CS W4/01
Artificial Intelligence

Fal
Cha

2013

ter 3:

Problem Solving Agents

Jonathan Voris
(based on slides by Sal Stolfo)

Assignment 1

Due In one week!
— Tuesday October 1St @ 11:59:59 PM EDT

Please follow submission instructions

— https://www.cs.columbia.edu/~|voris/Al/notes/Assignment%20su
bmission%20guideline-Spring11.pdf

Submit:

— Code

— Test Input/Output File

— README Documentation File

Both CLIC machines and LispWorks are
acceptable platforms

https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment submission guideline-Spring11.pdf

Recap

« Covered Al history
 Defined Al as...?

* Described intelligent agents
— But how do you build them?

Reflex Agents

* Essentially a function f(s) = a
— Accepts a state
— Qutputs an action

Simple Reflex Agents
rﬂilige»nt D | |

SENSOS ~-

'

What the workd
is like now

JUaWIUOJIAUT

Y
What action |
shoulkd do now

+

Aclualors -

{Ec:nditi:n n—action rules_:,n—_-..

Model-based Reflex Agents

D

JUaWUOJIAUT

/1— f ————— ""h...h
% SENsSOIs -
(State = p 1‘
H’:h t th ko
(I_-Im-.rthe wior|cl euc:lw:s_)—- ic Ii?e n;.':mr
(W hat my actions m/
¥
(E-c:nditi:nn—actic:n rules-:,n-_... ﬁﬁtﬂaﬂdﬂglw
I_Agg'nt Actualors

vy

Goal-based agents

]

JUuslwuodiAug

(',I_ f-|— — -____. -
* Sensors --
(State)= A" l‘
H':h t th i
i:tlc:n.-.r the world evolves i Iikae n;.}"m
(W hat my actions do H";'fhlaéét;"ﬂigbtaﬂgke
What action |
@ shoukd do now
I\._A g&nt Actualors

Goal-based Agents

Have a concept of the future

Can consider impact of action on future
states

Capable of comparing desirability of states
relative to a goal

Agent’s job: identify best course of actions
to reach goal

Can be accomplished by searching
through possible states and actions

A Problematic Perspective

* Think of agent as looking for a solution to
a specific problem
* Problem consists of:
— Current state
— A goal
— Possible courses of action
» Solution consists of:
— Ordered list of actions

Current Assumptions

« States are atomic
— Indivisible black boxes
— As opposed to factored or structured
* Future observations will not alter agent’s
actions
— Solution does not change over time

10

General Problem Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «+— UPDATE-STATE(state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action < FIRST(seq)

seq +— REST(seq)

return action

11

Crafting a Goal

* Agent creates goal based on:
— Current environment
— Evaluation metrics
— Where do these come from?

 How does a goal help?
— Guidance when state Is ambiguous
— Narrows down potential choices

12

Crafting a Problem

Current state — We're here
Goal state(s) — Over there
How do you transition from A to B?

Problem: Actions and states to consider
en route to goal

Set of all possible states is known as the
state space

13

Crafting a Problem

* Actions should be of suitable granularity
— “Take a step”
— “Walk down block™
— “Drive to city”
— “Travel to star system”
 Actions should pertain to goal

* Problem must be well defined for
successful agents

14

Romanian Vacation Example

On vacation iIn Romania
— Currently in Arad

Flight leaves tomorrow from Bucharest

Formulate goal:
— Want to be in Bucharest

Formulate problem:

— States: various cities

— Actions: drive between cities
Find solution:

— Seguence of cities, e.g., Arad, Sibiu, Fagaras,
Bucharest

15

Example: Romania

=] Oradea
Neamt
- a7
75
A lasi
Aradl?
T . g2
Sibiu gy Fagams
113 a u M Vas|ui
o Rimnicu Vilcea
T|m|5-:-ara -
1432
‘ : 211
111 - Lug-:-j Fitesti
a - = Hirsowva
A Mehadia 101 . 8 ~{ziceni
i 138 uchamst =
Dobreta 120
o - L | a0
Craiowva Efore

-] Giurgiu

41U

Al World Problems

Five parts:

Initial state

— (in arad)

Applicable actions (given state)

— (go sibiu) (go Timisoara) (go zerind)

Transition model: state + action = new
state

— (result (in arad) (go zerind)) = (in zerind)

17

Al World Problems

* Five parts:

» Goal test — Did | win yet?
— Condition (implicit) or set of states (explicit)
— {(in bucharest)}

 Path cost

— Agent assigns to action based on
performance measure

— (cost (in arad) (go zerind) (in zerind)) = 75
kilometers

18

The Devil I1s In the Detalls

Isn’t Simand between Zerind and Arad?
DId you have the air conditioner on?
Restroom stops?

