
1

Pattern Matcher and Problem
Solving with Searching

Keqiu Hu
(Based on Prof. Stolfo’s lecture)

2

Outline

 Review Lisp

 Project One Supplement and some program
snippet for project one(gifts)

 Problem Solving by searching

3

Lisp Review

 List functions

 Type determination functions

 Sequential control functions

 Some others .. for Project One

 Side effect in Setf

4

What is a List

 Primary data object

 Implemented as singly linked list:

 How to create a list?

(list 1 2 3) =>(1 2 3)

‘(a b c) => (A B C)

CAR CDR
head

5

List Functions

 Car

 Get first element in a list

 Example: car ‘(a b) => a

 Cdr

 Get the rest of the list

 Example: cdr ‘(a b) => ‘(b)

 Cons

 Push an element into a list

 Example: cons ‘a ‘(b) => ‘(a b)

cons ‘(a) ‘(b) => ‘(‘(a) b)

What is an ATOM?
=>Something doesn’t support the
functions on the left..

How to tell whether a variable is
an Atom or List in LISP?

6

Type Determination Functions

 Numberp

 Is a number?

 Example: numberp 1 => T

 Atom

 Is an atom?

 Example: atom 1 => T

 Listp

 Is a list?

 Example: listp ‘(a) => T

 Null

 Is nil?

 Example: null nil => T

7

Sequential Control Functions

 Cond

 Similar to “Case” in C/C++/Java..

 Example:

(cond

(condition1 statement1)

(condition2 statement2)

(T statement3)

)

 If

 Similar to “if” in C/C++/Java..

 Example: (if boolean statement1 statement2)

 if(boolean){statement1}else{statement2}

Indentation is extremely important if you are not good at counting parentheses!

Case condition 1: statement1;break;
Case condition 2: statement2;break;
default:statement3

8

Sequential Control Functions

 Examples:

 Most Basic one!

 (defun which_number(N)

(cond

((equal N 1) 'One)

(T 'Others)

)

)

9

Sequential Control Functions

 Examples:

 How to sum a linked-list?

 In Java (using loop)

 Suppose “head” is head of a linked list:
 sum = 0

 While(head!=null){sum +=head.value;head=head.next;}

 What if we don’t have WHILE/FOR loop?
 We have the recursion: sum(head) = head.value+sum(head.next);

 int sum(LinkNode X){

If(x==null) return 0;

return x.value+sum(x.next);

}

10

Sequential Control Functions

 Examples:

 Functional language open a door for you to think most
naturally!

(defun sum (L)

(cond

((NULL L) 0)

(T (+ (car L) (sum (cdr L))))

)

)

11

Sequential Control Functions

 Gift:

 How to REVERSE A LINKED LIST using recursion?

(Occurred in 50% of interviews)

Hint: reverse(x) = reverse(x.next).append(x)

12

Other Functions

 Test equality:

 Eq & Equal:

Example:

(setf L ‘(a b))

(setf M ‘(a b))

(eq L M) => NIL

(equal L M) => T

Different from python:
a =1
b = 1
>>a is b
>> True
>> a == b
>> True

13

Other Functions

 elt
 get an element from a sequence

 symbol-name
 returns the name of a symbol as a string

Example:

(defun startswithp (x) (equal (elt (symbol-name x) 0) #\P))

=>checks if a symbol name starts with the letter p

14

Side effect in Setf

 Setf’s side effect in list manipulation

 Example:

(setf L '(a b c))

(setf Y (cons ‘d L))

(setf (cadr y) ‘e)

 What is Y?

 Y => (d e b c)

 What is L?

 L=>(e b c)

15

Project One Supplement

 Requirement:

 Matches pattern with data!

 Special Marks:

 Question mark “?”: match anything

 Kleene star “*”: match 0 or more elements

 Variable mark “?x”:
 Binding one variable to .. an atom or list or whatever..

 Exclamation mark/Ampersand/Greater/Smaller:
 Indicate the relation between data and the value bounded to the variable x.

