CS W4701
Artificial Intelligence

Fall 2013
Chapter 6:
Constraint Satisfaction Problems

Jonathan Voris
(based on slides by Sal Stolfo)

Assighment 3
Go

— “Encircling Game”

Ancient Chinese game

— Dates back
« At least to the 4t century B.C.
* Probably to 2300 B.C.

— Abstraction of war, or princely distraction?
Spread to Japan by 1000 A.D.
Immigrants brought to America in the 1800s

German mathematician Otto Korschelt began
analyzing it in the early 20" century

Assighment 3

« Go gameplay
— 19 x 19 board

— Players take turns placing
black and white stones

— Stones are removed |if
surrounded by the other
player’s stones

 NO set end condition

— Game ends when both
players pass

— Winner has the most stones
and controlled territory

Assighment 3

* Your objective is to develop a Go player
agent

Assighment 3

* Your objective is to develop a Go player
agent

* Any questions?

Assighment 3

. ioctives ic fodeved |
agent
. I'M KIDDING

Assighment 3

Go Is a rare example of a game that is harder for
computers than humans

— Only recently a computer beat a human with a 9
move handicap!

Tons of possible moves

Extremely sequential

— Impact of moves on future states potentially limitless
Tricky to evaluate

FOor more see

— http://www.nytimes.com/1997/07/29/science/to-test-a-powerful-computer-play-
an-ancient-game.html

http://www.nytimes.com/1997/07/29/science/to-test-a-powerful-computer-play-an-ancient-game.html

Assighment 3

 |Instead, you'll be working with Gomoku

— Aka Gobang
— Aka Five in a Row

 Same board and stones
as Go

» Win condition:
Precisely 5 in a row

Assighment 3

« Assignment overview:

— Implement Gomoku playing agent using Minimax
& Alpha-Beta Pruning

— Input:
« Board size
« Winning chain length
* Move time limit

« 3 game modes:

— Play human

— Play random

— Play self

Assighment 3

Due in 2.5 weeks
— Tuesday November 19" @ 11:59:59 PM EST

Please follow submission instructions

— https://www.cs.columbia.edu/~jvoris/Al/notes/Assignment%20su
bmission%20quideline-Springl1.pdf

Submit:;

— Code File
— Documentation File

Submissions should run on GNU/Linux CLIC

machines

— https://www.cs.columbia.edu/~|voris/Al/notes/simple%20CIlic%20
tutorial.pdf 10

https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment submission guideline-Spring11.pdf
https://www.cs.columbia.edu/~jvoris/AI/notes/simple Clic tutorial.pdf

Outline

« Constraint Satisfaction Problems (CSP)
« Backtracking search for CSPs
* Local search for CSPs

11

Constraint Satisfaction Problems (CSPs)

Standard search problem:
— Atomic state representation

— state is a "black box” — any data structure that supports
successor function, heuristic function, and goal test

CSP:

— Factored state representation
— state is defined by variables X; with values from domain D,
— goal test is a set of constraints specifying allowable
combinations of values for subsets of variables
Simple example of a formal representation language

Allows useful general purpose algorithms with more
power than standard search algorithms

12

Constraint Satisfaction Problems (CSPs)

Why CSPs?
Natural way to formulate many problems

Easier to apply existing CSP solver

More efficient
— Can greatly reduce size of search space

13

Example: Map Coloring

Northern
Territory

Western l

Quesnsland
Australia

South

H -_-_-_-_'_‘—-——-r""‘-_rﬂ
Australia

[New South Wales

Variables: WA, NT, Q, NSW, V, SA, T ™"

Domains: D, = {red,green,blue}

Constraints: adjacent regions must have different colors

e.g., WA # NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

14

Example: Map Coloring

L)
=

T

\gu

Tasm"a

« Solutions are complete and consistent
assignments, e.g., WA =red, NT = green,Q =
red,NSW = green,V = red,SA = blue, T = green

15

Constraint Graph

 Binary CSP: each constraint relates two variables

e Constraint graph: nodes are variables, arcs are
constraints

16

Varieties of CSPs

Discrete variables

— finite domains:

* nvariables, domain size d - O(d") complete assignments

* e.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
— Infinite domains:

* integers, strings, etc.

