
CS W4701

Artificial Intelligence

Fall 2013

Chapter 3:

Problem Solving Agents

Jonathan Voris
(based on slides by Sal Stolfo)

Assignment 1

• Due in one week!

– Tuesday October 1st @ 11:59:59 PM EDT

• Please follow submission instructions
– https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment%20su

bmission%20guideline-Spring11.pdf

• Submit:

– Code

– Test Input/Output File

– README Documentation File

• Both CLIC machines and LispWorks are

acceptable platforms 2

https://www.cs.columbia.edu/~jvoris/AI/notes/Assignment submission guideline-Spring11.pdf

Recap

• Covered AI history

• Defined AI as…?

• Described intelligent agents

– But how do you build them?

3

Reflex Agents

• Essentially a function f(s) = a

– Accepts a state

– Outputs an action

4

Simple Reflex Agents

5

Model-based Reflex Agents

6

Goal-based agents

7

Goal-based Agents

• Have a concept of the future

• Can consider impact of action on future

states

• Capable of comparing desirability of states

relative to a goal

• Agent’s job: identify best course of actions

to reach goal

• Can be accomplished by searching

through possible states and actions
8

A Problematic Perspective

• Think of agent as looking for a solution to

a specific problem

• Problem consists of:

– Current state

– A goal

– Possible courses of action

• Solution consists of:

– Ordered list of actions

9

Current Assumptions

• States are atomic

– Indivisible black boxes

– As opposed to factored or structured

• Future observations will not alter agent’s

actions

– Solution does not change over time

10

General Problem Solving Agent

11

Crafting a Goal

• Agent creates goal based on:

– Current environment

– Evaluation metrics

– Where do these come from?

• How does a goal help?

– Guidance when state is ambiguous

– Narrows down potential choices

12

Crafting a Problem

• Current state – We’re here

• Goal state(s) – Over there

• How do you transition from A to B?

• Problem: Actions and states to consider

en route to goal

• Set of all possible states is known as the

state space

13

Crafting a Problem

• Actions should be of suitable granularity

– “Take a step”

– “Walk down block”

– “Drive to city”

– “Travel to star system”

• Actions should pertain to goal

• Problem must be well defined for

successful agents

14

15

Romanian Vacation Example

• On vacation in Romania

– Currently in Arad

• Flight leaves tomorrow from Bucharest

• Formulate goal:

– Want to be in Bucharest

• Formulate problem:

– States: various cities

– Actions: drive between cities

• Find solution:

– Sequence of cities, e.g., Arad, Sibiu, Fagaras,

Bucharest

16

Example: Romania

AI World Problems

• Five parts:

• Initial state

– (in arad)

• Applicable actions (given state)

– (go sibiu) (go Timisoara) (go zerind)

• Transition model: state + action = new

state

– (result (in arad) (go zerind)) = (in zerind)

17

AI World Problems

• Five parts:

• Goal test – Did I win yet?

– Condition (implicit) or set of states (explicit)

– {(in bucharest)}

• Path cost

– Agent assigns to action based on

performance measure

– (cost (in arad) (go zerind) (in zerind)) = 75

kilometers
18

The Devil is in the Details

• Isn’t Simand between Zerind and Arad?

• Did you have the air conditioner on?

• Restroom stops?

• Personal growth during trip

19

Abstraction is your Friend

• The real world is absurdly complex

– State space must be abstracted for problem

solving

• Abstract away things which:

– Are irrelevant to problem at hand

– Don’t affect validity of solution

20

21

Selecting a State Space

• (Abstract) state = Set of real states

• (Abstract) action = Complex combination of real
actions
– e.g., "Arad  Zerind" represents a complex set of possible

routes, detours, rest stops, etc.

• For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

• Abstract solution will represent a set of detailed

solutions
– Set of real paths that are solutions in the real world

• Good abstraction makes problems “easier”

22

Back to Vacuum World

• States?

• Actions?

• Goal test?

• Path cost?

23

Back to Vacuum World

• States? Location of agent, location(s) of dirt

• Actions?

• Goal test?

• Path cost?

24

Back to Vacuum World

• States? Location of agent, location(s) of dirt

• Actions? Move in direction, suck

• Goal test?

• Path cost?

25

Back to Vacuum World

• States? Location of agent, location(s) of dirt

• Actions? Move in direction, suck

• Goal test? All clean?

• Path cost?

26

Back to Vacuum World

• States? Location of agent, location(s) of dirt

• Actions? Move in direction, suck

• Goal test? All clean?

• Path cost? 1/action

27

Example: The 8-puzzle

• States?

• Actions?

• Goal test?

• Path cost?

28

Example: The 8-puzzle

• States? Tile locations

• Actions?

• Goal test?

• Path cost?

29

Example: The 8-puzzle

• States? Tile locations

• Actions? Move blank

• Goal test?

• Path cost?

30

Example: The 8-puzzle

• States? Tile locations

• Actions? Move blank

• Goal test? Tiles in (blank, 1, 2,3,…) order

• Path cost?

