Assignment 2

• Develop a Sokoban puzzle solving agent!

• Sokoban is Japanese for “warehouse keeper”
• Created by Hiroyuki Imabayashi in 1981
• First released as a game for Japanese home computers in 1982
Assignment 2

• Player who can move in cardinal directions
• Warehouse full of boxes and storage locations
• Boxes can be pushed by moving into them
• Goal: Push all boxes into a storage location
Assignment 2

• Input: Sokoban puzzle in ASCII

 - # (hash) Wall
 - . (period) Empty goal
 - @ (at) Player on floor
 - + (plus) Player on goal
 - $ (dollar) Box on floor
 - * (asterisk) Box on goal
Assignment 2

• Output: Sequence of moves to solve puzzle in CSV format
 – u up
 – d down
 – l left
 – r right
Assignment 2

- Example level

- Example solution
 - r, d, d, l, r, u, u, l, d, u, u, l, l, d, d, r
Assignment 2

• Your mission is to develop a Sokoban puzzle solving agent which utilizes a variety of search algorithms
 – BFS
 – DFS
 – UCS
 – Greedy Best-first search
 – A*

• Compare their performance!
Assignment 2

• Due in 2.5 weeks
 – Tuesday October 22nd @ 11:59:59 PM EDT

• Please follow submission instructions

• Submit:
 – Code
 – Test Input/Output File
 – Readme Documentation File

• Submissions should run on CLIC machines
Sokoban Resources

• Animated game example

• Sokoban wiki

• Sokoban puzzles
 – http://sneezingtiger.com/sokoban/levels.html

• Sokoban Java implementation
 – http://sourceforge.net/projects/jsokoapplet/
Outline

- Local search algorithms
 - Hill-climbing search
 - Simulated annealing search
 - Local beam search
- Genetic algorithms
Local Search Algorithms

• In many optimization problems, the *path* to the goal is irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations
 – Find configuration satisfying constraints, e.g., n-queens

• In such cases, we can use **local search algorithms**
 – Keep a single "current" state, try to improve it

• Advantages:
 – Better space efficiency
 – Work with larger state spaces
Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.
Hill-Climbing Search

• "Like climbing Everest in thick fog with amnesia"

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
 neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
 neighbor ← a highest-valued successor of current
 if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
current ← neighbor
Hill-Climbing Search
Hill-Climbing Search

- Problem: depending on initial state, can get stuck
Hill-Climbing Search

• Local maxima
 – Might get stuck on a short hill
Hill-Climbing Search

- Plateaux
 - Which way when all successors are equal?
Problems with Hill-Climbing

- Ridges
 - Can’t “back up” and choose higher path
Hill-Climbing Search: 8-queens Problem

- h = number of pairs of queens that are attacking each other, either directly or indirectly
- $h = 17$ for the above state
Hill-Climbing Search: 8-queens Problem

- A local minimum with $h = 1$
Hill Climbing Tweaks

- Sideways moves?
- Stochastic hill climbing
 - Pick move with probability based on steepness
- Random restart
Random Walk

- What if you just select a random action?
- Efficiency?
- Completeness?
Simulated Annealing Search

- Idea: escape local maxima by allowing some "bad" moves but **gradually decrease** their frequency

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to "temperature"
local variables: current, a node
                next, a node
                T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```
Properties of Simulated Annealing Search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1.
- Widely used in VLSI layout, airline scheduling, etc.
Local Beam Search

- Keep track of k states rather than just one
- k is called the **beam width**
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat.
Genetic Algorithms

- A successor state is generated by combining two parent states.
- Start with \(k \) randomly generated states (population).
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s).
- Evaluation function (fitness function)
 - Higher values for better states.
- Produce the next generation of states by
 - Selection
 - Crossover
 - Mutation
Genetic Algorithms

- What is the fitness function?
- How is an individual represented?
 - Using a string over a finite alphabet
 - Each element of the string is a gene
- How are individuals selected?
 - Randomly, with probability of selection proportional to fitness
 - Usually, selection is done with replacement
- How do individuals reproduce?
 - Through crossover and mutation
Genetic Algorithm Pseudocode

- Choose initial population (usually random)
- Repeat (until terminated)
 - Evaluate each individual's fitness
 - Select pairs to mate
 - Replenish population (next-generation)
 - Apply crossover
 - Apply mutation
 - Check for termination criteria
Genetic Algorithms
Genetic Algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
- $24/(24+23+20+11) = 31\%$
- $23/(24+23+20+11) = 29\%$ etc.
Replacement

• Simple or generational GAs replace entire population

• Steady state or online GAs use different replacement schemes:
 – Replace worst
 – Replace best
 – Replace parent
 – Replace random
 – Replace most similar
Does This Actually Work?

- Genetic algorithms have seen success in a variety of areas
 - Data modeling
 - Signal processing
 - Economic modeling
 - Computer games
- Generally good at optimizations
Does This Actually Work?

• Genetic algorithm drawbacks
 – Expensive fitness functions
 – Scalability
 – Suboptimal solutions
Nondeterminism & Search

• What if effects of agent’s actions are unknown?
• Good idea to keep your eyes open while acting
• Vacuum world example:
 – Sucking a dirty tile might clean one tile or multiple tile
 – Sucking a clean tile dirties it
Nondeterminism & Search

• Problem changes
 – Transition yields a set of states

• Solution changes
 – Requires control flow
 – if condition(state) {action y} else {action x}

• What would be an easy way to represent this?
Nondeterminism & Search

• Agent is in control of itself
 – Knows it will perform one action or another

• Agent doesn’t control environment
 – Needs to plan for first outcome and second and third etc

• Model this with an and-or tree
 – Search tree consisting of alternating layers of choices and contingencies
Nondeterministic Search Tree
Nondeterminism & Search

• Solution is an and-or subtree with
 – A goal at each leaf
 – An action at each or
 – Includes all and branches
Search Types

- **Offline**
 - Agent searches for solution, then acts
- **Online**
 - Deal with contingencies as they occur
 - Agent must *interleave* planning with action
 - We’ll see more of this shortly!