* e.g., job scheduling, variables are start/end days for each job

* need a constraint language, e.g., StartJob, + 5 < StartJob,

Continuous variables

— e.g., start/end times for Hubble Space Telescope observations

— linear constraints solvable in polynomial time by linear
programming

17

Varieties of Constraints

« Unary constraints involve a single variable
— e.g., SA # green

« Binary constraints involve pairs of variables
— e.g., SA # WA

« Higher-order constraints involve 3 or more
variables
— Aka global constraints
— Alldiff
— Sudoku
— Cryptarithmetic column constraints

18

Example: Cryptarithmetic

* Variables: FTUW H\%{ \@D/
R O X; X, X5
 Domains: {0,1,2,3,4,5,6,7,8,9}
« Constraints: Alldiff (F,T,U,W,R,0O)
~- O+0=R+10-X;
- X, +W+W=U+10"X,
— X, +T+T=0+10- X,
- X3=F, T#0,F#0

19

Real World CSPs

Assignment problems
— e.g., Who teaches what class?

Timetabling problems

— e.g., Which class is offered when and where?
Transportation scheduling

Factory scheduling

Notice that many real-world problems involve real-
valued variables

20

Standard Search Formulation (Incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

=

B W

Initial state: the empty assignment { }

Successor function: assign a value to an unassigned variable that

does not conflict with current assignment
- fail if no legal assignments
Goal test: the current assignment is complete

This Is the same for all CSPs

Every solution appears at depth n with n variables
—> use depth-limited search

Path is irrelevant, so can also use complete-state formulation
b=(n-/)dat depth /, hence n! - d" leaves

21

Standard Search Formulation (Incremental)

 n variables
e domalin size d

22

Standard Search Formulation (Incremental)

* n variables
« domain size d
« Branching factor:

23

Standard Search Formulation (Incremental)

 n variables
e domalin size d

« Branching factor:
- (n-1)d

24

Standard Search Formulation (Incremental)

n variables

domain size d
Branching factor:

- (n-1)d

So number of leaves:

25

Standard Search Formulation (Incremental)

n variables

domain size d
Branching factor:

- (n-1)d

So number of leaves:
— nixd"

26

Standard Search Formulation (Incremental)

n variables

domain size d

Branching factor:

- (n-1)d

So number of leaves:

— ni*dn

But there are only d" complete assignments!
— What went wrong?

27

Backtracking Search

« Variable assignments are commutative, i.e.,
| WA =red then NT = green] same as [NT = green then WA =red]
Assignment order is irrelevant

* Only need to consider assignments to a single variable at each node
- b =d and there are d" leaves

» Depth-first search for CSPs with single-variable assignments is
called backtracking search

« Backtracking search is the basic uninformed algorithm for CSPs

« Can solve n-queens for n = 25

28

Backtracking Search

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var <+ SELECT- UNASSIGNED- VARIABLE(Variables/csp/, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp| then
add { var = value } to assignment
result <+ RECURSIVE-BACKTRACKING(assignment, csp)
if result +* failue then return result

remove { var = value } from assignment
return failure

29

Backtracking Example

S5

30

Backtracking Example

31

Backtracking Example

R

/——’T\

o ¢

/\

- M

32

Backtracking Example

R

/——’T\

o ¢

/\

- M

—

s gih

33

Improving Backtracking Efficiency

* General-purpose heuristic methods can
give huge gains in speed.:
— Which variable should be assigned next?
— In what order should its values be tried?
— Can inferences be made along the way?
— Can we detect inevitable failure early?

