
CS W4701

Artificial Intelligence

Fall 2013

Chapter 6:

Constraint Satisfaction Problems

Jonathan Voris
(based on slides by Sal Stolfo)

Assignment 3
• Go

– “Encircling Game”

• Ancient Chinese game

– Dates back

• At least to the 4th century B.C.

• Probably to 2300 B.C.

– Abstraction of war, or princely distraction?

• Spread to Japan by 1000 A.D.

• Immigrants brought to America in the 1800s

• German mathematician Otto Korschelt began

analyzing it in the early 20th century
2

Assignment 3
• Go gameplay

– 19 x 19 board

– Players take turns placing

black and white stones

– Stones are removed if

surrounded by the other

player’s stones

• No set end condition

– Game ends when both

players pass

– Winner has the most stones

and controlled territory
3

Assignment 3

• Your objective is to develop a Go player

agent

4

Assignment 3

• Your objective is to develop a Go player

agent

• Any questions?

5

Assignment 3

• Your objective is to develop a Go player

agent

• I’M KIDDING

6

Assignment 3

• Go is a rare example of a game that is harder for

computers than humans

– Only recently a computer beat a human with a 9

move handicap!

• Tons of possible moves

• Extremely sequential

– Impact of moves on future states potentially limitless

• Tricky to evaluate

• For more see
– http://www.nytimes.com/1997/07/29/science/to-test-a-powerful-computer-play-

an-ancient-game.html

7

http://www.nytimes.com/1997/07/29/science/to-test-a-powerful-computer-play-an-ancient-game.html

Assignment 3

• Instead, you’ll be working with Gomoku

– Aka Gobang

– Aka Five in a Row

• Same board and stones

as Go

• Win condition:

Precisely 5 in a row

8

Assignment 3

• Assignment overview:

– Implement Gomoku playing agent using Minimax

& Alpha-Beta Pruning

– Input:

• Board size

• Winning chain length

• Move time limit

• 3 game modes:

– Play human

– Play random

– Play self
9

Assignment 3
• Due in 2.5 weeks

– Tuesday November 19th @ 11:59:59 PM EST

• Please follow submission instructions
– https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment%20su

bmission%20guideline-Spring11.pdf

• Submit:

– Code File

– Documentation File

• Submissions should run on GNU/Linux CLIC

machines
– https://www.cs.columbia.edu/~jvoris/AI/notes/simple%20Clic%20

tutorial.pdf 10

https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment submission guideline-Spring11.pdf
https://www.cs.columbia.edu/~jvoris/AI/notes/simple Clic tutorial.pdf

11

Outline

• Constraint Satisfaction Problems (CSP)

• Backtracking search for CSPs

• Local search for CSPs

12

Constraint Satisfaction Problems (CSPs)

• Standard search problem:
– Atomic state representation

– state is a "black box” – any data structure that supports
successor function, heuristic function, and goal test

• CSP:
– Factored state representation

– state is defined by variables Xi with values from domain Di

– goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

• Simple example of a formal representation language

• Allows useful general purpose algorithms with more
power than standard search algorithms

13

Constraint Satisfaction Problems (CSPs)

• Why CSPs?

• Natural way to formulate many problems

• Easier to apply existing CSP solver

• More efficient
– Can greatly reduce size of search space

14

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: Di = {red,green,blue}

• Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),

(green,blue),(blue,red),(blue,green)}

15

Example: Map Coloring

• Solutions are complete and consistent

assignments, e.g., WA = red, NT = green,Q =

red,NSW = green,V = red,SA = blue,T = green

16

Constraint Graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are

constraints

17

Varieties of CSPs

• Discrete variables
– finite domains:

• n variables, domain size d  O(dn) complete assignments

• e.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

– infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
– e.g., start/end times for Hubble Space Telescope observations

– linear constraints solvable in polynomial time by linear
programming

18

Varieties of Constraints

• Unary constraints involve a single variable

– e.g., SA ≠ green

• Binary constraints involve pairs of variables

– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more

variables

– Aka global constraints

– Alldiff

– Sudoku

– Cryptarithmetic column constraints

19

Example: Cryptarithmetic

• Variables: F T U W
R O X1 X2 X3

• Domains: {0,1,2,3,4,5,6,7,8,9}

• Constraints: Alldiff (F,T,U,W,R,O)
– O + O = R + 10 · X1

– X1 + W + W = U + 10 · X2

– X2 + T + T = O + 10 · X3

– X3 = F, T ≠ 0, F ≠ 0

20

Real World CSPs

• Assignment problems
– e.g., Who teaches what class?

