
CS W4701

Artificial Intelligence

Fall 2013

Chapter 5:

Adversarial Search

Jonathan Voris
(based on slides by Sal Stolfo)

Warm Up

• Let’s play some games!

Outline

• Optimal decisions

• Imperfect, real-time decisions

• α-β pruning

Games vs. Search Problems

• "Unpredictable" opponent

– Specifying a move for every possible

opponent reply

• Time limits

– Unlikely to locate goal, must approximate

Game Tree Definitions

• s0: start state

• player(s) – whose turn is it?

• action(s) – options?

• result(s,a) – outcome of action

• terminal-test(s) – game over?

• utility(s,p) – value of end state to player p

Minimax Search

• Core of many computer games

• Pertains primarily to:

– Turn based games

– Two players

– Players with “perfect knowledge”

– Zero-sum

• At end of game, player utilities are “equal and

opposite”

Game Tree

(2-player, Deterministic, Turns)

Game Tree

• Nodes are states

• Edges are decisions

• Levels are called “plys”

Naïve Approach

• Agent must develop a strategy

– A move for each state

– A ? agent uses a ? stratgey

• Given a game tree, what would be the

most straightforward playing approach?

Evaluation Functions

• Assign a utility score to a state

– Different for players?

• Usually a range of integers

– [-1000,+1000]

• +infinity for win

• -infinity for loss

Minimax

• Minimizing the maximum possible loss

• Choose move which results in best state

– Select highest expected score for you

• Assume opponent is playing optimally too

– Will choose lowest expected score for you

Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest minimax

value

= best achievable payoff against best play

• E.g., 2-ply game:

Minimax Algorithm

Naïve Approach

• Any potential problems?

Properties of Minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)
– “Don’t you know, there are some things that can beat smartness and foresight?

Awkwardness and stupidity can. The best swordsman in the world doesn’t need to fear the

second best swordsman in the world; no, the person for him to be afraid of is some ignorant

antagonist who has never had a sword in his hand before; he doesn’t do the thing he ought

to.” - Mark Twain, A Connecticut Yankee in King Arthur’s Court, (1889)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games

 exact solution completely infeasible

Resource Limits

Suppose we have 100 seconds, explore 104

nodes/sec

 106 nodes per move

Standard approach:

• Cutoff test:

e.g., depth limit (perhaps add quiescence search)

• Evaluation function

= estimated desirability of position

Cutting Off Search

• How to score a game before it ends?

– You have to fudge it!

• Use a heuristic function to approximate

state’s utility

Cutting Off search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?

2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b=35 m=4

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice

– 8-ply ≈ typical PC, human master

– 12-ply ≈ Deep Blue, Kasparov
(A computer program which evaluates no further than its own legal moves plus the

legal responses to those moves is searching to a depth of two-ply.)

Example Evaluation Function

• For chess, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• e.g., w1 = 9 with

f1(s) = (number of white queens) – (number of black

queens), etc.

Evaluating States

• Assuming an ideal evaluation function,

how would you make a move?

• Is this a good strategy with a bad function?

Look Ahead

• Instead of only evaluating immediate

future, look as far ahead as possible

Look Ahead

Bubbling Up

• Looking ahead allows utility values to

“bubble up” to root of search tree

Minimax Algorithm

• BESTMOVE function

• Inputs:

– Board state

– Depth bound

• Explores search tree to specified depth

• Output:

– Best move

Minimax Algorithm

Minimax Algorithm

Minimax Algorithm

Minimax Algorithm

Minimax Algorithm

• Did you notice anything missing?

Minimax Algorithm

• Did you notice anything missing?

• Where were Max-Value and Min-Value?

Minimax Algorithm

• Did you notice anything missing?

• Where were Max-Value and Min-Value?

• What is going on here?

Be Careful!

• Things to worry about?

Complexity

• What is the space complexity of depth-

bounded Minimax?

Complexity

• What is the space complexity of depth-

bounded Minimax?

– Board size s

– Depth d

– Possible moves m

Complexity

• What is the space complexity of depth-

bounded Minimax?

– Board size s

– Depth d

– Possible moves m

• O(ds+m)

• Board positions can be released as bubble

up

Minimax Algorithm

• Did I just do all your work for you?

Minimax Algorithm

• Did I just do all your work for you?

• No!

Minimax Algorithm

• Did I just do all your work for you?

• No!

• You need to create:

– Evaluation function

– Move generator

– did_i_win? function

Recap

• What is a zero sum game?

Recap

• What is a zero sum game?

• What is a game tree?

Recap

• What is a zero sum game?

• What is a game tree?

• What is Minimax?

Recap

• What is a zero sum game?

• What is a game tree?

• What is Minimax?

– Why is it called that?

Recap

• What is a zero sum game?

• What is a game tree?

• What is Minimax?

– Why is it called that?

• What is its space complexity?

Recap

• What is a zero sum game?

• What is a game tree?

• What is Minimax?

– Why is it called that?

• What is its space complexity?

• How can the Minimax algorithm be

simplified?

Recap

• What is a zero sum game?

• What is a game tree?

• What is Minimax?

– Why is it called that?

• What is its space complexity?

• How can the Minimax algorithm be

simplified?

– Will this work for all games?

Recap

• What is a zero sum game?