16

Project One Supplement

 Basic Examples:

 match ‘(a) ‘(a)

 Return T.

 match ‘(1 2) ‘(2 1)

 Return NIL.

 match ‘(?x) ‘(4)

 Return ((?x 4))

 match ‘(? 7) ‘((6) 7)

 Return T

17

Project One Supplement

 Examples:

 match (?x) ()

 Notice that () != (NIL)

 Variable has to be bounded => return NIL

 match (?x 2 ?x 4) (1 2 3 4)

 Return NIL since ?x can not be both 1 and 3.

 match (?x 5 6 ?y) (4 5 6 7)

 Return (((?x 4)(?y 7))) Order not matter

 match (* ?x * 7) (4 5 6 7)

 Return (((?x 4))((?x 5))((?x 6))) Order not matter

18

First Gift for Project One

 I don’t care symbol– The question mark “?”

 How to match “?”

 Think RECURSIVELY!

 Suppose we have a pattern P and an input D

(equal (car d) (car p))

(match (cdr p)(cdr d))

 Base case?

 ((and (null P) (null D)) T)

 Otherwise, if one NIL the other not

 ((or (null P) (null D)) NIL)

P D1 2 3 1 2 3

19

First Gift for Project One

 I don’t care symbol– The question mark “?”

 (defun match (p d)

(cond

((and (null p) (null d)) T)

((or (null p) (null d)) NIL)

((or (equal (car p) '?) (equal (car d) (car p)))

(match (cdr p)(cdr d))

(T NIL)

)

)

20

First Gift for Project One

 I don’t care symbol– The question mark “?”

 Example:

(match '(A ? C) '(A B C))

=>return (match '(? C) '(B C)

=>return (match '(C) '(C))

=>return (match NIL NIL)

=>return T (defun match (p d)

(cond

((and (null p) (null d)) T)

((or (null p) (null d)) NIL)

((or (equal (car p) '?) (equal (car d) (car p)))

(match (cdr p)(cdr d))

(T NIL)

)

)

21

Second Gift for Project One

 I don’t care how many symbol– The Kleene Star
mark “*”

 Previous Question Mark Matcher

(defun match (p d)

(cond
((and (null p) (null d)) T)

((or (null p) (null d)) NIL)

((or (equal (car p) '?) (equal (car d) (car p)))

(match (cdr p)(cdr d))

(T NIL)

)

)

22

Second Gift for Project One

 I don’t care how many symbol– The Kleene Star
mark “*”

 Previous Question Mark Matcher

(defun match (p d)

(cond
((and (null p) (null d)) T)

((or (null p) (null d)) NIL)

((or (equal (car p) '?) (equal (car d) (car p)))

(match (cdr p)(cdr d))

((equal (car p) ‘*) (or (match p (cdr d)) (match (cdr p) d)))

(T NIL)

)

)

23

Second Gift for Project One

 I don’t care how many symbol– The Kleene Star
mark “*”

 Example:

(match '(A * C) '(A B C))

=>return (match '(* C) '(B C)

=>return

(match '(* C) C)

=> (match ‘(* C) NIL)

or (match C C)

=>return T

(defun match (p d)

(cond
((and (null p) (null d)) T)

((or (null p) (null d)) NIL)

((or (equal (car p) '?) (equal (car d) (car p)))

(match (cdr p)(cdr d))

((equal (car p) ‘*) (or (match p (cdr d)) (match (cdr
p) d)))

(T NIL)

)

)

24

Second Gift for Project One

 Another Example:

(match '(A * C) '(A C))

=>return (match '(* C) ’(C)

=>return

(match '(* C) NIL)

=>return NIL

or (match C C)

=>return T

(defun match (p d)

(cond
((and (null p) (null d)) T)

((or (null p) (null d)) NIL)

((or (equal (car p) '?) (equal (car d) (car p)))

(match (cdr p)(cdr d))

((equal (car p) ‘*) (or (match p (cdr d)) (match (cdr
p) d)))

(T NIL)

)

)

25

Third Gift for Project One

 Handle variables

 Store variable bindings in a list

 Check list if further matches appears.

 Notice that variable can match ATOM/LIST!

