
CS W4701

Artificial Intelligence

Fall 2013

Lisp Crash Course

Jonathan Voris
(based on slides by Sal Stolfo)

Another Quick History Lesson

• 1956: John McCarthy organizes Dartmouth AI conference
‒ Wants a list processing language for AI work

‒ Experiments with “Advice Talker”

• 1958: MarCarthy invents LISP
‒ LISt Processor

• 1960: McCarthy publishes Lisp Design
– “Recursive Functions of Symbolic Expressions and Their

Computation by Machine, Part I”

• Implemented by Steve Russel
– eval in machine code

• 1962: First compilers by Tim Hart and Mike Levin

Another Quick History Lesson

• Afterwards, tons of variant Lisp projects
– Stanford LISP
– ZetaLisp
– Franz Lisp
– PSL
– MACLISP
– NIL
– LML
– InterLisp
– SpiceLisp
– AutoLisp
– Scheme
– Clojure
– Emacs Lisp

Another Quick History Lesson

• 1981: DARPA sponsors meeting regarding
splintering

• Several projects teamed up to define Common
Lisp

• Common Lisp is a loose Language specification
• Many implementations

– Such as LispWorks

• 1986: Technical working group formed to draft
ANSI Common Lisp standard

• 1994: ANSI INCITS 226-1994 (R2004)

Why Lisp?

• Freedom
– Very powerful, easily extensible language

• Development Speed
– Well suited for prototyping

• Politics
– McCarthy liked it, so should you

• Symbolic
– Homoiconic: code structures are the same as data

structures (lists!)

The Big Idea

• Everything is an expression

• Specifically, a Symbolic or S-expression

• Nested lists combining code and/or data

• Recursively defined as:

– An atom, or

– A list (a . b) where a and b are s-expressions

A Note on Syntax

• You’ll usually see (a b c)

• Where are the dots?

• (a b c) is a shortcut for (a . (b . (c . NIL)))

Data

• Atoms (symbols) including numbers
– All types of numbers including Roman! (well, in the

early days)
– Syntactically any identifier of alphanumerics
– Think of as a pointer to a property list
– Immutable, can only be compared, but also serve as

names of variables when used as a variable

• Lists are the primary data object
• There are others

– Arrays, Structures, Strings (ignore for now)

• S-expressions are interpreted list structures

Data

• Atoms (symbols) including numbers
– All types of numbers including Roman! (well, in the

early days)
– Syntactically any identifier of alphanumerics
– Think of as a pointer to a property list
– Immutable, can only be compared, but also serve as

names of variables when used as a variable

• Lists are the primary data object
• There are others

– Arrays, Structures, Strings (ignore for now)

• S-expressions are interpreted list structures

Functions

• Defined using the defun macro

(defun name (parameter*)

"Optional documentation string."

body-form*)

Hello World

(defun hello ()

(print "hello world“)

)

Programs

• Series of function definitions (there are many
built-in functions)

• Series of function calls

• Read/Eval/Print

– (Setf In (Read stdio))

– (Setf Out (Eval In))

– (Print Out)

• In other words (Loop (Print (Eval (Read))))

Singly linked Lists

• A “cons” cell has a First field (CAR) and a Rest
field (CDR)

• X

• (Setf X `(A B C))

• () = nil = empty list = “FALSE”
– Nil is a symbol, and a list and its value is false.

car cdr

A

B

C

List Manipulation Funcs

• Car, First

– (Car (Car (Car L)))

• Cdr, Rest

– (Car (Cdr (Cdr L)))

• Cons

– (Cons ‘1 nil)  (1)

– (Cons ‘1 `(2))  (1 2)

car and cdr: What’s in a Name

• Metasyntatic? Arbitrary? Foreign?
• Russel implemented Lisp on IBM 704
• Hardware support for special 36 bit memory treatment

– Address
– Decrement
– Prefix
– Tag

• car: Contents of the Address part of the Register
number

• cdr: Contents of the Decrement part of the Register
number

• cons: reassembled memory word

List Manipulation Functions

• List
– (List 1 2 3)  (1 2 3)

• Quote, ‘
– Don’t evaluate arguments, return them
– (Quote (1 2)) = `(1 2) = (1 2) as a list with two elements
– Otherwise “1” better be a function!

