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Assignment 1

Due In one week!
— Tuesday October 1St @ 11:59:59 PM EDT

Please follow submission instructions

— https://www.cs.columbia.edu/~|voris/Al/notes/Assignment%20su
bmission%20guideline-Spring11.pdf

Submit:

— Code

— Test Input/Output File

— README Documentation File

Both CLIC machines and LispWorks are
acceptable platforms



https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment submission guideline-Spring11.pdf

Recap

« Covered Al history
 Defined Al as...?

* Described intelligent agents
— But how do you build them?



Reflex Agents

* Essentially a function f(s) = a
— Accepts a state
— Qutputs an action



Simple Reflex Agents
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Model-based Reflex Agents
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Goal-based agents
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Goal-based Agents

Have a concept of the future

Can consider impact of action on future
states

Capable of comparing desirability of states
relative to a goal

Agent’s job: identify best course of actions
to reach goal

Can be accomplished by searching
through possible states and actions



A Problematic Perspective

* Think of agent as looking for a solution to
a specific problem
* Problem consists of:
— Current state
— A goal
— Possible courses of action
» Solution consists of:
— Ordered list of actions



Current Assumptions

« States are atomic
— Indivisible black boxes
— As opposed to factored or structured
* Future observations will not alter agent’s
actions
— Solution does not change over time
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General Problem Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «+— UPDATE-STATE( state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq < SEARCH( problem)

action < FIRST(seq)

seq +— REST(seq)

return action
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Crafting a Goal

* Agent creates goal based on:
— Current environment
— Evaluation metrics
— Where do these come from?

 How does a goal help?
— Guidance when state Is ambiguous
— Narrows down potential choices
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Crafting a Problem

Current state — We're here
Goal state(s) — Over there
How do you transition from A to B?

Problem: Actions and states to consider
en route to goal

Set of all possible states is known as the
state space

13



Crafting a Problem

* Actions should be of suitable granularity
— “Take a step”
— “Walk down block™
— “Drive to city”
— “Travel to star system”
 Actions should pertain to goal

* Problem must be well defined for
successful agents
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Romanian Vacation Example

On vacation iIn Romania
— Currently in Arad

Flight leaves tomorrow from Bucharest

Formulate goal:
— Want to be in Bucharest

Formulate problem:

— States: various cities

— Actions: drive between cities
Find solution:

— Seguence of cities, e.g., Arad, Sibiu, Fagaras,
Bucharest
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Example: Romania
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Al World Problems

Five parts:

Initial state

— (in arad)

Applicable actions (given state)

— (go sibiu) (go Timisoara) (go zerind)

Transition model: state + action = new
state

— (result (in arad) (go zerind)) = (in zerind)
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Al World Problems

* Five parts:

» Goal test — Did | win yet?
— Condition (implicit) or set of states (explicit)
— {(in bucharest)}

 Path cost

— Agent assigns to action based on
performance measure

— (cost (in arad) (go zerind) (in zerind)) = 75
kilometers
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The Devil I1s In the Detalls

Isn’t Simand between Zerind and Arad?
DId you have the air conditioner on?
Restroom stops?

Personal growth during trip

19



Abstraction is your Friend

* The real world Is absurdly complex

— State space must be abstracted for problem
solving

* Abstract away things which:
— Are irrelevant to problem at hand
— Don't affect validity of solution

20



Selecting a State Space

(Abstract) state = Set of real states

(Abstract) action = Complex combination of real
actions

— e.g., "Arad = Zerind" represents a complex set of possible
routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”
Abstract solution will represent a set of detailed

solutions
— Set of real paths that are solutions in the real world

Good abstraction makes problems “easier”
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Back to Vacuum World
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Back to Vacuum World
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States? Location of agent, location(s) of dirt

Actions?
Goal test?
Path cost?
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Back to Vacuum World
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States? Location of agent, location(s) of dirt
Actions? Move In direction, suck

Goal test?
Path cost?
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Back to Vacuum World
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States? Location of agent, location(s) of dirt
Actions? Move In direction, suck
Goal test? All clean?

Path cost?
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Back to Vacuum World
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States? Location of agent, location(s) of dirt
Actions? Move In direction, suck

Goal test? All clean?
Path cost? 1/action
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Example: The 8-puzzle
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Start State

States?
Actions?
Goal test?
Path cost?

Goal State
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Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

States? Tile locations
Actions?

Goal test?

Path cost?
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Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

States? Tile locations
Actions? Move blank
Goal test?
Path cost?
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Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

States? Tile locations

Actions? Move blank

Goal test? Tiles in (blank, 1, 2,3,...) order
Path cost?
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Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

States? Tile locations

Actions? Move blank

Goal test? Tiles in (blank, 1, 2,3,...) order
Path cost? 1/move

[Note: optimal solution of n-Puzzle family is NP-hard] 31



Example: robotic assembly

o i % n
\ul

States?: real-valued coordinates of robot joint
angles parts of the object to be assembled

Actions?: continuous motions of robot joints
Goal test?: complete assembly
Path cost?: time to execute

Blind Search
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What Does This Have
To Do with Search?

* Created a problem, need to create a solution
— Recall: A solution is a sequence of actions

 Form a search tree
— Root: Start state
— Branches: Actions
— Nodes: Resultant actions

* General algorithm:
— Are we In goal state?
— Expand current state by exploring each potential action

— Choose which state to explore further
« Easier said than done!