26

Final Gift for Project One

 A horrible example:

 match '(((((* ?x * (* ((* ?y * ?) (?z b)) (* ?u)) ? g *))))
* ?v ? t) '(((((8 x (z ((y x z f g) (z b)) (a b u)) g g)))) v t
t)

 =>

 (((?V V) (?U U) (?Z Z) (?Y F) (?X X)) ((?V V) (?U B) (?Z Z) (?Y F) (?X X)) ((?V V) (?U U) (?Z Z) (?Y Z) (?X X))
((?V V) (?U B) (?Z Z) (?Y Z) (?X X)) ((?V V) (?U U) (?Z Z) (?Y X) (?X X)) ((?V V) (?U B) (?Z Z) (?Y X) (?X X)) ((?V
V) (?U U) (?Z Z) (?Y Y) (?X X)) ((?V V) (?U B) (?Z Z) (?Y Y) (?X X)) ((?V V) (?U U) (?Z Z) (?Y F) (?X 8)) ((?V V)
(?U B) (?Z Z) (?Y F) (?X 8)) ((?V V) (?U U) (?Z Z) (?Y Z) (?X 8)) ((?V V) (?U B) (?Z Z) (?Y Z) (?X 8)) ((?V V) (?U
U) (?Z Z) (?Y X) (?X 8)) ((?V V) (?U B) (?Z Z) (?Y X) (?X 8)) ((?V V) (?U U) (?Z Z) (?Y Y) (?X 8)) ((?V V) (?U B)
(?Z Z) (?Y Y) (?X 8)))

Blind Search 27

Solving problems by searching

Chapter 3

Blind Search 28

Problem Solving

State – Operator – Search
 A problem e.g., “How can I get to Time Square?”

 I. A state -> A configuration of current environment
 Eg: What is the position of me?
 Columbia University :

Latitude - Longitude:
40.806963,-73.961624

 II. An operator -> Function maps state to state
 Eg: How should I move?
 Move NORTH/SOUTH/WEST/EAST?

 III. Initial State and Goal State -> Seek a
sequence of operators

Columbia University :
Latitude - Longitude:
(40.806963,-73.961624)

Time Square:
Latitude - Longitude:
(27.813054,-80.425241)

Blind Search 29

Example: The 8-puzzle

 states?

 actions?

 goal test?

 path cost?

Blind Search 30

Example: The 8-puzzle

 states? locations of tiles
 actions? move blank left, right, up, down
 goal test? = goal state (given)
 path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Blind Search 31

Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end

Blind Search 32

Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end

Blind Search 33

Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end

Blind Search 34

Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end

35

Breadth-first search

 Pruning

 Operator: North/South/West/East

Si

S1 S2

S3 S4

S5 S6

S7 S8

N S W E

N S W E

36

Breadth-first search

 Strategy

 Put Si on OPEN list

 If OPEN is empty exit with FAIL

 Remove first item from OPEN, call it N

 [Add N to CLOSE list]

 If N == Goal State, exit with SUCCESS

 Add all nodes in Successor(N) that IS NOT in
CLOSED list to OPEN

 Continue..

Blind Search 37

Properties of breadth-first search

 Complete? Yes (if b is finite)

 Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

 Space? O(bd+1) (keeps every node in memory)

 Optimal? Yes (if cost = 1 per step)

 Space is the bigger problem (more than time)

Blind Search 38

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 39

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 40

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 41

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 42

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 43

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 44

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 45

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 46

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 47

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 48

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 49

Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Blind Search 50

Properties of depth-first search

 Complete? No: fails in infinite-depth spaces, spaces
with loops

 Modify to avoid repeated states along path

 complete in finite spaces

 Time? O(bm): terrible if m is much larger than d
 but if solutions are dense, may be much faster than

breadth-first

 Space? O(bm), i.e., linear space!

 Optimal? No

Blind Search 51

Depth-limited search

= depth-first search with depth limit l,

i.e., nodes at depth l have no successors

 Recursive implementation:

Blind Search 52

Iterative deepening search

Blind Search 53

Iterative deepening search l =0

Blind Search 54

Iterative deepening search l =1

Blind Search 55

Iterative deepening search l =2

Blind Search 56

Iterative deepening search l =3

Blind Search 57

Iterative deepening search

 Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

 Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123,456 - 111,111)/111,111 = 11%

Blind Search 58

Properties of iterative deepening search

 Complete? Yes

 Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd =
O(bd)

 Space? O(bd)

 Optimal? Yes, if step cost = 1

Blind Search 59

Summary of algorithms

Blind Search 60

Repeated states

 Failure to detect repeated states can turn a
linear problem into an exponential one!

Blind Search 61

Graph search

Blind Search 62

Summary

 Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

