CS W4701
Artificial Intelligence

Fall 2013
Chapter 3 Part 4:
Informed Search

Jonathan Voris
(based on slides by Sal Stolfo)

Announcements

« Midterm: Thursday October 24 2:40-3:55 PM In
Pupin 301
« Final: Thursday December 5th 2:40-3:55 PM in
Pupin 301

Summary of Uninformed Search

Algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

Outline

 Best-first search
— Greedy best-first search
— A" search

 Heuristics

Recap: Tree Search

* Core concept:

— EXxploration of state space by generating successors
of already-explored states (a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Smarter Search

Uninformed search parameter selection: crude
application of domain knowledge

— Node ordering

— Search strategy

But still limited to:
— Expand successors
— Reached goal?

What if we had a way to assess relative state
quality?

Goal-based Agents

J

(/_ f-— T T .
H"-. SENSOIS -
=tate
(state) N |}
What the workd
(tlc:n.-.r the world evalves i [ike now

(W hat my actions do

Agent
.

What it will be like
if | do action A

(o)

|

What action |
shoulkd co now

l

Actualors

juswuoJIAug

Utility-based Agents

J

2N

(_I:Imu the world evolves What the workd

is like now
(W hat my actions do ?';'fhl-ﬂé:i:t;’ﬂi{'b%ﬂgkf
il How ha E}r | will be
Utility — in sucﬁ a state
Y
YWhat action |

should do now

l

Agant Aclualors

usluodiaug

Best-first Search

Recall uniform-cost search

— Expand node with lowest path cost function value g(n)
New idea: use an evaluation function f(n) for each
node

— Estimate of "desirability”

— Expand most desirable unexpanded node

Implementation: Order the nodes in fringe in
decreasing order of desirability

Special cases:
— Greedy best-first search
— A" search

Heuristics

f(n) presents a chicken and egg problem
— Need to know which state is closest to goal
— If we know that, what is the point of the agent?

Instead, utilize domain specific knowledge to estimate
preferable states

Known as a heuristic

— Greek word heuriskein: “To discover”

— Learning aid

— Feedback that facilitates self learning

h(goal) = 0 always

10

Greedy Best-first Search

« Evaluation function f(n) = h(n) (heuristic)
— Estimate of cost from n to goal

* e.g., hg p(n) = straight-line distance from n
to Bucharest

» Greedy best-first search expands the node
that appears to be closest to goal

11

Romania with Step Costs In km

Ta

Arad

8ad

Rimnicu ¥Wikcea

[] ¥Waslui

-] Hirsowa

Straight-line distance

o Buchamst
Arad
Bucha rest
Crawovs
Dobrets
Eforie
IFagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

ks

0
Lad
42
lal
17&

151
224
14
241
s

L
193
153
329

195
A4

12

Greedy Best-first Search Example

13

Greedy Best-first Search Example

14

Greedy Best-first Search Example

15

Greedy Best-first Search Example

16

Properties of Greedy Best-first
Search

Complete?

— No — Can get stuck in loops, e.g., lasi 2> Neamt
- lasi 2> Neamt -...

Time?

— O(b™), but a good heuristic can give dramatic
Improvement

Space?

— O(b™) - keeps all nodes in memory
Optimal?

— No

17

A" Search

ldea: Avoid expanding paths that are already
expensive

Evaluation function
— f(n) = estimated cost of cheapest path through n

—(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to
goal

18

Romania with Step Costs In km

Ta

Arad

8ad

Rimnicu ¥Wikcea

[] ¥Waslui

-] Hirsowa

Straight-line distance

o Buchamst
Arad
Bucha rest
Crawovs
Dobrets
Eforie
IFagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

ks

0
Lad
42
lal
17&

151
224
14
241
s

L
193
153
329

195
A4

19

A" Search Example

366=0+366

20

A" Search Example

Aad
a3=140 H47=118+329 4489=754+3

21

A" Search Example

",'..---;-__:'"'_

£ Ea.galas » { Cradsa }m

G46=280+366 415=239+176 671=291+380 413=220+193

H7=118+329 4489=75+374

22

A" Search Example

———

H7=118+329 4489=75+374

G46=280+366 415=239+176 &71= 2‘31-!-380

{Clai.wa Yy £ F;-i.tesﬁ ¥ { ébiu]

526=366+160 417=317+100 553=300+253

23

A" Search Exam

e

CAmd

< smu_;}

S HM47=118+329

.»

