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Warm Up

• Let’s play some games!



Outline

• Optimal decisions

• Imperfect, real-time decisions

• α-β pruning



Games vs. Search Problems

• "Unpredictable" opponent

– Specifying a move for every possible 

opponent reply

• Time limits

– Unlikely to locate goal, must approximate



Game Tree Definitions

• s0: start state

• player(s) – whose turn is it?

• action(s) – options?

• result(s,a) – outcome of action

• terminal-test(s) – game over?

• utility(s,p) – value of end state to player p



Minimax Search

• Core of many computer games

• Pertains primarily to:

– Turn based games

– Two players

– Players with “perfect knowledge”

– Zero-sum

• At end of game, player utilities are “equal and 

opposite”



Game Tree 

(2-player, Deterministic, Turns)



Game Tree

• Nodes are states

• Edges are decisions

• Levels are called “plys”



Naïve Approach

• Agent must develop a strategy

– A move for each state

– A ? agent uses a ? stratgey

• Given a game tree, what would be the 

most straightforward playing approach?



Evaluation Functions

• Assign a utility score to a state

– Different for players?

• Usually a range of integers

– [-1000,+1000]

• +infinity for win

• -infinity for loss



Minimax

• Minimizing the maximum possible loss

• Choose move which results in best state

– Select highest expected score for you

• Assume opponent is playing optimally too

– Will choose lowest expected score for you



Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest minimax

value 

= best achievable payoff against best play

• E.g., 2-ply game:



Minimax Algorithm



Naïve Approach

• Any potential problems?



Properties of Minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)
– “Don’t you know, there are some things that can beat smartness and foresight? 

Awkwardness and stupidity can. The best swordsman in the world doesn’t need to fear the 

second best swordsman in the world; no, the person for him to be afraid of is some ignorant 

antagonist who has never had a sword in his hand before; he doesn’t do the thing he ought 

to.” - Mark Twain, A Connecticut Yankee in King Arthur’s Court, (1889)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games

 exact solution completely infeasible



Resource Limits

Suppose we have 100 seconds, explore 104

nodes/sec

 106 nodes per move

Standard approach:

• Cutoff test: 

e.g., depth limit (perhaps add quiescence search)

• Evaluation function 

= estimated desirability of position



Cutting Off Search

• How to score a game before it ends?

– You have to fudge it!

• Use a heuristic function to approximate 

state’s utility 



Cutting Off search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?

2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b=35  m=4

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice

– 8-ply ≈ typical PC, human master

– 12-ply ≈ Deep Blue, Kasparov
(A computer program which evaluates no further than its own legal moves plus the 

legal responses to those moves is searching to a depth of two-ply. )



Example Evaluation Function

• For chess, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• e.g., w1 = 9 with 

f1(s) = (number of white queens) – (number of black 

queens), etc.



Evaluating States

• Assuming an ideal evaluation function, 

how would you make a move?

• Is this a good strategy with a bad function?



Look Ahead

• Instead of only evaluating immediate 

future, look as far ahead as possible



Look Ahead



Bubbling Up

• Looking ahead allows utility values to 

“bubble up” to root of search tree



Minimax Algorithm

• BESTMOVE function

• Inputs:

– Board state

– Depth bound

• Explores search tree to specified depth

• Output:

– Best move



Minimax Algorithm



Minimax Algorithm



Minimax Algorithm



Minimax Algorithm



Minimax Algorithm

• Did you notice anything missing?



Minimax Algorithm

• Did you notice anything missing?

• Where were Max-Value and Min-Value?



Minimax Algorithm

• Did you notice anything missing?

• Where were Max-Value and Min-Value?

• What is going on here?



Be Careful!

• Things to worry about?



Complexity

• What is the space complexity of depth-

bounded Minimax?



Complexity

• What is the space complexity of depth-

bounded Minimax?

– Board size s

– Depth d

– Possible moves m



Complexity

• What is the space complexity of depth-

bounded Minimax?

– Board size s

– Depth d

– Possible moves m

• O(ds+m)

• Board positions can be released as bubble 

up



Minimax Algorithm

• Did I just do all your work for you?



Minimax Algorithm

• Did I just do all your work for you?

• No!



Minimax Algorithm

• Did I just do all your work for you?

• No!

• You need to create:

– Evaluation function

– Move generator

– did_i_win? function



Recap

• What is a zero sum game?
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Recap

• What is a zero sum game?

• What is a game tree?

• What is Minimax?

– Why is it called that?

• What is its space complexity?

• How can the Minimax algorithm be 

simplified?

– Will this work for all games?