• Timetabling problems
– e.g., Which class is offered when and where?

• Transportation scheduling

• Factory scheduling

• Notice that many real-world problems involve real-
valued variables

21

Standard Search Formulation (Incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

• Initial state: the empty assignment { }

• Successor function: assign a value to an unassigned variable that
does not conflict with current assignment
 fail if no legal assignments

• Goal test: the current assignment is complete

1. This is the same for all CSPs

2. Every solution appears at depth n with n variables
 use depth-limited search

3. Path is irrelevant, so can also use complete-state formulation

4. b = (n - l)d at depth l, hence n! · dn leaves

22

Standard Search Formulation (Incremental)

• n variables

• domain size d

23

Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:

24

Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
– (n-1)d

25

Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
– (n-1)d

• So number of leaves:

26

Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
– (n-1)d

• So number of leaves:
– n!*dn

27

Standard Search Formulation (Incremental)

• n variables

• domain size d

• Branching factor:
– (n-1)d

• So number of leaves:
– n!*dn

• But there are only dn complete assignments!
– What went wrong?

28

Backtracking Search

• Variable assignments are commutative, i.e.,

[WA = red then NT = green] same as [NT = green then WA = red]

Assignment order is irrelevant

• Only need to consider assignments to a single variable at each node
 b = d and there are dn leaves

• Depth-first search for CSPs with single-variable assignments is
called backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs

• Can solve n-queens for n ≈ 25

29

Backtracking Search

30

Backtracking Example

31

Backtracking Example

32

Backtracking Example

33

Backtracking Example

34

Improving Backtracking Efficiency

• General-purpose heuristic methods can

give huge gains in speed:

– Which variable should be assigned next?

– In what order should its values be tried?

– Can inferences be made along the way?

– Can we detect inevitable failure early?

35

Most Constrained Variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)

heuristic

• “Fail first”

– Picking the variable most likely to cause a

conflict

36

Most Constraining Variable

• Tie-breaker among most constrained

variables

• Most constraining variable:

– choose the variable with the most constraints

on remaining variables

• aka degree heuristic

37

Least Constraining Value

• Given a variable, choose the least

constraining value:

– the one that rules out the fewest values in the

remaining variables

• “Fail last”

– Selecting value least likely to cause future

conflicts

38

Improving Backtracking Efficiency

• Why fail first when selecting variables?

– Prunes large portions of tree early on

• Why fail last when selecting values?

– Only need one solution, so examine probable

values first

39

Forward Checking

• Idea:

– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values

40

Forward Checking

• Idea:

– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values

41

Forward Checking

• Idea:

– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values

42

Forward Checking

• Idea:

– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values

43

Constraint Propagation

• Forward checking propagates information from assigned

to unassigned variables, but doesn't provide early

detection for all failures:

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints

locally

44

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y

45

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y

46

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked

47

Arc Consistency
• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked

• Arc consistency detects failure earlier than forward

checking

– Like forward checking, but recursively applies constraints

• Can be run as a preprocessor or after each assignment

48

Arc Consistency Algorithm AC-3

• Time complexity: O(n2d3)

49

Local Search for CSPs

• Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned

• To apply to CSPs:
– Allow states with unsatisfied constraints

– Operators reassign variable values

• Variable selection: randomly select any conflicted
variable

• Value selection by min-conflicts heuristic:
– Choose value that violates the fewest constraints

– i.e., hill-climb with h(n) = total number of violated constraints

50

Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)

• Actions: move queen in column

• Goal test: no attacks

• Evaluation: h(n) = number of attacks

• Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n
= 10,000,000)
– 50 steps on average

51

Example: 8-queens

52

Summary

• CSPs are a special kind of problem:
– States are factored; defined by values of a fixed set of variables

– Goal test defined by constraints on variable values

• Backtracking
– Depth-first search with one variable assigned per node

• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

• Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

• Iterative min-conflicts is usually effective in practice

