\{y \mid s_{2}\right\} \wedge(x=y \vee x \in\right.$ $\left.\mathrm{S}_{2}\right)$)]
- $\forall \mathrm{s}_{1}, \mathrm{~s}_{2} \mathrm{~s}_{1} \subseteq \mathrm{~s}_{2} \Leftrightarrow\left(\forall \mathrm{xx} \in \mathrm{s}_{1} \Rightarrow \mathrm{x} \in \mathrm{s}_{2}\right)$
- $\forall \mathrm{s}_{1}, \mathrm{~s}_{2}\left(\mathrm{~s}_{1}=\mathrm{s}_{2}\right) \Leftrightarrow\left(\mathrm{s}_{1} \subseteq \mathrm{~s}_{2} \wedge \mathrm{~s}_{2} \subseteq \mathrm{~s}_{1}\right)$
- $\forall x, s_{1}, s_{2} x \in\left(s_{1} \cap s_{2}\right) \Leftrightarrow\left(x \in s_{1} \wedge x \in s_{2}\right)$
- $\forall x, s_{1}, s_{2} x \in\left(s_{1} \cup s_{2}\right) \Leftrightarrow\left(x \in s_{1} \vee x \in s_{2}\right)$

Interacting watin mon

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

```
Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB,\existsa BestAction(a,5))
```

- I.e., does the KB entail some best action at $t=5$?
- Answer: Yes, $\{a /$ Shoot $\}$
\leftarrow substitution (binding list)
- Given a sentence S and a substitution σ,
- So denotes the result of plugging σ into S; e.g.,
$S=\operatorname{Smarter}(\mathrm{x}, \mathrm{y})$
$\sigma=\{x /$ Hillary, $\mathrm{y} /$ Bill $\}$
So = Smarter(Hillary,Bill)
- $\operatorname{Ask}(K B, S)$ returns some/all σ such that $K B \equiv \sigma$

Knowledge Base for the Wumpus World

- Perception
$-\forall \mathrm{t}, \mathrm{s}, \mathrm{b} \operatorname{Percept}([\mathrm{s}, \mathrm{b}, \mathrm{Glitter}], \mathrm{t}) \Rightarrow \operatorname{Glitter}(\mathrm{t})$
- Reflex
$-\forall \mathrm{t}$ Glitter(t) \Rightarrow BestAction(Grab,t)

Deducing Hidden Properties

- $\forall x, y, a, b \operatorname{Adjacent}([x, y],[a, b]) \Leftrightarrow$

$$
[a, b] \in\{[x+1, y],[x-1, y],[x, y+1],[x, y-1]\}
$$

- Properties of squares:
$-\forall \mathrm{s}, \mathrm{t} A t($ Agent,s,t) \wedge Breeze(t) \Rightarrow Breezy(s)
- Squares are breezy near a pit:
$-\forall s$ Breezy(s) $\Leftrightarrow \exists$ r Adjacent $(r, s) \wedge \operatorname{Pit}(r)$

Knowledge Engineering in FOL

1. Identify the task

- Just like PEAS!

2. Assemble the relevant knowledge

- Work with experts

3. Decide on a vocabulary of predicates, functions, and constants

- Formalize concepts into logic names

4. Encode general knowledge about the domain

- Record specific logical axioms

Knowledge Engineering in FOL

5. Encode a description of the specific problem instance

- Agent is fed precepts as logical statements

6. Pose queries to the inference procedure and get answers

- Axioms + facts = interesting facts (hopefully)

7. Debug the knowledge base

Wumpus Domain

1. Identify the task

- Answering questions? Choosing actions?
- Track location or reported in percept?

2. Assemble the relevant knowledge

- Pits cause breezes, etc

3. Decide on a vocabulary of predicates, functions, and constants

- Pits objects or predicates?
- Orientation a function or predicate?
- Do objects' locations depend on time?

Wumpus Domain

4. Encode general knowledge about the domain $-\quad \forall \mathrm{s}$ Breezy(s) $\Leftrightarrow \exists \mathrm{r} \operatorname{Adjacent(r,s)}{ }^{\wedge} \operatorname{Pit}(r)$
5. Encode a description of the specific problem instance

- Explore map instance and observe squares

6. Pose queries to the inference procedure and get answers

- Is it safe to move up?
- What is my best action?