Next Up

• Recall that minimax will produce optimal 

play against an optimal opponent if entire 

tree is searched

• Is the same true if a cutoff is used? 



Horizon Effect

• Your algorithm searches to depth n

• What happens if:

– Evaluation(s) at depth n is very positive

– Evaluation(s) at depth n+1 is very negative

• Or:

– Evaluation(s) at depth n is very negative

– Evaluation(s) at depth n+1 is very positive

• Will this ever happen in practice?



Local Maxima Problem



Search Limitation Mitigation

• Sometimes it is useful to look deeper into 

game tree

• We could peak past the horizon…

• But how can you decide what nodes to 

explore?

– Quiescence search



Quiescence Search

• Human players have some intuition about 

move quality

– “Interesting vs “boring”

– “Promising” vs “dead end”

– “Noisy” vs “quiet”

• Expand horizon for potential high impact 

moves

• Quiescence search adds this to Minimax



Quiescence Search

• Additional search performed on leaf nodes

• if looks_interesting(leaf_node):

extend_search_depth(leaf_node)

else:

normal_evaluation(leaf_node)



Quiescence Search

• What constitutes an “interesting” state?

– Moves that substantially alter game state

– Moves that cause large fluctuations in 

evaluation function output

• Chess example: capture moves

• Must be careful to prevent indefinite 

extension of search depth

– Chess: checks vs captures



Search Limitation Mitigation

• Do you always need to search the entire 

tree?

– No!

• Sometimes it is useful to look less deeply

into tree

• But how can you decide what branches to 

ignore?

– Tree pruning



Tree Pruning

• Moves chosen under assumption of 

optimal adversary

• You know the best move so far

• If you find a branch with a worse move, is 

there any point in looking further?

• Thought experiment: bag game



Pruning Example



Alpha-Beta Pruning

• During Minimax, keep track of two 

additional values

• Alpha

– Your best score via any path

• Beta

– Opponent’s best score via any path



Alpha-Beta Pruning

• Max player (you) will never make a move 

that could lead to a worse score for you

• Min player (opponent) will never make a 

move that could lead to a better score for 

you

• Stop evaluating a branch whenever:

– A value greater than beta is found 

– A value less than alpha is found



Why is it called α-β?

• α is the value of the 
best (i.e., highest-
value) choice found 
so far at any choice 
point along the path 
for max

• If v is worse than α, 
max will avoid it
 prune that branch

• Define β similarly for 
min



Alpha-Beta Pruning

• Based on observation that for all viable 

paths utility value n will be α <= n <= β



Alpha-Beta Pruning

• Initially, α = -infinity, β=infinity



Alpha-Beta Pruning

• As the search tree is traversed, the possible 

utility value window shrinks as

– Alpha increases

– Beta decreases



Alpha-Beta Pruning

• Once there is no longer any overlap in the 

possible ranges of alpha and beta, it is safe 

to conclude that the current node is a dead 

end



Minimax Algorithm



The α-β Algorithm



The α-β Algorithm



α-β Pruning Example
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α-β Pruning Example



Another α-β Pruning Example



Minimax Psuedocode



Alpha-Beta Psuedocode
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Minimax Psuedocode



Alpha-Beta Psuedocode



Minimax Algorithm



Alpha-Beta Psuedocode



Tree Pruning vs Heuristics

• Search depth cut off may affect outcome 

of algorithm

• How about pruning?



Move Ordering

• Does the order in which moves are listed 

have any impact of alpha-beta?



Move Ordering

• Techniques for improving move ordering

• Apply evaluation function to nodes prior to 

expanding children

– Search in descending order

– But sacrifices search depth

• Cache results of previous algorithm



Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of the value of reasoning about which 
computations are relevant (a form of metareasoning)



Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion 
Marion Tinsley in 1994. Used a pre-computed endgame database 
defining perfect play for all positions involving 8 or fewer pieces on 
the board, a total of 444 billion positions.
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Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion 
Marion Tinsley in 1994. Used a pre-computed endgame database 
defining perfect play for all positions involving 8 or fewer pieces on 
the board, a total of 444 billion positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov 
in a six-game match in 1997. Deep Blue searches 200 million 
positions per second, uses very sophisticated evaluation, and 
undisclosed methods for extending some lines of search up to 40 
ply.

• Othello: human champions refuse to compete against computers, 
who are too good.

• Go: human champions refuse to compete against computers, who 
are too bad. In go, b > 300, so most programs use pattern 
knowledge bases to suggest plausible moves.



Summary

• Games are fun to work on!

• They illustrate several important points 

about AI

• Perfection is unattainable

– Must approximate

• Good idea to think about what to think 

about