Personal growth during trip

19

Abstraction is your Friend

* The real world Is absurdly complex

— State space must be abstracted for problem
solving

* Abstract away things which:
— Are irrelevant to problem at hand
— Don't affect validity of solution

20

Selecting a State Space

(Abstract) state = Set of real states

(Abstract) action = Complex combination of real
actions

— e.g., "Arad = Zerind" represents a complex set of possible
routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”
Abstract solution will represent a set of detailed

solutions
— Set of real paths that are solutions in the real world

Good abstraction makes problems “easier”

21

Back to Vacuum World

C

L - .r L 4 DH
LT (LT
- : : -
L =) R
. L)
States?
Actions?
Goal test?

Path cost?

22

Back to Vacuum World

(e L T
(ELLTED EF LLED
Lcdﬁu A JQDH

States? Location of agent, location(s) of dirt

Actions?
Goal test?
Path cost?

23

Back to Vacuum World

Dn

(2 [e [
C‘ij 2 (=2

C

e [0

-
:)n

Q“L

-

States? Location of agent, location(s) of dirt
Actions? Move In direction, suck

Goal test?
Path cost?

24

Back to Vacuum World

(e | e |22
C‘ij 2 (=2

C

Dn

e [0

-
:)n

Q“L

-

States? Location of agent, location(s) of dirt
Actions? Move In direction, suck
Goal test? All clean?

Path cost?

25

Back to Vacuum World

(e L T ED;
(ELLTED EF LLED
=) =)

C

:)n

Q“L

-

States? Location of agent, location(s) of dirt
Actions? Move In direction, suck

Goal test? All clean?
Path cost? 1/action

26

Example: The 8-puzzle

1

4

8 3

7

Start State

States?
Actions?
Goal test?
Path cost?

Goal State

27

Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

States? Tile locations
Actions?

Goal test?

Path cost?

28

Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

States? Tile locations
Actions? Move blank
Goal test?
Path cost?

29

Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

States? Tile locations

Actions? Move blank

Goal test? Tiles in (blank, 1, 2,3,...) order
Path cost?

30

Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

States? Tile locations

Actions? Move blank

Goal test? Tiles in (blank, 1, 2,3,...) order
Path cost? 1/move

[Note: optimal solution of n-Puzzle family is NP-hard] 31

Example: robotic assembly

o i % n
\ul

States?: real-valued coordinates of robot joint
angles parts of the object to be assembled

Actions?: continuous motions of robot joints
Goal test?: complete assembly
Path cost?: time to execute

Blind Search

32

What Does This Have
To Do with Search?

* Created a problem, need to create a solution
— Recall: A solution is a sequence of actions

 Form a search tree
— Root: Start state
— Branches: Actions
— Nodes: Resultant actions

* General algorithm:
— Are we In goal state?
— Expand current state by exploring each potential action

— Choose which state to explore further
« Easier said than done!

33

Tree Search Algorithms

* Core concept:

— Exploration of state space by generating successors
of already-explored states (a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

34

Tree Search Example

35

Tree Search Example

36

Tree Search Example

37

Implementation: General Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE-FRONT(fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe +— INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
s$4—a new NODE
PARENT-NODE[s] < node; ACTION[s| +— action; STATE[s| « result
PATH-CoOST[$] = PATH-COST[node] + STEP-COST(n0ode, action, s)
DeEpTH[S] +— DEPTH[ROdE] + 1
add s to successors

return successors

38

Tree Search Example

Anything odd here?

