Pattern Matcher and Problem

| Solving with Searching

Keqgiu Hu

(Based on Prof. Stolfo’s lecture)

B Outline

Review Lisp

Project One Supplement and some program
snippet for project one(gifts)

Problem Solving by searching

W Lisp Review

List functions

Type determination functions
Sequential control functions
Some others .. for Project One
Side effect in Setf

1 What is a List

= Primary data object
= Implemented as singly linked list:

" - -

= How to create a list?
(list123)=>(123)
abc)=>(ABC)

B List Functions

Car

Get first element in a list
Example: car‘(a b) => a

Cdr

Get the rest of the list
What is an ATOM?

Example: cdr (@ b) =>(b) =>Something doesn’t support the
Cons functions on the left..

How to tell whether a variable is
an Atom or List in LISP?

Push an element into a list
Example: cons ‘a ‘(b) => ‘(a b)
cons ‘(a) ‘(b) =>'(‘(a) b)

N Type Determination Functions

Numberp

Is a number?
Example: numberp 1 =>T

Atom
Is an atom?
Example: atom 1 =>T
Listp
Is a list?
Example: listp ‘(@) => T
Null
Is nil?

Example: null nil => T

N Sequential Control Functions

Cond
Similar to "Case” in C/C++/Java..
Example:
(cond
(conditionl statement1) Case condition 1: statement1;break;
(condition2 statement?2) Case condition 2: statement2;break;
(T statement3) default:statement3
)
If

Similar to “if” in C/C++/Java..
Example: (if boolean statementl statement2)
if(boolean){statement1 }else{statement2}

Indentation is extremely important if you are not good at counting parentheses!

N Sequential Control Functions

Examples:

Most Basic one!
(defun which_number(N)
(cond
((equal N 1) 'One)
(T 'Others)

N Sequential Control Functions

Examples:

How to sum a linked-list?
In Java (using loop)

Suppose “head” is head of a linked list:

= sum=0

= While(head!=null){sum +=head.value;head=head.next;}
What if we don’t have WHILE/FOR loop?

= We have the recursion: sum(head) = head.value+sum(head.next);
= int sum(LinkNode X){

If(x==null) return 0;

return x.value+sum(x.next);

}

N Sequential Control Functions

Examples:

Functional language open a door for you to think most
naturally!
(defun sum (L)
(cond
((NULL L) 0)
(T (+ (car L) (sum (cdr L))))

10

N Sequential Control Functions

Gift:
How to REVERSE A LINKED LIST using recursion?

(Occurred in 50% of interviews)
Hint: reverse(x) = reverse(x.next).append(x)

11

- Other Functions

Test equality:
Eq & Equal:
Example:

(setf L '(a b))
(setf M '(a b))

(eqg L M) => NIL
(equalLM) =>T

Different from python:
a=1

b=1

>>aisb

>> True

>> g ==

>> True

12

- Other Functions

elt

get an element from a sequence

symbol-name
returns the name of a symbol as a string
Example:

(defun startswithp (x) (equal (elt (symbol-name x) 0) #\P))
=>checks if a symbol name starts with the letter p

13

B Side effect in Setf

Setf’s side effect in list manipulation
Example:
(setf L '(a b))
(setf Y (cons 'd L))
(setf (cadr y) ‘e)

What is Y?
Y=>(debc)

What is L?
L=>(e b ()

14

N Project One Supplement

Requirement:

Matches pattern with data!

Special Marks:
Question mark “?”: match anything
Kleene star “*": match 0 or more elements

Variable mark “?x":
= Binding one variable to .. an atom or list or whatever..

Exclamation mark/Ampersand/Greater/Smaller:
= Indicate the relation between data and the value bounded to the variable x.

15

N Project One Supplement

Basic Examples:

match ‘(a) ‘(a)
Return T.

match ‘(1 2) '(2 1)
Return NIL.

match '(?x) ‘(4)
Return ((?x 4))

match '(? 7) '((6) 7)
Return T

16

N Project One Supplement

Examples:

match (?x) ()
Notice that () !'= (NIL)
Variable has to be bounded => return NIL

match (?x 2 ?x4) (123 4)

Return NIL since ?x can not be both 1 and 3.

match (?x56 ?y) (456 7)
Return (((?x 4)(?y 7))) Order not matter

match (* ?x *7) (456 7)
Return (((?x 4))((?x 5))((?x 6))) Order not matter

17

1 First Gift for Project One

= I don't care symbol- The question mark *?”
How to match “?”
Think RECURSIVELY! i _ ° _
= Suppose we have a pattern P and an input D
(equal (car d) (car p))
(match (cdr p)(cdr d))
= Base case?
= ((and (null P) (null D)) T)

= Otherwise, if one NIL the other not
= ((or (null P) (null D)) NIL)

18

- First Gift for Project One

I don’t care symbol— The question mark “?”
(defun match (p d)

(cond
((and (null p) (null d)) T)
((or (null p) (null d)) NIL)
((or (equal (car p) ?) (equal (car d) (car p)))
(match (cdr p)(cdr d))
(T NIL)
)

19

- First Gift for Project One

I don’t care symbol— The question mark “?”

