
CS W4701

Artificial Intelligence

Fall 2013

Chapter 4:

Beyond Classical Search

Jonathan Voris
(based on slides by Sal Stolfo)

Assignment 2

• Develop a Sokoban puzzle solving agent!

• Sokoban is Japanese for “warehouse keeper”

• Created by Hiroyuki Imabayashi in 1981

• First released as a game for Japanese home

computers in 1982
2

Assignment 2

• Player who can move in cardinal directions

• Warehouse full of boxes and storage

locations

• Boxes can be pushed by moving into them

• Goal: Push all boxes into a storage location

3

Assignment 2

• Input: Sokoban puzzle in ASCII

– # (hash) Wall

– . (period) Empty goal

– @ (at) Player on floor

– + (plus) Player on goal

– $ (dollar) Box on floor

– * (asterisk) Box on goal

4

Assignment 2

• Output: Sequence of moves to solve puzzle

in CSV format

– u up

– d down

– l left

– r right

5

Assignment 2

• Example level

• Example solution
– r, d, d, l, r, u, u, l, d, u, u, l, l, d, d, r

6

Assignment 2

• Your mission is to develop a Sokoban puzzle

solving agent which utilizes a variety of

search algorithms

– BFS

– DFS

– UCS

– Greedy Best-first search

– A*

• Compare their performance!

7

Assignment 2

• Due in 2.5 weeks

– Tuesday October 22nd @ 11:59:59 PM EDT

• Please follow submission instructions
– https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment%20su

bmission%20guideline-Spring11.pdf

• Submit:

– Code

– Test Input/Output File

– Readme Documentation File

• Submissions should run on CLIC machines
8

https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment submission guideline-Spring11.pdf

Sokoban Resources

• Animated game example

– http://en.wikipedia.org/wiki/Sokoban

• Sokoban wiki

– http://www.sokobano.de/wiki/index.php?title=Mai

n_Page

• Sokoban puzzles

– http://sneezingtiger.com/sokoban/levels.html

• Sokoban Java implementation

– http://sourceforge.net/projects/jsokoapplet/

9

http://en.wikipedia.org/wiki/Sokoban
http://www.sokobano.de/wiki/index.php?title=Main_Page
http://sneezingtiger.com/sokoban/levels.html
http://sourceforge.net/projects/jsokoapplet/

• Local search algorithms
– Hill-climbing search

– Simulated annealing search

– Local beam search

• Genetic algorithms

Outline

10

• In many optimization problems, the path to the
goal is irrelevant; the goal state itself is the
solution

• State space = set of "complete" configurations
– Find configuration satisfying constraints, e.g., n-

queens

• In such cases, we can use local search
algorithms
– Keep a single "current" state, try to improve it

• Advantages:
– Better space efficiency
– Work with larger state spaces

Local Search Algorithms

11

• Put n queens on an n × n board with no

two queens on the same row, column, or

diagonal

Example: n-queens

12

• "Like climbing Everest in thick fog with

amnesia"

Hill-Climbing Search

13

Hill-Climbing Search

14

• Problem: depending on initial state, can

get stuck

Hill-Climbing Search

15

• Local maxima

– Might get stuck on a short hill

Hill-Climbing Search

16

• Plateaux

– Which way when all successors are equal?

Hill-Climbing Search

17

• Ridges

– Can’t “back up” and choose higher path

Problems with Hill-Climbing

18

• h = number of pairs of queens that are attacking each other, either directly
or indirectly

• h = 17 for the above state

Hill-Climbing Search: 8-queens Problem

19

Hill-Climbing Search: 8-queens Problem

• A local minimum with h = 1

20

• Sideways moves?

• Stochastic hill climbing

– Pick move with probability based on

steepness

• Random restart

Hill Climbing Tweaks

21

• What if you just select a random action?

• Efficiency?

• Completeness?

Random Walk

22

• Idea: escape local maxima by allowing some

"bad" moves but gradually decrease their

frequency

Simulated Annealing Search

23

• One can prove: If T decreases slowly enough,

then simulated annealing search will find a

global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling,

etc.

Properties of Simulated Annealing

Search

24

• Keep track of k states rather than just one

• k is called the beam width

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.

Local Beam Search

25

• A successor state is generated by combining two parent
states

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet
(often a string of 0s and 1s)

• Evaluation function (fitness function)
– Higher values for better states.

• Produce the next generation of states by
– Selection

– Crossover

– Mutation

Genetic Algorithms

26

• What is the fitness function?

• How is an individual represented?
– Using a string over a finite alphabet

– Each element of the string is a gene

• How are individuals selected?
– Randomly, with probability of selection

proportional to fitness

– Usually, selection is done with replacement

• How do individuals reproduce?
– Through crossover and mutation

Genetic Algorithms

27

• Choose initial population (usually random)

• Repeat (until terminated)

– Evaluate each individual's fitness

– Select pairs to mate

– Replenish population (next-generation)

• Apply crossover

• Apply mutation

– Check for termination criteria

Genetic Algorithm Pseudocode

28

Genetic Algorithms

29

• Fitness function: number of non-attacking pairs of

queens (min = 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%

• 23/(24+23+20+11) = 29% etc.

Genetic Algorithms

30

• Simple or generational GAs replace entire
population

• Steady state or online GAs use different
replacement schemes:

– Replace worst

– Replace best

– Replace parent

– Replace random

– Replace most similar

Replacement

31

• Genetic algorithms have seen success in

a variety of areas

– Data modeling

– Signal processing

– Economic modeling

– Computer games

• Generally good at

optimizations

Does This Actually Work?

32

• Genetic algorithm drawbacks

– Expensive fitness functions

– Scalability

– Suboptimal solutions

Does This Actually Work?

33

• What if effects of agent’s actions are

unknown?

• Good idea to keep your eyes open while

acting

• Vacuuum world example:

– Sucking a dirty tile might clean one tile or

multiple tile

– Sucking a clean tile dirties it

Nondeterminism & Search

34

• Problem changes

– Transition yields a set of states

• Solution changes

– Requires control flow

– if condition(state) {action y} else {action x}

• What would be an easy way to represent

this?

Nondeterminism & Search

35

• Agent is in control of itself

– Knows it will perform one action or another

• Agent doesn’t control environment

– Needs to plan for first outcome and second

and third etc

• Model this with an and-or tree

– Search tree consisting of alternating layers of

choices and contingencies

Nondeterminism & Search

36

Nondeterministic Search Tree

37

• Solution is an and-or subtree with

– A goal at each leaf

– An action at each or

– Includes all and branches

Nondeterminism & Search

38

• Offline

– Agent searches for solution, then acts

• Online

– Deal with contingencies as they occur

– Agent must interleave planning with action

– We’ll see more of this shortly!

Search Types

39

