
CS W4701

Artificial Intelligence

Fall 2013

Chapter 3 Part 4:

Informed Search

Jonathan Voris
(based on slides by Sal Stolfo)

• Midterm: Thursday October 24 2:40-3:55 PM in
Pupin 301

• Final: Thursday December 5th 2:40-3:55 PM in
Pupin 301

Announcements

2

3

Summary of Uninformed Search

Algorithms

• Best-first search
– Greedy best-first search

– A* search

• Heuristics

Outline

4

5

Recap: Tree Search

• Core concept:
– Exploration of state space by generating successors

of already-explored states (a.k.a. expanding states)

6

Smarter Search
• Uninformed search parameter selection: crude

application of domain knowledge

– Node ordering

– Search strategy

• But still limited to:
– Expand successors

– Reached goal?

• What if we had a way to assess relative state

quality?

Goal-based Agents

7

Utility-based Agents

8

• Recall uniform-cost search
– Expand node with lowest path cost function value g(n)

• New idea: use an evaluation function f(n) for each
node
– Estimate of "desirability“

– Expand most desirable unexpanded node

• Implementation: Order the nodes in fringe in
decreasing order of desirability

• Special cases:
– Greedy best-first search

– A* search

Best-first Search

9

• f(n) presents a chicken and egg problem
– Need to know which state is closest to goal

– If we know that, what is the point of the agent?

• Instead, utilize domain specific knowledge to estimate
preferable states

• Known as a heuristic
– Greek word heuriskein: “To discover”

– Learning aid

– Feedback that facilitates self learning

• h(goal) = 0 always

Heuristics

10

• Evaluation function f(n) = h(n) (heuristic)

– Estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n

to Bucharest

• Greedy best-first search expands the node

that appears to be closest to goal

Greedy Best-first Search

11

Romania with Step Costs in km

12

Greedy Best-first Search Example

13

Greedy Best-first Search Example

14

Greedy Best-first Search Example

15

Greedy Best-first Search Example

16

• Complete?

– No – Can get stuck in loops, e.g., Iasi Neamt
 Iasi Neamt …

• Time?

– O(bm), but a good heuristic can give dramatic
improvement

• Space?

– O(bm) - keeps all nodes in memory

• Optimal?

– No

Properties of Greedy Best-first

Search

17

• Idea: Avoid expanding paths that are already
expensive

• Evaluation function

– f(n) = estimated cost of cheapest path through n

– f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through n to
goal

A* Search

18

Romania with Step Costs in km

19

A* Search Example

20

A* Search Example

21

A* Search Example

22

A* Search Example

23

A* Search Example

24

A* Search Example

25

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the

goal state from n.

• An admissible heuristic never overestimates the

cost to reach the goal, i.e., it is optimistic

– f(n) won’t overestimate then either

• Example: hSLD(n)

– Never overestimates the actual road distance

• Theorem: If h(n) is admissible, A* using TREE-

SEARCH is optimal

Admissible Heuristics

26

• Suppose some suboptimal goal G2 has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that n is on a

shortest path to an optimal goal G.

• g(G2) > g(G) since G2 is suboptimal

• f(G2) = g(G2) since h(G2) = 0

• f(G) = g(G) since h(G) = 0

• f(G2) > f(G) from above

Proof: Optimality of A*

27

• Suppose some suboptimal goal G2 has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that n is on a
shortest path to an optimal goal G.

• f(G2) > f(G) from above

• h(n) ≤ h*(n) since h is admissible

• g(n) + h(n) ≤ g(n) + h*(n)

• f(n) ≤ f(G)

So f(G2) > f(G) ≥ f(n) and hence f(G2) > f(n)

Therefore A* will never select G2 for expansion.

Proof: Optimality of A*

28

• A heuristic is consistent if, for every node n, every successor
n' of n generated by any action a:

h(n) ≤ c(n,a,n') + h(n')

• Consistency means f(n) should not

decrease along path

Consistent Heuristics

29

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

• Assume h(n) is consistent

• f(n) along path is non-decreasing

• Mathematically speaking:

f(n') = g(n') + h(n')

= g(n) + c(n,a,n') + h(n')

≥ g(n) + h(n)

≥ f(n)

• Whenever n is expanded, we’ve found the best path to n
– Otherwise we would’ve followed the better path first

• Thus all nodes expanded in non-decreasing order of f(n)

• f(goal) = g(goal)
– Because f(goal) = g(goal) + h(goal) and h(goal) = 0

• First goal node expanded must be therefore be least expensive goal

Consistent Heuristics

30

• Consistency is stricter than admissibility

– All consistent heuristics are admissible

– Not all admissible heuristics are consistent

Admissibility and Consistency

31

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes

• Contour i has all nodes with f=fi, where fi < fi+1

Optimality of A*

32

• Complete?
– Yes (unless there are infinitely many nodes with f(n) ≤

optimal solution cost C*)

• Time?
– Exponential

– O(b(h*-h))

• Space?
– Keeps all nodes in memory

• Optimal?
– Yes

– Also optimally efficient
• Expanding fewer nodes may miss optimal solution

Properties of A*

33

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ?

• h2(S) = ?

Admissible Heuristics

34

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = 8

• h2(S) = ?

Admissible Heuristics

35

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = 8

• h2(S) = 3+1+2+2+2+3+3+2 = 18

Admissible Heuristics

36

• If h2(n) ≥ h1(n) for all n (both admissible)

• then h2 dominates h1

• h2 is better for search

• Typical search costs (average number of nodes
expanded) over 100 8-puzzle instances:

• d=12
– IDS = 364,404 nodes

– A*(h1) = 227 nodes

– A*(h2) = 73 nodes

• d=24
– IDS = too many nodes

– A*(h1) = 39,135 nodes

– A*(h2) = 1,641 nodes

Dominance

37

• A problem with fewer restrictions on the actions
is called a relaxed problem

• The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the
original problem

• If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h1(n) gives the
shortest solution

• If the rules are relaxed so that a tile can move to
any adjacent square, then h2(n) gives the
shortest solution

Relaxed Problems

38

• Heuristic functions estimate costs of shortest paths

• Good heuristics can dramatically reduce search cost

• Greedy best-first search expands lowest h
– incomplete and not always optimal

• A* search expands lowest g + h
– Complete

– Optimal

– Also optimally efficient (up to tie-breaks, for forward
search)

• Can’t explore fewer nodes due to risk of missing optimal solution

• Admissible heuristics can be derived from exact
solution of relaxed problems

Summary

39