• What is a game tree?

• What is Minimax?

– Why is it called that?

• What is its space complexity?

• How can the Minimax algorithm be

simplified?

– Will this work for all games?

Next Up

• Recall that minimax will produce optimal

play against an optimal opponent if entire

tree is searched

• Is the same true if a cutoff is used?

Horizon Effect

• Your algorithm searches to depth n

• What happens if:

– Evaluation(s) at depth n is very positive

– Evaluation(s) at depth n+1 is very negative

• Or:

– Evaluation(s) at depth n is very negative

– Evaluation(s) at depth n+1 is very positive

• Will this ever happen in practice?

Local Maxima Problem

Search Limitation Mitigation

• Sometimes it is useful to look deeper into

game tree

• We could peak past the horizon…

• But how can you decide what nodes to

explore?

– Quiescence search

Quiescence Search

• Human players have some intuition about

move quality

– “Interesting vs “boring”

– “Promising” vs “dead end”

– “Noisy” vs “quiet”

• Expand horizon for potential high impact

moves

• Quiescence search adds this to Minimax

Quiescence Search

• Additional search performed on leaf nodes

• if looks_interesting(leaf_node):

extend_search_depth(leaf_node)

else:

normal_evaluation(leaf_node)

Quiescence Search

• What constitutes an “interesting” state?

– Moves that substantially alter game state

– Moves that cause large fluctuations in

evaluation function output

• Chess example: capture moves

• Must be careful to prevent indefinite

extension of search depth

– Chess: checks vs captures

Search Limitation Mitigation

• Do you always need to search the entire

tree?

– No!

• Sometimes it is useful to look less deeply

into tree

• But how can you decide what branches to

ignore?

– Tree pruning

Tree Pruning

• Moves chosen under assumption of

optimal adversary

• You know the best move so far

• If you find a branch with a worse move, is

there any point in looking further?

• Thought experiment: bag game

Pruning Example

Alpha-Beta Pruning

• During Minimax, keep track of two

additional values

• Alpha

– Your best score via any path

• Beta

– Opponent’s best score via any path

Alpha-Beta Pruning

• Max player (you) will never make a move

that could lead to a worse score for you

• Min player (opponent) will never make a

move that could lead to a better score for

you

• Stop evaluating a branch whenever:

– A value greater than beta is found

– A value less than alpha is found

Why is it called α-β?

• α is the value of the
best (i.e., highest-
value) choice found
so far at any choice
point along the path
for max

• If v is worse than α,
max will avoid it
 prune that branch

• Define β similarly for
min

Alpha-Beta Pruning

• Based on observation that for all viable

paths utility value n will be α <= n <= β

Alpha-Beta Pruning

• Initially, α = -infinity, β=infinity

Alpha-Beta Pruning

• As the search tree is traversed, the possible

utility value window shrinks as

– Alpha increases

– Beta decreases

Alpha-Beta Pruning

• Once there is no longer any overlap in the

possible ranges of alpha and beta, it is safe

to conclude that the current node is a dead

end

Minimax Algorithm

The α-β Algorithm

The α-β Algorithm

α-β Pruning Example

α-β Pruning Example

α-β Pruning Example

α-β Pruning Example

α-β Pruning Example

Another α-β Pruning Example

Minimax Psuedocode

Alpha-Beta Psuedocode

Minimax Psuedocode

Alpha-Beta Psuedocode

Minimax Psuedocode

Alpha-Beta Psuedocode

Minimax Algorithm

Alpha-Beta Psuedocode

Tree Pruning vs Heuristics

• Search depth cut off may affect outcome

of algorithm

• How about pruning?

Move Ordering

• Does the order in which moves are listed

have any impact of alpha-beta?

Move Ordering

• Techniques for improving move ordering

• Apply evaluation function to nodes prior to

expanding children

– Search in descending order

– But sacrifices search depth

• Cache results of previous algorithm

Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used a pre-computed endgame database
defining perfect play for all positions involving 8 or fewer pieces on
the board, a total of 444 billion positions.

Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used a pre-computed endgame database
defining perfect play for all positions involving 8 or fewer pieces on
the board, a total of 444 billion positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov
in a six-game match in 1997. Deep Blue searches 200 million
positions per second, uses very sophisticated evaluation, and
undisclosed methods for extending some lines of search up to 40
ply.

Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used a pre-computed endgame database
defining perfect play for all positions involving 8 or fewer pieces on
the board, a total of 444 billion positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov
in a six-game match in 1997. Deep Blue searches 200 million
positions per second, uses very sophisticated evaluation, and
undisclosed methods for extending some lines of search up to 40
ply.

• Othello: human champions refuse to compete against computers,
who are too good.

Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used a pre-computed endgame database
defining perfect play for all positions involving 8 or fewer pieces on
the board, a total of 444 billion positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov
in a six-game match in 1997. Deep Blue searches 200 million
positions per second, uses very sophisticated evaluation, and
undisclosed methods for extending some lines of search up to 40
ply.

• Othello: human champions refuse to compete against computers,
who are too good.

• Go: human champions refuse to compete against computers, who
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

Summary

• Games are fun to work on!

• They illustrate several important points

about AI

• Perfection is unattainable

– Must approximate

• Good idea to think about what to think

about