G46=280+3566 -~ "\‘ G71= 2914-380

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

€

4489=75+374

24

A" Search Exam

C__ Ala.d }

T —
{5 Shlu__:} .'-imig:\ala
s 447=118+329

m

EJ-E-EB’JHEE -~ "\‘ 6?1 2914-380

591=338+253 450=450+0 526=366+160 T T 553=300+253

PETD o> @D

418=418+0 G15=455+160 G07=414+193

€

4489=75+374

25

Admissible Heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h’(n), where h'(n) is the true cost to reach the
goal state from n.

An admissible heuristic never overestimates the
cost to reach the goal, I.e., it is optimistic

— f(n) won't overestimate then either

Example: hg 5(n)

— Never overestimates the actual road distance

Theorem: If h(n) is admissible, A™ using TREE-

SEARCH IS optimal

26

Proof: Optimality of A

Suppose some suboptimal goal G, has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that n is on a

shortest path to an optimal goal G.
Srarr

9(G,) > g(G) since G, Is suboptimal
f(G,) =9(G,) since h(G,) =0
f(G) =9g(G) since h(G) =0

f(G,) > f(G) from above

27

Proof: Optimality of A

Suppose some suboptimal goal G, has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that n is on a
shortest path to an optimal goal G.

Sreart

c@
f(G,) > f(G) from above

h(n) < h*(n) since h is admissible
g(n) + h(n) =g(n) + h'(n)

f(n) <f(G)

So f(G,) > f(G) =z f(n) and hence f(G,) > f(n)
Therefore A" will never select G, for expansion.

Consistent Heuristics

* A heuristic is consistent if, for every node n, every successor
n' of n generated by any action a:

h(n) < c(n,a,n’) + h(n')
« Consistency means f(n) should not
decrease along path

c(n,a,n’)

29

Consistent Heuristics

Theorem: If h(n) is consistent, A* using GRAPH-SEARCH Is optimal
Assume h(n) is consistent
f(n) along path is non-decreasing
Mathematically speaking:
f(n’) =g(n’) + h(n)
=g(n) + ¢(n,a,n’) + h(n’)
2 g(n) + h(n)
= f(n)
Whenever n is expanded, we’ve found the best path to n
— Otherwise we would’ve followed the better path first
Thus all nodes expanded in non-decreasing order of f(n)
f(goal) = g(goal)
— Because f(goal) = g(goal) + h(goal) and h(goal) =0
First goal node expanded must be therefore be least expensive goal

30

Admissibility and Consistency

« Consistency Is stricter than admissibility
— All consistent heuristics are admissible
— Not all admissible heuristics are consistent

b p=s
2 ! h=1 h=0
S L 7 - OG
i A

31

Optimality of A

A" expands nodes in order of increasing f value
Gradually adds "f-contours" of nodes
Contour i has all nodes with f=f,, where . <f,,;

32

Properties of A*

Complete?

— Yes (unless there are Infinitely many nodes with f(n) <
optimal solution cost C¥*)

Time?

— Exponential
— O(b(™h)
Space?

— Keeps all nodes in memory
Optimal?

— Yes

— Also optimally efficient
« Expanding fewer nodes may miss optimal solution

33

Admissible Heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles

* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

* hy(S)=7
* hy(S)=7

4

7 2
5
8 3

7

Start State

Goal State

34

Admissible Heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles

* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

* hy(S)=38
* hy(S)=7

4

7 2
5
8 3

7

Start State

Goal State

35

Admissible Heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1
5 6 4
8 3 1 7
o h S — 8 Start State Goal State
1

* h,(S) = 3+1+2+2+2+3+3+2 = 18

36

Dominance

If h,(n) =2 h,(n) for all n (both admissible)
then h, dominates h,
h, is better for search

Typical search costs (average number of nodes
expanded) over 100 8-puzzle instances:
d=12
— IDS = 364,404 nodes
— A'(h)) =227 nodes
— A’(h,) = 73 nodes
d=24
— IDS =too many nodes
— A'(h,)) = 39,135 nodes
— A'(h,) = 1,641 nodes

37

Relaxed Problems

A problem with fewer restrictions on the actions
Is called a relaxed problem

The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the
original problem

If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h,(n) gives the
shortest solution

If the rules are relaxed so that a tile can move to
any adjacent square, then h,(n) gives the
shortest solution

38

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
— Incomplete and not always optimal

A* search expands lowest g + h
— Complete
— Optimal
— Also optimally efficient (up to tie-breaks, for forward

search)

« Can'’t explore fewer nodes due to risk of missing optimal solution

Admissible heuristics can be derived from exact
solution of relaxed problems

39

