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Assignment 3
• Go

– “Encircling Game”

• Ancient Chinese game

– Dates back 

• At least to the 4th century B.C.

• Probably to 2300 B.C.

– Abstraction of war, or princely distraction?

• Spread to Japan by 1000 A.D.

• Immigrants brought to America in the 1800s

• German mathematician Otto Korschelt began 

analyzing it in the early 20th century
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Assignment 3
• Go gameplay

– 19 x 19 board

– Players take turns placing 

black and white stones

– Stones are removed if 

surrounded by the other 

player’s stones

• No set end condition

– Game ends when both 

players pass

– Winner has the most stones 

and controlled territory
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Assignment 3

• Your objective is to develop a Go player 

agent 
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Assignment 3

• Your objective is to develop a Go player 

agent 

• Any questions?
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Assignment 3

• Your objective is to develop a Go player 

agent 

• I’M KIDDING
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Assignment 3

• Go is a rare example of a game that is harder for 

computers than humans

– Only recently a computer beat a human with a 9 

move handicap!

• Tons of possible moves

• Extremely sequential

– Impact of moves on future states potentially limitless

• Tricky to evaluate

• For more see 
– http://www.nytimes.com/1997/07/29/science/to-test-a-powerful-computer-play-

an-ancient-game.html
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Assignment 3

• Instead, you’ll be working with Gomoku

– Aka Gobang

– Aka Five in a Row

• Same board and stones 

as Go

• Win condition: 

Precisely 5 in a row
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Assignment 3

• Assignment overview:

– Implement Gomoku playing agent using Minimax

& Alpha-Beta Pruning

– Input:

• Board size 

• Winning chain length

• Move time limit

• 3 game modes:

– Play human

– Play random

– Play self
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Assignment 3
• Due in 2.5 weeks

– Tuesday November 19th @ 11:59:59 PM EST

• Please follow submission instructions
– https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment%20su

bmission%20guideline-Spring11.pdf

• Submit:

– Code File

– Documentation File

• Submissions should run on GNU/Linux CLIC 

machines
– https://www.cs.columbia.edu/~jvoris/AI/notes/simple%20Clic%20

tutorial.pdf 10

https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment submission guideline-Spring11.pdf
https://www.cs.columbia.edu/~jvoris/AI/notes/simple Clic tutorial.pdf
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Outline

• Constraint Satisfaction Problems (CSP)

• Backtracking search for CSPs

• Local search for CSPs
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Constraint Satisfaction Problems (CSPs)

• Standard search problem:
– Atomic state representation

– state is a "black box” – any data structure that supports 
successor function, heuristic function, and goal test

• CSP:
– Factored state representation

– state is defined by variables Xi with values from domain Di

– goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables

• Simple example of a formal representation language

• Allows useful general purpose algorithms with more 
power than standard search algorithms
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Constraint Satisfaction Problems (CSPs)

• Why CSPs?

• Natural way to formulate many problems

• Easier to apply existing CSP solver

• More efficient
– Can greatly reduce size of search space
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Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: Di = {red,green,blue}

• Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),

(green,blue),(blue,red),(blue,green)}
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Example: Map Coloring

• Solutions are complete and consistent

assignments, e.g., WA = red, NT = green,Q = 

red,NSW = green,V = red,SA = blue,T = green
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Constraint Graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are 

constraints
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Varieties of CSPs

• Discrete variables
– finite domains:

• n variables, domain size d  O(dn) complete assignments

• e.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

– infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
– e.g., start/end times for Hubble Space Telescope observations

– linear constraints solvable in polynomial time by linear 
programming
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Varieties of Constraints

• Unary constraints involve a single variable 

– e.g., SA ≠ green

• Binary constraints involve pairs of variables

– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more 

variables

– Aka global constraints

– Alldiff

– Sudoku

– Cryptarithmetic column constraints
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Example: Cryptarithmetic

• Variables: F T U W 
R O X1 X2 X3

• Domains: {0,1,2,3,4,5,6,7,8,9}

• Constraints: Alldiff (F,T,U,W,R,O)
– O + O = R + 10 · X1

– X1 + W + W = U + 10 · X2

– X2 + T + T = O + 10 · X3

– X3 = F, T ≠ 0, F ≠ 0
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Real World CSPs

• Assignment problems
– e.g., Who teaches what class?