Example:
(match '(A? C) '(A B C))
=>return (match '(? C) '(B C)
=>return (match '(C) '(C))
=>return (match NIL NIL)
=>return T (defun match (p d)

(cond

((and (null p) (nulld)) T)

((or (null p) (null d)) NIL)

((or (equal (car p) '?) (equal (car d) (car p)))
(match (cdr p)(cdr d))

(T NIL)

- Second Gift for Project One

I don't care how many symbol— The Kleene Star
mark “*”

Previous Question Mark Matcher
(defun match (p d)

(cond
((and (null p) (null d)) T)
((or (null p) (null d)) NIL)
((or (equal (car p) '?) (equal (car d) (car p)))
(match (cdr p)(cdr d))
(T NIL)

)

21

- Second Gift for Project One

I don't care how many symbol— The Kleene Star
mark “*”

Previous Question Mark Matcher
(defun match (p d)

(cond
((and (null p) (null d)) T)
((or (null p) (null d)) NIL)
((or (equal (car p) '?) (equal (car d) (car p)))
(match (cdr p)(cdr d))
((equal (car p) **) (or (match p (cdr d)) (match (cdr p) d)))
(T NIL)

)

22

- Second Gift for Project One

I don't care how many symbol— The Kleene Star
mark “*”

Example:
f h
(match '(A * C) '(A B C)) g:jn‘;“ match (p d)
=>return (match '(* C) '(B C) ((and (null p) (null d)) T)
((or (null p) (null d)) NIL)
=>return ((or (equal (car p) '?) (equal (car d) (car p)))
] (match (cdr p)(cdr d))

—mater—-6-6— ((equal (car p)**) (or (match p (cdr d)) (match (cdr

> (rateh - C) NIL) p) d)))

or (match C C) ;T ML)

=>return T)

23

Second Gift for Project One

Another Example:
(match '(A * C) '(A C))
=>return (match '(* C) ’(C)

=>return (defun match (p d)
Leagteh~CEOO-NID— (cond

((and (null p) (null d)) T)
==ratura NIL ((or (null p) (null d)) NIL)

((or (equal (car p) '?) (equal (car d) (car p)))
or (match C C) (match (cdr p)(cdr d))
=> return T) ((equal (car p) *) (or (match p (cdr d)) (match (cdr
(T NIL)
)
)

24

- Third Gift for Project One

Handle variables
Store variable bindings in a list

Check list if further matches appears.
Notice that variable can match ATOM/LIST!

25

- Final Gift for Project One

A horrible example:

match "(((((* 2x * (* ((* ?y * ?) (%2 b)) (* 2u)) ? g ¥))))
$ 7O (@ x @y x2fP BN bW g vt
t

(((?V V) (U U) (?2Z Z) (Y F) (X X)) ((?V V) (?U B) (?Z Z) (?Y F) (X X)) ((?V V) (U U) (?Z Z) (?Y Z) (X X))
((?V V) (2U B) (?Z Z) (Y Z) (?X X)) ((?V V) (U U) (?Z 2) (?Y X) (?X X)) ((?V V) (?U B) (?Z Z) (?Y X) (?X X)) ((?V
V) (U U) (?Z 2) (Y Y) (?X X)) (V' V) (U B) (2Z 2) (Y Y) (?X X)) ((?V V) (U U) (?Z Z) (?Y F) (?X 8)) ((?V V)
(?U B) (?Z 2) (?Y F) (?X 8)) ((?V V) (U U) (?Z Z) (?Y Z) (?X 8)) ((?V V) (U B) (?Z 2) (?Y Z) (?X 8)) ((?V V) (U
U) (?Z 2) (Y X) (X 8)) ((?V V) (?U B) (?Z Z) (?Y X) (?X 8)) ((?V V) (U U) (?Z Z) (?Y Y) (?X 8)) ((?V V) (?U B)
(?Z Z) (?Y Y) (?X 8)))

26

| Solving problems by searching

Chapter 3

Blind Search 27

B Problem Solving

State — Operator — Search

A problem e.qg., "How can I get to Time Square?”