39

Search Tree Nuanaces

States in search tree may repeat themselves

Loopy paths
— State A -> State B -> State A

Redundant Paths

— State A -> State Z

— State A -> State B -> State C -> State D -> ... -> State Z
Solution: turn tree search into graph search by tracking
redundant paths via an explored list

— Starts out empty

— Add node after goal test

— Only expand node if not explored

40

Implementation: States vs.
Search Tree Nodes

« A state is a (representation of) a physical configuration

* Anode is a data structure constituting part of a search
tree which includes state, parent node, action, path cost

g(x), and depth

State || 5 4

6 1

8

7 3

2

= slale

parent, action
A

Node depth =6

g=56

« The expand function creates new nodes, filling in the
various fields and using the successor function of the
problem to create the corresponding state

41

Search Strategies

A search strategy is defined by picking the order of
node expansion

Strategies are evaluated along the following dimensions:
— completeness: Always find a solution (if one exists)?
— time complexity: Number of nodes generated
— space complexity: Maximum number of nodes in memory
— optimality: Always find a least-cost solution?
Time and space complexity are measured in terms of
— b: Maximum branching factor of the search tree
— d: Depth of the least-cost solution
— m: Maximum depth of the state space (may be «)
Total cost: search cost + path cost

— How to add apples and oranges?
42

Uninformed Search Strategies

* Uninformed search strategies use only
the information available in the problem
definition

* No analysis or knowledge of states, only:
— Generate successor nodes
— Check for goal state

« Specifically, no comparison of states

43

Uninformed Search Strategies

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
terative deepening search

!

Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
Depth-first search
Depth-limited search
terative deepening search

45

Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
— Expand least cost node

Depth-first search
Depth-limited search
terative deepening search

46

Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
— Expand least cost node

Depth-first search
— Expand deepest node

Depth-limited search
Iterative deepening search

47

Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
— Expand least cost node

Depth-first search
— Expand deepest node

Depth-limited search
— Depth-first with depth limit
lterative deepening search

48

Uninformed Search Strategies

Breadth-first search
— Expand shallowest node

Uniform-cost search
— Expand least cost node

Depth-first search

— Expand deepest node
Depth-limited search

— Depth-first with depth limit
lterative deepening search

— Depth-limited with increasing limit

49

Summary of Uninformed Search

Algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time O(b*Y) o@®lcdy owm) O(b') O(b?)
Space OB+t Oo@®Ic/)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

50

Problem Types

Deterministic, fully observable - single-state problem
— Agent knows exactly which state it will be in
— Solution is a sequence

Non-observable - sensorless problem (conformant
problem)

— Agent may have no idea where it is

— Solution remains a sequence

Nondeterministic and/or partially observable -
contingency problem

— Percepts provide new information about current state

— Often interleave search and execution

— Solution may require conditionals

Unknown state space - exploration problem

51

Example: Vacuum World

» Single-state, start in #5
« Solution?

L [[°L ik

A BR[| A [#A

Example: Vacuum World

» Single-state, start in #5
« Solution?

. [Right, Suck] .

IR N

A BR[| A [#A

Example: Vacuum World

 Sensorless, start In
{1,2,3,4,5,6,7,8}

* e.dg., Right goes to

« Solution? 5

=)
ofR
=4
{2,4,6,8} e o
=4
=)

A [#R) | A (2K

Example: Vacuum World

Sensorless, start in
{1,2,3,4,5,6,7,8}

e.g., Right goes to

Solution? 5

[Right,Suck,Left,Suck]

=)
ofR
=4
{2,4,6,8} s e
=4
=)

A [#R) | A (2K

Example: Vacuum World

Nondeterministic: Suck
may dirty a clean carpet
Partially observable:

— Location

— dirt at current location.
Percept: [L, Clean],

l.e., start in #5 or #7
Solution?

5

=)
R
=4
ogR
=4
=)

A [#R) | A (2K

Example: Vacuum World

Nondeterministic: Suck
may dirty a clean carpet
Partially observable:

— Location

— dirt at current location.
Percept: [L, Clean],

l.e., start in #5 or #7

Solution?
 [Right, if dirt then Suck]

=)
R
=4
ogR
=4
=)

A [#R) | A (2K

Summary

Goals help agents solve problems
Helpful to think of state space as a searchable tree

General problem solving agent algorithm:
— Observe environment

— Construct goal

— Construct problem (= start + options + goal)
— Search problem for solution (= set of actions)

Need to ignore details to turn an overwhelming real
set of states into a manageable abstract state

Order in which options are searched is crucial
— Variety of simple methods

58

Up Next

« Qrder in which options are searched is crucial

« Variety of uninformed methods

— Simple

— Perform horribly on problems with exponential complexity
« What if we had a way to compare nodes that didn’t

contain the goal state...?

— How would it be useful?

— How would you go about that?

— Stay tuned!

59

