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Announcements

« Midterm: Thursday October 24 2:40-3:55 PM In
Pupin 301
« Final: Thursday December 5th 2:40-3:55 PM in
Pupin 301




Summary of Uninformed Search

Algorithms

Criterion Breadth-  Uniform- Depth-  Depth- lterative
First Cost First Limited  Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y  O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes




Outline

 Best-first search
— Greedy best-first search
— A" search

 Heuristics



Recap: Tree Search

* Core concept:

— EXxploration of state space by generating successors
of already-explored states (a.k.a. expanding states)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree




Smarter Search

Uninformed search parameter selection: crude
application of domain knowledge

— Node ordering

— Search strategy

But still limited to:
— Expand successors
— Reached goal?

What if we had a way to assess relative state
quality?



Goal-based Agents
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Utility-based Agents
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Best-first Search

Recall uniform-cost search

— Expand node with lowest path cost function value g(n)
New idea: use an evaluation function f(n) for each
node

— Estimate of "desirability”

— Expand most desirable unexpanded node

Implementation: Order the nodes in fringe in
decreasing order of desirability

Special cases:
— Greedy best-first search
— A" search



Heuristics

f(n) presents a chicken and egg problem
— Need to know which state is closest to goal
— If we know that, what is the point of the agent?

Instead, utilize domain specific knowledge to estimate
preferable states

Known as a heuristic

— Greek word heuriskein: “To discover”

— Learning aid

— Feedback that facilitates self learning

h(goal) = 0 always
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Greedy Best-first Search

« Evaluation function f(n) = h(n) (heuristic)
— Estimate of cost from n to goal

* e.g., hg p(n) = straight-line distance from n
to Bucharest

» Greedy best-first search expands the node
that appears to be closest to goal
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Romania with Step Costs In km
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Greedy Best-first Search Example
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Greedy Best-first Search Example
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Greedy Best-first Search Example
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Greedy Best-first Search Example
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Properties of Greedy Best-first
Search

Complete?

— No — Can get stuck in loops, e.g., lasi 2> Neamt
- lasi 2> Neamt -...

Time?

— O(b™), but a good heuristic can give dramatic
Improvement

Space?

— O(b™) - keeps all nodes in memory
Optimal?

— No
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A" Search

ldea: Avoid expanding paths that are already
expensive

Evaluation function
— f(n) = estimated cost of cheapest path through n

—(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to
goal
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Romania with Step Costs In km

Ta

Arad

8ad

Rimnicu ¥Wikcea

[ ] ¥Waslui

-] Hirsowa

Straight-line distance

o Buchamst
Arad
Bucha rest
Crawovs
Dobrets
Eforie
IFagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

ks

0
Lad
42
lal
17&

151
224
14
241
s

L
193
153
329

195
A4

19



A" Search Example

366=0+366
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A" Search Example

Aad
a3=140 H47=118+329 4489=754+3
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A" Search Example
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G46=280+366 415=239+176 671=291+380 413=220+193

H7=118+329 4489=75+374
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A" Search Example

———

H7=118+329 4489=75+374

G46=280+366 415=239+176 &71= 2‘31-!-380

{Clai.wa Yy £ F;-i.tesﬁ ¥ { ébiu ]

526=366+160 417=317+100 553=300+253
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A" Search Exam
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A" Search Exam
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Admissible Heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h’(n), where h'(n) is the true cost to reach the
goal state from n.

An admissible heuristic never overestimates the
cost to reach the goal, I.e., it is optimistic

— f(n) won't overestimate then either

Example: hg 5(n)

— Never overestimates the actual road distance

Theorem: If h(n) is admissible, A™ using TREE-

SEARCH IS optimal
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Proof: Optimality of A

Suppose some suboptimal goal G, has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that n is on a

shortest path to an optimal goal G.
Srarr

9(G,) > g(G) since G, Is suboptimal
f(G,) =9(G,) since h(G,) =0
f(G) =9g(G) since h(G) =0

f(G,) > f(G) from above
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Proof: Optimality of A

Suppose some suboptimal goal G, has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that n is on a
shortest path to an optimal goal G.

Sreart

c@
f(G,) > f(G) from above

h(n) < h*(n) since h is admissible
g(n) + h(n)  =g(n) + h'(n)

f(n) <f(G)

So f(G,) > f(G) =z f(n) and hence f(G,) > f(n)
Therefore A" will never select G, for expansion.



Consistent Heuristics

* A heuristic is consistent if, for every node n, every successor
n' of n generated by any action a:

h(n) < c(n,a,n’) + h(n')
« Consistency means f(n) should not
decrease along path

c(n,a,n’)
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Consistent Heuristics

Theorem: If h(n) is consistent, A* using GRAPH-SEARCH Is optimal
Assume h(n) is consistent
f(n) along path is non-decreasing
Mathematically speaking:
f(n’) =g(n’) + h(n)
=g(n) + ¢(n,a,n’) + h(n’)
2 g(n) + h(n)
= f(n)
Whenever n is expanded, we’ve found the best path to n
— Otherwise we would’ve followed the better path first
Thus all nodes expanded in non-decreasing order of f(n)
f(goal) = g(goal)
— Because f(goal) = g(goal) + h(goal) and h(goal) =0
First goal node expanded must be therefore be least expensive goal
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Admissibility and Consistency

« Consistency Is stricter than admissibility
— All consistent heuristics are admissible
— Not all admissible heuristics are consistent

b p=s
2 ! h=1 h=0
S L 7 - OG
i A

31



Optimality of A

A" expands nodes in order of increasing f value
Gradually adds "f-contours" of nodes
Contour i has all nodes with f=f,, where . <f,,;
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Properties of A*

Complete?

— Yes (unless there are Infinitely many nodes with f(n) <
optimal solution cost C¥*)

Time?

— Exponential
— O(b(™h)
Space?

— Keeps all nodes in memory
Optimal?

— Yes

— Also optimally efficient
« Expanding fewer nodes may miss optimal solution
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Admissible Heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles

* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

* hy(S)=7
* hy(S)=7

4

7 2
5
8 3

7

Start State

Goal State
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Admissible Heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles

* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

* hy(S)=38
* hy(S)=7

4

7 2
5
8 3

7

Start State

Goal State
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Admissible Heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1
5 6 4
8 3 1 7
o h S — 8 Start State Goal State
1

* h,(S) = 3+1+2+2+2+3+3+2 = 18
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Dominance

If h,(n) =2 h,(n) for all n (both admissible)
then h, dominates h,
h, is better for search

Typical search costs (average number of nodes
expanded) over 100 8-puzzle instances:
d=12
— IDS = 364,404 nodes
— A'(h)) =227 nodes
— A’(h,) = 73 nodes
d=24
— IDS =too many nodes
— A'(h,)) = 39,135 nodes
— A'(h,) = 1,641 nodes
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Relaxed Problems

A problem with fewer restrictions on the actions
Is called a relaxed problem

The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the
original problem

If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h,(n) gives the
shortest solution

If the rules are relaxed so that a tile can move to
any adjacent square, then h,(n) gives the
shortest solution
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Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
— Incomplete and not always optimal

A* search expands lowest g + h
— Complete
— Optimal
— Also optimally efficient (up to tie-breaks, for forward

search)

« Can'’t explore fewer nodes due to risk of missing optimal solution

Admissible heuristics can be derived from exact
solution of relaxed problems
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