• Timetabling problems
– e.g., Which class is offered when and where?

• Transportation scheduling

• Factory scheduling

• Notice that many real-world problems involve real-
valued variables
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Standard Search Formulation (Incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

• Initial state: the empty assignment { }

• Successor function: assign a value to an unassigned variable that 
does not conflict with current assignment
 fail if no legal assignments

• Goal test: the current assignment is complete

1. This is the same for all CSPs

2. Every solution appears at depth n with n variables
 use depth-limited search

3. Path is irrelevant, so can also use complete-state formulation

4. b = (n - l )d at depth l, hence n! · dn leaves
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Standard Search Formulation (Incremental)

• n variables

• domain size d
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Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
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Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
– (n-1)d
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Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
– (n-1)d

• So number of leaves:



26

Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
– (n-1)d

• So number of leaves:
– n!*dn
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Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
– (n-1)d

• So number of leaves:
– n!*dn

• But there are only dn complete assignments!
– What went wrong?
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Backtracking Search

• Variable assignments are commutative, i.e.,

[ WA = red then NT = green ] same as [ NT = green then WA = red ]

Assignment order is irrelevant

• Only need to consider assignments to a single variable at each node
 b = d and there are dn leaves

• Depth-first search for CSPs with single-variable assignments is 
called backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs

• Can solve n-queens for n ≈ 25
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Backtracking Search
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Backtracking Example
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Backtracking Example
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Backtracking Example
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Backtracking Example
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Improving Backtracking Efficiency

• General-purpose heuristic methods can 

give huge gains in speed:

– Which variable should be assigned next?

– In what order should its values be tried?

– Can inferences be made along the way?

– Can we detect inevitable failure early?
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Most Constrained Variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV) 

heuristic

• “Fail first”

– Picking the variable most likely to cause a 

conflict
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Most Constraining Variable

• Tie-breaker among most constrained 

variables

• Most constraining variable:

– choose the variable with the most constraints 

on remaining variables

• aka degree heuristic
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Least Constraining Value

• Given a variable, choose the least 

constraining value:

– the one that rules out the fewest values in the 

remaining variables

• “Fail last”

– Selecting value least likely to cause future 

conflicts
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Improving Backtracking Efficiency

• Why fail first when selecting variables?

– Prunes large portions of tree early on

• Why fail last when selecting values?

– Only need one solution, so examine probable 

values first
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Forward Checking

• Idea: 

– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values



40

Forward Checking

• Idea: 

– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values
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Forward Checking

• Idea: 

– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values
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Forward Checking

• Idea: 

– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values
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Constraint Propagation

• Forward checking propagates information from assigned 

to unassigned variables, but doesn't provide early 

detection for all failures:

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints 

locally
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Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y
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Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y
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Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked
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Arc Consistency
• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked

• Arc consistency detects failure earlier than forward 

checking

– Like forward checking, but recursively applies constraints

• Can be run as a preprocessor or after each assignment
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Arc Consistency Algorithm AC-3

• Time complexity: O(n2d3)
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Local Search for CSPs

• Hill-climbing, simulated annealing typically work with 
"complete" states, i.e., all variables assigned

• To apply to CSPs:
– Allow states with unsatisfied constraints

– Operators reassign variable values

• Variable selection: randomly select any conflicted 
variable

• Value selection by min-conflicts heuristic:
– Choose value that violates the fewest constraints

– i.e., hill-climb with h(n) = total number of violated constraints
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Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)

• Actions: move queen in column

• Goal test: no attacks

• Evaluation: h(n) = number of attacks

• Given random initial state, can solve n-queens in almost 
constant time for arbitrary n with high probability (e.g., n
= 10,000,000)
– 50 steps on average
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Example: 8-queens
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Summary

• CSPs are a special kind of problem:
– States are factored; defined by values of a fixed set of variables

– Goal test defined by constraints on variable values

• Backtracking
– Depth-first search with one variable assigned per node

• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

• Constraint propagation (e.g., arc consistency) does additional work 
to constrain values and detect inconsistencies

• Iterative min-conflicts is usually effective in practice