34

Most Constrained Variable

* Most constrained variable:
choose the variable with the fewest legal values

ST _Seima o
* a.k.a. minimum remaining values (MRV)
heuristic

 “Fail first”

— Picking the variable most likely to cause a
conflict

35

Most Constraining Variable

* Tie-breaker among most constrained
variables

* Most constraining variable:

— choose the variable with the most constraints
on remaining variables

-

« aka degree heuristic

36

Least Constraining Value

 GIven a variable, choose the least
constraining value:

— the one that rules out the fewest values in the
remaining variables

Allows 1 value for SA

A -

“Fail last”

— Selecting value least likely to cause future
conflicts 37

Improving Backtracking Efficiency

* Why fall first when selecting variables?
— Prunes large portions of tree early on

* Why fail last when selecting values?

— Only need one solution, so examine probable
values first

38

Forward Checking

ldea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

NS

WA NT Q NSW v SA T

39

Forward Checking

« ldea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

WA

SSEA S5

NT

Q

NSW

40

Forward Checking

« ldea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

SSEA SSEa o~

WA

NT

Q

NSW

v

SLIL

41

Forward Checking

ldea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

SSEA SShs Sl S

WA NT Q NSW v SA T
ENEENEENEENE|ENE|ENEENE
] EEFEENEETE EEEE
] N N _ENTEm 1L
] L ol I ENE

42

Constraint Propagation

« Forward checking propagates information from assigned

to unassigned variables, but doesn't provide early

detection for all failures:

SSEA SSEa S~

« NT and SA cannot both be blue!

WA

NT

Q

NSW

v

« Constraint propagation repeatedly enforces constraints

locally

43

Arc Consistency

« Simplest form of propagation makes each arc consistent

« X =Y Is consistent iff
for every value x of X there is some allowed y

SSEA S o~

WA Q NSW v SA T
| | |H EET N 1L N

~¢—

44

Arc Consistency

« Simplest form of propagation makes each arc consistent

« X =Y Is consistent iff
for every value x of X there is some allowed y

SSEA SSEa o~

WA Q NSW v SA T
| | IIMII 1L N

\9_/

45

Arc Consistency

« Simplest form of propagation makes each arc consistent

« X =Y Is consistent iff
for every value x of X there is some allowed y

SIS o~

WA Q NSW v SA T
] B m i m EErE

~—

« If X loses a value, neighbors of X need to be rechecked

46

Arc Consistency

Simplest form of propagation makes each arc consistent

X =Y is consistent iff
for every value x of X there is some allowed y

‘i—"“H:-"H:

] B IC m:-: O) (I
— 7 ——
If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward
checking
— Like forward checking, but recursively applies constraints

Can be run as a preprocessor or after each assignment
47

Arc Consistency Algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, Xs, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, Xj)+ REMOVE-FIRST(queue)
if RM-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X;] do
add (X, X;) to queue

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed <+ false
for each zin DomAIN[X;] do
if no value y in DOMAIN[X;] allows (z,y) to satisfy constraint(X;, X;)
then delete z from DoMAIN[X;]; removed + true
return removed

* Time complexity: O(n4d3)

Local Search for CSPs

Hill- cllmblng simulated annealing typically work with
"complete" states, i.e., all variables assigned

To apply to CSPs:
— Allow states with unsatisfied constraints
— Operators reassign variable values

Variable selection: randomly select any conflicted
variable

Value selection by min-conflicts heuristic:
— Choose value that violates the fewest constraints
— 1.e., hill-climb with h(n) = total number of violated constraints

49

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Actions: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

H N *] *
8% = %=
Wy W ¥«
H B H B | =

h=5 h=2 h=0

Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n
= 10,000,000)

— 50 steps on average

50

Example: 8-queens

51

Summary

CSPs are a special kind of problem:
— States are factored; defined by values of a fixed set of variables
— Goal test defined by constraints on variable values

Backtracking
— Depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

Iterative min-conflicts is usually effective in practice

52