33



Tree Search Algorithms

* Core concept:

— Exploration of state space by generating successors
of already-explored states (a.k.a. expanding states)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

34



Tree Search Example
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Tree Search Example

36



Tree Search Example
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Implementation: General Tree Search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE-FRONT( fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe +— INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
s$4—a new NODE
PARENT-NODE[s] < node; ACTION[s| +— action; STATE[s| « result
PATH-CoOST[$] = PATH-COST[node] + STEP-COST(n0ode, action, s)
DeEpTH[S] +— DEPTH[ROdE] + 1
add s to successors

return successors
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Tree Search Example

Anything odd here?
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Search Tree Nuanaces

States in search tree may repeat themselves

Loopy paths
— State A -> State B -> State A

Redundant Paths

— State A -> State Z

— State A -> State B -> State C -> State D -> ... -> State Z
Solution: turn tree search into graph search by tracking
redundant paths via an explored list

— Starts out empty

— Add node after goal test

— Only expand node if not explored

40



Implementation: States vs.
Search Tree Nodes

« A state is a (representation of) a physical configuration

* Anode is a data structure constituting part of a search
tree which includes state, parent node, action, path cost

g(x), and depth

State || 5 4

6 1

8

7 3

2

= slale

parent, action
A

Node depth =6

g=56

« The expand function creates new nodes, filling in the
various fields and using the successor function of the
problem to create the corresponding state
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Search Strategies

A search strategy is defined by picking the order of
node expansion

Strategies are evaluated along the following dimensions:
— completeness: Always find a solution (if one exists)?
— time complexity: Number of nodes generated
— space complexity: Maximum number of nodes in memory
— optimality: Always find a least-cost solution?
Time and space complexity are measured in terms of
— b: Maximum branching factor of the search tree
— d: Depth of the least-cost solution
— m: Maximum depth of the state space (may be «)
Total cost: search cost + path cost

— How to add apples and oranges?
42



Uninformed Search Strategies

* Uninformed search strategies use only
the information available in the problem
definition

* No analysis or knowledge of states, only:
— Generate successor nodes
— Check for goal state

« Specifically, no comparison of states
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Uninformed Search Strategies

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
terative deepening search

!



Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
Depth-first search
Depth-limited search
terative deepening search
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Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
— Expand least cost node

Depth-first search
Depth-limited search
terative deepening search
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Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
— Expand least cost node

Depth-first search
— Expand deepest node

Depth-limited search
Iterative deepening search
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Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
— Expand least cost node

Depth-first search
— Expand deepest node

Depth-limited search
— Depth-first with depth limit
lterative deepening search

48



Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
— Expand least cost node

Depth-first search

— Expand deepest node
Depth-limited search

— Depth-first with depth limit
lterative deepening search

— Depth-limited with increasing limit

49



Summary of Uninformed Search

Algorithms

Criterion Breadth-  Uniform-  Depth-  Depth- lterative
First Cost First Limited  Deepening
Complete? Yes Yes No No Yes
Time O(b*Y)  o@®lcdy  owm) O(b') O(b?)
Space OB+t Oo@®Ic/)y  O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

50



Problem Types

Deterministic, fully observable - single-state problem
— Agent knows exactly which state it will be in
— Solution is a sequence

Non-observable - sensorless problem (conformant
problem)

— Agent may have no idea where it is

— Solution remains a sequence

Nondeterministic and/or partially observable -
contingency problem

— Percepts provide new information about current state

— Often interleave search and execution

— Solution may require conditionals

Unknown state space - exploration problem
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Example: Vacuum World

» Single-state, start in #5
« Solution?
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Example: Vacuum World

» Single-state, start in #5
« Solution?

. [Right, Suck] .
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Example: Vacuum World

 Sensorless, start In
{1,2,3,4,5,6,7,8}

* e.dg., Right goes to

« Solution? 5
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Example: Vacuum World

Sensorless, start in
{1,2,3,4,5,6,7,8}

e.g., Right goes to

Solution? 5

[Right,Suck,Left,Suck]
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Example: Vacuum World

Nondeterministic: Suck
may dirty a clean carpet
Partially observable:

— Location

— dirt at current location.
Percept: [L, Clean],

l.e., start in #5 or #7
Solution?

5
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Example: Vacuum World

Nondeterministic: Suck
may dirty a clean carpet
Partially observable:

— Location

— dirt at current location.
Percept: [L, Clean],

l.e., start in #5 or #7

Solution?
 [Right, if dirt then Suck]
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Summary

Goals help agents solve problems
Helpful to think of state space as a searchable tree

General problem solving agent algorithm:
— Observe environment

— Construct goal

— Construct problem (= start + options + goal)
— Search problem for solution ( = set of actions)

Need to ignore details to turn an overwhelming real
set of states into a manageable abstract state

Order in which options are searched is crucial
— Variety of simple methods
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Up Next

« Qrder in which options are searched is crucial

« Variety of uninformed methods

— Simple

— Perform horribly on problems with exponential complexity
« What if we had a way to compare nodes that didn’t

contain the goal state...?

— How would it be useful?

— How would you go about that?

— Stay tuned!
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