7. Debug the knowledge base

- Problem with $\forall \mathrm{s}$ Breezy $(\mathrm{s}) \Rightarrow \exists \mathrm{r}$ Adjacent(r,s) ^ Pit(r)

The Electronic Circuits Domain

One-bit full adder

The Electronic Circuits Domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)
- Input/output of certain gates?
- Loops?

2. Assemble the relevant knowledge

- What is known about circuits?
- Composed of wires and gates
- Types of gates (AND, OR, XOR, NOT)
- Irrelevant: physical wire paths, size, shape, color, cost of gates, cost

The Electronic Circuits Domain

3. Decide on a vocabulary

- Symbols, predicates, functions, etc.
- Gates are objects
- Behavior determined by type constants
- Alternatives:

Type $\left(\mathrm{X}_{1}\right)=\mathrm{XOR}$
Type (X_{1}, XOR) $\operatorname{XOR}\left(\mathrm{X}_{1}\right)$

- Terminals, signals, etc.

The Electronic Circuits Domain

4. Encode general knowledge of the domain

- Two connected terminals have the same signal: $\forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Signal}\left(\mathrm{t}_{1}\right)=\operatorname{Signal}\left(\mathrm{t}_{2}\right)$
- Signals are 1 or 0 $\forall \mathrm{t}$ Signal $(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0$
- The two signals are distinct $1 \neq 0$
- Connected is commutative $\forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Leftrightarrow$ Connected $\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$

The Electronic Circuits Domain

4. Encode general knowledge of the domain

- Gate definitions:
- $\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{OR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow \exists \mathrm{n}$ Signal $(\ln (\mathrm{n}, \mathrm{g}))=1$
- $\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=$ AND $\Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=0 \Leftrightarrow \exists \mathrm{n}$ Signal(ln(n,g)) $=0$
- $\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{XOR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow$ Signal $(\ln (1, \mathrm{~g})) \neq$ Signal $(\ln (2, \mathrm{~g}))$
- $\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{NOT} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g})) \neq$ Signal($\ln (1, g)$)

The Electronic Circuits Domain

5. Encode the specific problem instance

Type $\left(\mathrm{X}_{1}\right)=$ XOR
Type $\left(\mathrm{X}_{2}\right)=\mathrm{XOR}$
$\operatorname{Type}\left(\mathrm{A}_{1}\right)=$ AND
Type $\left(\mathrm{O}_{1}\right)=\mathrm{OR}$
Connected(Out $\left(1, \mathrm{X}_{1}\right)$) $\left.\ln \left(1, \mathrm{X}_{2}\right)\right)$
Connected (Out $\left.\left(1, \mathrm{X}_{1}\right), \ln \left(2, \mathrm{~A}_{2}\right)\right)$
Connected(Out $\left.\left(1, \mathrm{~A}_{2}\right), \ln \left(1, \mathrm{O}_{1}\right)\right)$
Connected (Out($\left.\left.1, \mathrm{~A}_{1}\right), \ln \left(2, \mathrm{O}_{1}\right)\right)$
Connected(Out($1, \mathrm{X}_{2}$), Out($\left(1, \mathrm{C}_{1}\right)$)
Connected(Out($1, \mathrm{C}_{1}$), Out($2, \mathrm{C}_{1}$))

Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{X}_{1}\right)\right)$
Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{1}\right)\right)$
Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{1}\right)\right)$
Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{~A}_{1}\right)\right)$
Connected $\left(\ln \left(3, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{2}\right)\right)$
Connected $\left(\ln \left(3, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{2}\right)\right)$

The Electronic Circuits Domain

6. Pose queries to the inference procedure - What are the possible sets of values of all the terminals for the adder circuit?

- Returns input/output table:
$\exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{o}_{1}, \mathrm{o}_{2}$ Signal $\left(\ln \left(1, \mathrm{C}_{-} 1\right)\right)=\mathrm{i}_{1} \wedge \operatorname{Signal}\left(\ln \left(2, \mathrm{C}_{1}\right)\right)=$
$\mathrm{i}_{2} \wedge \operatorname{Signal}\left(\ln \left(3, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{3} \wedge \operatorname{Signal}\left(\right.$ Out $\left.\left(1, \mathrm{C}_{1}\right)\right)=\mathrm{o}_{1} \wedge$
Signal $\left(\right.$ Out $\left.\left(2, \mathrm{C}_{1}\right)\right)=\mathrm{O}_{2}$

7. Debug the knowledge base May have omitted assertions like $1 \neq 0$

Summary

- First-order logic:
- Objects and relations are semantic primitives
- Syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power
- Sufficient to efficiently define Wumpus World