I. A state -> A configuration of current environment

Eg: What is the position of me?

Columbia University :
Latitude - Longitude:
40.806963,-73.961624

II. An operator -> Function maps state to state

Eg: How should I move?
Move NORTH/SOUTH/WEST/EAST?

ITI. Initial State and Goal State -> Seek a
sequence of operators

Columbia University : ;
ity < ¥

Latitude - Longitude:
(40.806963,-73.961624)

Time Square:
Latitude - Longitude:
(27.813054,-80.425241)

Blind Search

North Bergen

36mi oo
Y A @
4 (%Eo

Time Square Pizza

S
s ®
£ 7 4
X q
P
J
4
oq
L 4
'
4
L4
oa
ork .:\jb &
\\?ﬁ |,|,:f-’r” West ¢
o g
L\
) g
g
-]
5
,m
/e
s fiare
[J
e
y e
v J o e
Walk Th11min * & & 7 walk 1h 6 min
y £ ® 22 m
S48 M

Manhattan

Harler

3 = ®Columbia University _,‘;(‘

28

1 Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

= states?

= actions?

= goal test?

= path cost?

Blind Search

W Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of 7-Puzzle family is NP-hard]
Blind Search

B Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
>@

Blind Search

31

B Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4
> (& O

Blind Search

32

B Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(A
(B, > (C
OO0

BlinAd Search

33

B Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4]
(B, (S
>@ @ © @

Blind Search

34

1 Breadth-first search

= Pruning
= Operator: North/South/West/East

35

B Breadth-first search

Strategy
Put Si on OPEN list
If OPEN is empty exit with FAIL

Remove first item from OPEN, call it N
[Add N to CLOSE list]
If N == Goal State, exit with SUCCESS

Add all nodes in Successor(N) that IS NOT in
CLOSED list to OPEN

Continue..

36

B Properties of breadth-first search

Complete? Yes (if bis finite)

Time? 1+b+2+b°+... + b7 + b(b?-1) = O(bd+1)
Space? O(b°*1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Blind Search 37

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2©.

Blind Search

38

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A,
40 (5

Blind Search

39

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

40

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

41

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

42

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

43

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

44

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

45

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

46

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

G
p(F))

Blind Search

47

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

48

M Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Blind Search

49

B Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces
with loops

Modify to avoid repeated states along path
- complete in finite spaces

Time? O(b™). terrible if mis much larger than d

but if solutions are dense, may be much faster than
breadth-first

Space? O(bm), i.e., linear space!
Optimal? No

Blind Search 50

1 Depth-limited search

= depth-first search with depth limit /
i.e., nodes at depth /have no successors

= Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail / cutoff
cutoff-occurred? « false
if GOAL-TEST[problem](STATE[node]) then return SoLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result + RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? + true
else if result + faidure then return result
if cutoff-occurred? then return cutoff else return failure

Blind Search

51

W Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Blind Search

52

B Iterative deepening search /=0

Limit =0 »(2) []

Blind Search

53

B Iterative deepening search /=1

Limit=1 D ()

Blind Search

54

B Iterative deepening search /=2

e
S e e

Blind Search

55

B Iterative deepening search /=3

L 3 0 @ Q @
© © (5) G 3 ©
g ©® @ ©
...... N
@ @
(5) G 3 ©
B (E)
oJo ®)
£ ®
G S
®H © H &
oJoR 0

Blind Search

56

W Iterative deepening search

Number of nodes generated in a depth-limited search to
depth d with branching factor b:

Noys =0 +b + 2 +... + b2 + b1 + A

Number of nodes generated in an iterative deepening
search to depth 4 with branching factor b:

Nips = (d+1)b% + d b~ + (d-1)b™2 + ... + 3bd2 +2bd-1 + 1bd

For b =10 d =5,
Np =1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
Nps = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Blind Search 57

- Properties of iterative deepening search

Complete? Yes

Time? (d+1)b° +d b + (d-1)b2 + ... + b~
o(b?)

Space? O(bd)
Optimal? Yes, if step cost = 1

Blind Search

58

M Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

Blind Search

59

B Repeated states

Failure to detect repeated states can turn a
linear problem into an exponential one!

Blind Search

60

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE- FRONT(fringe)
if GoAL-TEsT[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node| is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

Blind Search

61

M Summary

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

Blind Search 62