31

Example: The 8-puzzle

• States? Tile locations

• Actions? Move blank

• Goal test? Tiles in (blank, 1, 2,3,…) order

• Path cost? 1/move

[Note: optimal solution of n-Puzzle family is NP-hard]

Blind Search 32

Example: robotic assembly

• States?: real-valued coordinates of robot joint
angles parts of the object to be assembled

• Actions?: continuous motions of robot joints

• Goal test?: complete assembly

• Path cost?: time to execute

33

What Does This Have

To Do with Search?
• Created a problem, need to create a solution

– Recall: A solution is a sequence of actions

• Form a search tree
– Root: Start state

– Branches: Actions

– Nodes: Resultant actions

• General algorithm:
– Are we in goal state?

– Expand current state by exploring each potential action

– Choose which state to explore further
• Easier said than done!

34

Tree Search Algorithms

• Core concept:
– Exploration of state space by generating successors

of already-explored states (a.k.a. expanding states)

35

Tree Search Example

36

Tree Search Example

37

Tree Search Example

38

Implementation: General Tree Search

39

Tree Search Example

Anything odd here?

40

Search Tree Nuanaces

• States in search tree may repeat themselves

• Loopy paths
– State A -> State B -> State A

• Redundant Paths
– State A -> State Z

– State A -> State B -> State C -> State D -> … -> State Z

• Solution: turn tree search into graph search by tracking
redundant paths via an explored list
– Starts out empty

– Add node after goal test

– Only expand node if not explored

41

Implementation: States vs.

Search Tree Nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search
tree which includes state, parent node, action, path cost
g(x), and depth

• The expand function creates new nodes, filling in the
various fields and using the successor function of the
problem to create the corresponding state

42

Search Strategies

• A search strategy is defined by picking the order of
node expansion

• Strategies are evaluated along the following dimensions:
– completeness: Always find a solution (if one exists)?

– time complexity: Number of nodes generated

– space complexity: Maximum number of nodes in memory

– optimality: Always find a least-cost solution?

• Time and space complexity are measured in terms of
– b: Maximum branching factor of the search tree

– d: Depth of the least-cost solution

– m: Maximum depth of the state space (may be ∞)

• Total cost: search cost + path cost
– How to add apples and oranges?

43

Uninformed Search Strategies

• Uninformed search strategies use only

the information available in the problem

definition

• No analysis or knowledge of states, only:

– Generate successor nodes

– Check for goal state

• Specifically, no comparison of states

44

Uninformed Search Strategies

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening search

45

Uninformed Search Strategies

• Breadth-first search

– Expand shallowest node

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening search

46

Uninformed Search Strategies

• Breadth-first search

– Expand shallowest node

• Uniform-cost search

– Expand least cost node

• Depth-first search

• Depth-limited search

• Iterative deepening search

47

Uninformed Search Strategies

• Breadth-first search

– Expand shallowest node

• Uniform-cost search

– Expand least cost node

• Depth-first search

– Expand deepest node

• Depth-limited search

• Iterative deepening search

48

Uninformed Search Strategies

• Breadth-first search

– Expand shallowest node

• Uniform-cost search

– Expand least cost node

• Depth-first search

– Expand deepest node

• Depth-limited search

– Depth-first with depth limit

• Iterative deepening search

49

Uninformed Search Strategies

• Breadth-first search

– Expand shallowest node

• Uniform-cost search

– Expand least cost node

• Depth-first search

– Expand deepest node

• Depth-limited search

– Depth-first with depth limit

• Iterative deepening search

– Depth-limited with increasing limit

50

Summary of Uninformed Search

Algorithms

51

Problem Types

• Deterministic, fully observable  single-state problem
– Agent knows exactly which state it will be in

– Solution is a sequence

• Non-observable  sensorless problem (conformant
problem)
– Agent may have no idea where it is

– Solution remains a sequence

• Nondeterministic and/or partially observable 
contingency problem
– Percepts provide new information about current state

– Often interleave search and execution

– Solution may require conditionals

• Unknown state space  exploration problem

52

Example: Vacuum World

• Single-state, start in #5

• Solution?

53

Example: Vacuum World

• Single-state, start in #5

• Solution?

• [Right, Suck]

54

Example: Vacuum World

• Sensorless, start in

{1,2,3,4,5,6,7,8}

• e.g., Right goes to

{2,4,6,8}

• Solution?

55

Example: Vacuum World

• Sensorless, start in

{1,2,3,4,5,6,7,8}

• e.g., Right goes to

{2,4,6,8}

• Solution?

• [Right,Suck,Left,Suck]

56

Example: Vacuum World

• Nondeterministic: Suck

may dirty a clean carpet

• Partially observable:

– Location

– dirt at current location.

• Percept: [L, Clean],

• i.e., start in #5 or #7

• Solution?

57

Example: Vacuum World

• Nondeterministic: Suck

may dirty a clean carpet

• Partially observable:

– Location

– dirt at current location.

• Percept: [L, Clean],

• i.e., start in #5 or #7

• Solution?

• [Right, if dirt then Suck]

58

Summary
• Goals help agents solve problems

• Helpful to think of state space as a searchable tree

• General problem solving agent algorithm:

– Observe environment

– Construct goal

– Construct problem (= start + options + goal)

– Search problem for solution (= set of actions)

• Need to ignore details to turn an overwhelming real

set of states into a manageable abstract state

• Order in which options are searched is crucial

– Variety of simple methods

59

Up Next
• Order in which options are searched is crucial

• Variety of uninformed methods

– Simple

– Perform horribly on problems with exponential complexity

• What if we had a way to compare nodes that didn’t

contain the goal state…?

– How would it be useful?

– How would you go about that?

– Stay tuned!