• List vs quote: List does not stop evaluation
• Listp
• Push, Pop
• Append
• Remove
• Member
• Length
• Eval

Arithmetic

• The usual suspects:

– Plus +

– Difference –

– Times *

– Divide /

• Incf

• Decf

Functional Composition

• Prefix notation

– aka Cambridge prefix notation

– aka Cambridge Polish notation

• (f (g (a (h t)))  f(g(a, h(t)))

Predicates

• Atom
– (Atom `(A)) is false, i.e. nil, because (A) is a list, not an atom
– (Atom `A) is true, i.e. 1 or T
– (Atom A) is either, depending upon its value! A here is regarded as a

variable

• Numberp
• Null

– (Null `(1)) is nil
– (Null nil) is T

• Zerop
• And/Or/Not

– (And A B C) = T if the value of all of the variables are non-nil
– (Or A B C) = the value of the first one that is non-nil, otherwise nil

Property Lists – Association Lists

• Lisp symbols have associated property list
structures

• Atom a has property p with value v

• A computing context consists of a set of
variables and their current values

– ((key1 val1) (key2 val2)…)

– “key” is the name of a variable (a symbol)

Property List Manipulation

• Putprop/Get/Rempro all defunct in Common
Lisp

• (Setf (Get Symbol Property) NewValue)

• (Get Symbol Property)

Assignment

• Atoms are variables if they are used as
variables

– Decided by syntactic context

• setq, set, rplaca, rplacd

• setf

– The general assignment function, does it all

– (setf (car list) 5)

– (setf A 1)

In case you hadn’t noticed

• PROGRAMS/FUNCTIONS have the same form
as DATA

• Hmmm….

The Special Expression let

• let defines local variables

• (let ((var1 val) (var2 val) …)

body)

body is a list of expressions

Conditional Expression

• (If expression expression) or (if expression expression
expression)

• What about if-else?
– Use cond!

• (Cond
(Expression1 *list of expressions1*)
(Expression2 *list of expressions2*)
…

(ExpressionN *list of expressionsN*))

First conditional expression that is true, the corresponding list of
expressions is executed, and the value of the last one is returned as
the value of the Cond.

Conditional Expression

• Use t for else in cond

(cond

((evenp x) (/ x 2))

((oddp x) (* x 2))

(t x)))

Functions

• (Defun Name (variables) *body*)
– *body* is a list of S-expressions

• Similar to:
– (Setf Name (lambda(variables) *body*)

• Lambda is the primitive (unnamed) function
– (Setf X (lambda(y) (Incr y)))
– Now you can pass X to a function where you can evaluate it with

• apply, funcall

• (mapcar f arglist)
– Mapc
– Map
– (Mapreduce “borrowed” this off from LISP)

Equality

• Eq – exact same object in memory

• Eql – exact same object in memory or
equivalent numbers

• Equal – List comparison too, each component
should be “equal” to each other

– (Equal L M) means every element of L is exactly
equal to the corresponding element of M

• L and M therefore must have the same length and
structure, including all sub-components

Examples

(Defun mycount (n)
(Cond ((Equal n 1) ‘one)

((Equal n 2) ‘two)
(T `many)))

This function will return one of three Atoms as output, the atom ‘one, or ‘two or
‘many.

(Defun Sum (L)
(Cond

((Null L) 0)
(T (+ (Car L) (Sum (Cdr L)))))

This function returns the sum of numbers in the list L. Note: if an element of L is not
a number, the “+” function will complain. The LISP debugger will announce it.

More examples

(Defun Reverse (L)
(Cond

((Null L) nil)
(t

(Append
(Reverse (Cdr L))
(List (Car L)))))

This one is not a brain teaser…try it out by hand with a) nil b) a
one element list c) a three element list. See how it works?
Recursion and functional programming can create interesting
results when combined.

More examples

• (Defun Member (x L)
(Cond

((Null L) nil)

((Equal x (car L)) L)

(t (Member

(x (Cdr L)))))

Note: if the value of the variable x is actually a member of the
list L, the value returned is the “sub-list” where it appears as
the “car”. Hmmm… Try it out by hand.

Second note: What happens if a) x isn’t a member of L, and b)
L isn’t a list?

Let’s Give EQUAL a Shot

